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One key difficulty in realizing Majorana zero modes (MZMs) is the required high magnetic field, which
causes serious issues, e.g., shrinks the superconducting gap, reduces topological region, and weakens their
robustness against disorders. In this Letter, we propose that the Meissner effect can bring the topological
superconducting phase to a superconductor/topological-insulator/superconductor (SC/TI/SC) hybrid
system. Remarkably, the required magnetic field strength (<10 mT) to support MZMs has been reduced
by several orders of magnitude compared to that (>0.5 T) in the previous schemes. Tuning the phase
difference between the top and bottom superconductors can control the number and position of the MZMs.
In addition, we account for the electrostatic potential in the superconductor/topological-insulator (SC/TI)
interface through the self-consistent Schrödinger-Poisson calculation, which shows the experimental
accessibility of our proposal. Our proposal only needs a small magnetic field of less than 10 mT and is
robust against the chemical potential fluctuation, which makes the SC/TI/SC hybrid an ideal Majorana
platform.
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Introduction.—Unpaired Majorana zero modes (MZMs)
can only exist in systems with broken time-reversal
symmetry, which usually requires applying a magnetic
field. It is common in various strategies [1–28] to use the
Zeeman splitting to cause the topological superconducting
phase transition. The Zeeman splitting typically needs to be
greater than the superconducting energy gap for this to
occur. Therefore a magnetic field above a specific value is
the prerequisite in various theoretical proposals and exper-
imental detection. Meanwhile, a sizable and hard super-
conducting gap is necessary to isolate the MZMs from
other low-energy states in the energy space to protect
quantum information. However, a large magnetic field
normally suppresses the s-wave superconducting gap. As
a result, one of the most difficult challenges in implement-
ing MZMs is to balance these two seemingly contradictory
prerequisites. A recent experiment [29] observes the
Meissner effect induced Doppler shift that can make the
superconducting topological surface states have a seg-
mented Fermi surface, a gapless superconducting state,
under a small magnetic field about Bc ¼ 20 mT. It thus
suggests that a small magnetic field can significantly affect
superconductivity [29], prompting us to wonder whether
the Meissner effect can induce the topological supercon-
ducting phase transition at such a low magnetic field. In the
recent studies, supercurrent has been proposed to induce

first-order topological phase transition [30,31]. Besides, a
topological superconducting system with controllable num-
ber and position of MZMs is a prerequisite for implement-
ing topological qubits. Higher-order topological super-
conductors [17–19,32–48] have shown their potential in
fulfilling this condition [18,49–57].
In this Letter, we demonstrate that the Meissner effect

can implement the second-order topological superconduc-
tivity and controllable Majorana zero modes in the super-
conductor/topological-insulator/superconductor (SC/TI/SC)
sandwich junction [Fig. 1(a)] under a small magnetic field
of less than 10 mT. An applied magnetic field parallel to the
x-y plane induces the opposite diamagnetic current at the
top and bottom SC/TI interfaces due to the Meissner effect
[Fig. 1(b)]. Remarkably, this diamagnetic current causes the
coexistence of two types of mass domain walls at the edge
of the SC/TI/SC junction. The mass domain walls have
multiple zeros where the unpaired MZMs are located
[Fig. 1(b)] even if the applied magnetic field is less than
10 mT. Remarkably, the number and positions of MZMs
can be controlled by the superconducting phase difference,
as shown in the Supplemental Material [58], the applied
magnetic field strength, and the system size. To be con-
crete, we perform a self-consistent Schrödinger-Poisson
calculation to include the static potential at the SC/TI
surface. The topological phase transition and MZMs
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survive even when the surface Dirac point is far below the
Fermi level due to the electrostatic potential and in the
presence of disorders [58]. Last, we discuss the possible
experimental implementation.
Continuous model.—We start with a continuous model

of the SC/TI/SC junction without the magnetic field as
[58,67]

H0 ¼ vðp̂xsy− p̂ysxÞρzτzþ½mþ tðrÞ�ρxτz−μτz

þΔ
�ð1þ ρzÞ

2
τxþ

ð1− ρzÞ
2

ðcosϕτxþ sinϕτyÞ
�
; ð1Þ

withv and p̂ theTI surface state velocity and themomentum,
respectively; μ the chemical potential; m and tðrÞ the top-
bottom layer hybridization through the bulk and lateral
surfaces, respectively; Δ the superconducting gap ampli-
tude; ϕ the superconducting phase difference; and the Pauli
matrices ρ, τ, and s acting on the top-bottom surfaces,
Nambu, and spin space, respectively. This model is valid
when the TI thickness l ≪ d < ξTI with l ¼ ℏv=M and
ξTI ¼ ℏv=Δ the TI surface state decay length and coherence
length respectively with M the TI bulk gap. For the
NbSe2=Bi2Se3 hybrid [7,68], l ≈ 1 nm and ξTI ≈ 100 nm
cause m ≪ Δ. The open boundary condition (OBC) allows
one to couple the top and bottomTI layers through the lateral
surface, resulting in the radius r-dependent coupling coef-
ficient tðrÞ being finite at the boundary and negligibly small
in the bulk [58]. Here, the system takes circular geometry for
convenience. For ϕ ¼ π, the SC/TI/SC sandwich possesses
helical Majorana edge modes protected by time-reversal
symmetry [58,67]. When ϕ deviates from π as ϕ ¼ π þ δϕ,
it is equivalent to adding a uniform tunneling phase δϕ=2 in
the interlayer coupling but keeping ϕ ¼ π [58]. The inter-
layer coupling now takes [58]

HJ ¼ tðrÞ
�
cos

�
δϕ

2

�
ρxτz − sin

�
δϕ

2

�
ρyτ0

�
;

whose projection to the helical edge state subspace becomes

VJ ¼ −t̄ sin
�
δϕ

2

�
s̃x ¼ t̄ cos

�
ϕ

2

�
s̃x; ð2Þ

with s̃ the Pauli matrix acting on the helical edge state
subspace and t̄ the expectation value of tðrÞ on the edge
states [58]. Note that Eq. (2) takes the exact form of the
4π-periodic Josephson effect with t̄ the Josephson coupling
strength [69].
Now we apply a magnetic field B along the x axis. The

Meissner effect causes the diamagnetic current parallel and
antiparallel to the y axis at the top and bottom SC/TI
interfaces, respectively [Fig. 1(b)]. As the magnetic field
considered in this work is small (< 10 mT), the super-
conducting gap is still uniform due to the London rigidity
[70,71]. Therefore, taking the London gauge [72,73], the

diamagnetic current affects the Hamiltonian of the system
only through the vector potential. Firstly, the opposite dia-
magnetic currents lead to opposite vector potential at the
top and bottom SC/TI interfaces [Fig. 1(b)] as A ¼
ð0; BλLρz; 0Þ [58] with λL the London penetration depth
[29,74]. It modifies the momentum operator p̂y → p̂y þ
eAy with e > 0 and gives an additional term

HA ¼ −evBλLρ0sxτ0; ð3Þ

which functions as an in-plane Zeeman effect and causes
the Doppler shift at the top-bottom surfaces as [75,76]

Eðkx ¼ 0Þ ¼ sxρzevBλL �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ðμ − sxρzℏvkyÞ2

q
: ð4Þ

The Doppler shift reduces [Fig. 2(a)] and eventually closes
the system gap at Bc ¼ Δ=ðevλLÞ [Fig. 2(b)], which
remarkably is independent of the chemical potential as
shown in Fig. 2(c). Therefore, in a wide range of chemical
potential, we can take Bc ¼ Δ=ðevλLÞ as the critical field to
close the bulk superconducting gap. The diamagnetic
current also affects the vector potential at the lateral surface:
When taking OBC with the small magnetic field (B < Bc
[58]), the flux in the TI region [enclosed by the black
rectangular in Fig. 1(b)] can be calculated as

B2dR sin θ ¼
I

Adl ¼ 2½−BλL2R sin θ þ δΦðθÞ�;

where the first and second terms in the above equation
come from the vector potential at the top-bottom and lateral
surfaces, respectively. Note that the first term contributes to
the flux opposite to the total flux in this region [Fig. 1(b)],
which gives δΦðθÞ ¼ Bð2λL þ dÞR sin θ [58]. This also
indicates a larger Doppler shift at the lateral surface and
offers an additional θ-dependent phase −πδΦðθÞ=Φ0 ¼
−η sin θ into the electron tunneling from the bottom to the

FIG. 1. (a) Schematic of the sandwich junction. (b) The density
plot of MZMs at B ¼ 0.1Bc;ϕsc ¼ π. Bc is the critical magnetic
field strength to close the top-bottom surface superconducting
gap due to the Doppler shift. The two spectrum plots schemati-
cally show the θ-dependent edge gap. The black and blue arrows
indicate the vector potential under the London gauge and the
magnetic field.
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top surfaces through the edge, with Φ0 the magnetic
quantum flux and

η ¼ πBRð2λL þ dÞ
Φ0

¼ B
Bc

R
ξTI

�
2þ d

λL

�
ð5Þ

a unitless parameter, characterizing the ratio between the
flux through the SC/TI/SC junction and the magnetic
quantum flux. The interlayer coupling through the lateral
surface now becomes [58]

HJ¼ tðrÞ
�
cos

�
δϕ

2
−ηsinθ

�
ρxτz−sin

�
δϕ

2
−ηsinθ

�
ρyτ0

�
:

Given the polar angle θ, we can project HA of Eq. (3) into
the edge state subspace and obtain the Jackiw-Rebbi
Hamiltonian [58,77–79]

HsfðθÞ ¼ −i
ℏvf
R

∂θs̃z þ
�
VAðθÞ þ VJðθÞ

�
s̃x; ð6Þ

where

VAðθÞ ¼ −Δ
B
Bc

sin θ; VJðθÞ ¼ −t̄ sin
�
δϕ

2
− η sin θ

�
ð7Þ

correspond to HA and HJ respectively [58]. The VA is
equivalent to the Zeeman splitting induced mass term in
implementing two high-order Majorana corner states
around θ ¼ 0 and π [16,18,22]. In a NbSe2=Bi2Te3 hybrid,
the magnetic field of 10 mT generates a gap of 0.25 meV,
which implies the effective g-factor about 800 [29], much
larger than all the g-factors in the current Majorana plat-
form [11,80–83]. The VJ is a nested sine function and has
multiple zeros at δϕ=2 − η sin θ ¼ nπ with n an integer
number and θ∈ ð0; 2πÞ [(Fig. 2(d)]. For η < π and δϕ ¼ 0,
it has a similar potential to the first and together with the
first term can produce two mass-sign changes as indicated
by the black curves in Fig. 2(e). When increasing η
by increasing either the magnetic field [green curve in
Fig. 2(e)] or the system size (R or d) [brown curve in
Fig. 2(e)] according to Eq. (6), there appear more mass-sign
changes [Fig. 2(e)]. Note that each mass-sign change
indicates the location of the unpaired MZM. When varying
δϕ and fixing η ¼ 1.2 and η ¼ 3.6, the location and number
of MZMs are changed as shown by the black and brown
curve in Fig. 2(e) for ϕ ¼ π, 3π=4, π=2, π=4, and 0.
Therefore the second mass term has two advantages over
the first one: We can control the MZM number by varying
the magnetic field, the system size, or the superconducting
phase difference; we can achieve unpaired MZMs in an
even smaller magnetic field by increasing the system size.
Lattice model.—We now proceed to confirm the above

analysis through the numerical simulation with Kwant [84]
in the lattice model. Without applying a magnetic field, the
lattice model for the SC/TI/SC sandwich takes the form

H ¼
�
HTI þHsc þHc ΔðzÞ

Δ†ðzÞ −syðHTI þHsc þHcÞ�sy

�
; ð8Þ

with ΔðzÞ ¼ Δ for z > d=2, ΔðzÞ ¼ Δe−iϕ for z < −d=2,
and ΔðzÞ ¼ 0 otherwise and d the thickness of TI
[Fig. 1(b)]. The TI Hamiltonian HTI in momentum space
takes the form [85]

HTI ¼
X
i

½M þ 2tið1 − cos kiÞ�σz þ αi sin kiσxσ̃i − μ;

with i ¼ x, y, z, the Pauli matrices σ; σ̃ acting on the orbital
and intrinsic angularmomentumspace,M, ti,αi the bulk gap,
kinetic energy, and the spin-orbital coupling strength, respec-
tively. The electronic Hamiltonian of the SC Hsc ¼
ℏ2k2=2ms − μs withms and μs the effectivemass and chemi-
cal potential respectively. The SC/TI coupling Hamiltonian
takes Hc ¼

P
z −tcc

†
k;zþ1ck;z þ h:c: with tc the coupling

strength. When applying the magnetic field, the vector
potential under London gauge [86] generally takes

Ayðy; zÞ ¼ −fðyÞg0ðzÞ þ 2BλL
z
d
;

Azðy; zÞ ¼ f0ðyÞgðzÞ: ð9Þ

(b)

(c)

(d)

(e)

(a)

FIG. 2. In (a)–(c), the blue and red curves correspond to μ ¼ 0
and μ ¼ 3Δ, respectively. (a),(b) Energy bands at B ¼ 0.5Bc and
B ¼ Bc; (c) Band gap as a function of B. (d) The number of the
band gap zeros for VJðθÞ in the η − ϕ parameter space. (e) Given
d ¼ λL and t̄ ¼ 0.7Δ, the magnitudes of the mass terms as the
function of θ at ϕ ¼ π; 3=4π; 1=2π; 1=4π; 0 from top to bottom.
With varying B and R, the black, red, and green curves
correspond to η ¼ 1.2, 3.6, 4.8, respectively.
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where gð�d=2Þ ¼ 0 eliminates the z component of thevector
potential at the SC/TI interface and

H
A · dl ¼ BSr the

integration along the cross section edge and Sr the cross
section area [Fig. 1(b)]. To satisfy these two conditions, we
take fðyÞ ¼ B̄y2=2; gðzÞ ¼ sech2ðz=z0Þ with d=z0 ≫ 1 to
satisfy the former and B̄ ¼ Bð2λL þ dÞ=2z0 to satisfy the
latter.
Taking the periodic boundary condition (PBC) in the x

direction, we calculate the edge state spectrum of the cross
section corresponding to θ ¼ �π=2 [Fig. 1(b)]. At ϕ ¼ π,
the junction has gapless edge states, indicated by the red
dashed curves [Fig. 3(a)]. Applying the magnetic field
along the x direction can gap the edge states [blue curves in
Fig. 3(a)]. Then, for ðϕ; ηÞ ¼ ðπ; 0.5πÞ, we numerically plot
the edge gap magnitude (the absolute value of the minimal

eigenenergy) as a function of θ. The edge states have only
two gap zeros at θ ¼ 0 and θ ¼ π [Fig. 3(b)] which is
consistent with our continuous model analysis. We further
show the number of MZMs and their distribution by taking
OBC in all three directions in Fig. 3(c). Limited by the
numerical resources, we remove the two SC layers and add
superconducting pairing into the TI region within the d=3
thickness from the top and bottom surfaces while keeping
other parameters unchanged in the MZM density calcu-
lation. The system exhibits two MZMs located around the
gap zeros in Fig. 3(c), consistent with the analytical result
in Fig. 2(d). To show the MZMs move, fixed at η ¼ 0.5π
and different ϕ, we plot the gap magnitudes in Fig. 3(b) and
the eigenenergies and the distributions of MZMs in
Fig. 3(d), which demonstrate the consistent move of the
gap zeros and the MZMs. When increasing η, more MZMs
will appear. Fixed at ðπ; 1.5πÞ, the system generates six
MZMS in Fig. 3(e). For ϕ ¼ 0, as shown by the red-blue
curve in Fig. 3(f), the magnetic field can also affect the gap
of the edge. This implies that gap zeros can occur even at
ϕ ¼ 0. Thus, fixed at ð0; πÞ, we plot the gap function in
Fig. 3(g) and the distributions of MZMs in Fig. 3(h). The
numerical results show that the system can generate four
MZMs located around gap zeros. Our numerical results
exhibit the perfect match with our analytical results in
Figs. 2(d) and 2(e). These results confirm that the number
of MZMs can be controlled by varying η and ϕ.
Remarkably, our results are independent of the specific
form of fðyÞ and gðzÞ [58].
Electrostatic potential.—In the practical scenario, the

different work functions between SC and TI lead to the
electrostatic field near the SC/TI interface and may deviate
the Majorana physics from the ideal models [7,87,88].
Therefore we calculate the electrostatic potential UðzÞ in
TI using the Schrödinger-Poisson method [89–92]. The
parameters of TI Hamiltonian and the relative dielectric
constant ϵr ¼ 25 are the values of Bi2Se3 [58,85,93,94].
We only solve the Schrödinger equation in the TI region
and treat the top-bottom SCs as the boundary condition
eUðz ¼ �d=2Þ ¼ W with W the band offset between the
TI and SC [94,95]. The calculation neglects the magnetic
field because it is small. The finite band offset W induces
the electrostatic potential near the top and bottom TI
surfaces [Fig. 4(a)]. We find that the TI spectrum is
dramatically affected by the electrostatic potential: at
W ¼ 0.35 eV, the Dirac point is embedded deeply into
the valence band, and more sub-bands other than the
surface states appear at the Fermi energy [Fig. 4(b)].
Nevertheless, the electrostatic potential confines all the
states at the Fermi surface within the 10 nm (≪ ξTI) range
from the SC/TI interface, indicating good contact between
the multibands in the TI and the SCs. To explore the
proximity effect on these multibands, we calculate the bulk
superconducting spectrum without a magnetic field by
taking the PBC in x and y directions and show that all

(a)

(b)

(c)

(d)

(e)

(f) (g) (h)

FIG. 3. Given d and R: (a),(f) The energy spectrum for θ ¼
�π=2 at ϕ ¼ π and ϕ ¼ 0. The dashed red and solid blue curves
correspond to B ¼ 0 and B ≠ 0. (b) The lowest positive eigen-
value as a function of θ for different ϕ at η ¼ 0.5π. (c),(e),(h) The
MZM density and several eigenvalues closest to the Fermi level at
ðϕ; ηÞ ¼ ðπ; 0.5πÞ, ðπ; 1.5πÞ, and ð0; πÞ respectively. Especially
the calculation in (e) includes disorders. (d) Keeping η ¼ 0.5π,
the MZM density and several eigenvalues closest to the Fermi
level for different ϕ. (g) The lowest positive eigenvalue as a
function of θ at ðϕ; ηÞ ¼ ð0; πÞ. Parameters: a ¼ 1 the lattice
constant, d ¼ λL ¼ 20, tx;y;z ¼ 1, M ¼ −1.5, αx;y;z ¼ 2, μ ¼ 0,
μsc ¼ 1.75, tc ¼ 1; in the SC region, ts ¼ ℏ2=2ms ¼ 1 for
hopping in the z direction and ts ¼ 0 for hopping in the x- or
y direction; R ¼ 25;Δ ¼ 0.3 in (c)–(e) and (h), and R ¼ 75;Δ ¼
0.1 in the others.
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the states, at the Fermi surface possess a proximity gap
greater than 0.7Δ [Fig. 4(d)]. Owing to this large proximity
gap of the multibands, at ϕ ¼ π and taking PBC only in the
x direction, the SC/TI/SC sandwich shows clean gapless
and gapped edge states without and with the magnetic field
[Fig. 4(e)]. We further confirm numerically that the dis-
orders only slightly reduce the topological gap, the energy
of the first excited states, and do not affect the MZM
existence [58]. These results indicate that our proposal
remains valid in the presence of the electrostatic potential
and disorders.
Discussion and conclusion.—Recently developed exper-

imental techniques [96,97], such as top-down etching [98],
can fabricate the SC/TI hybrid can grow superconductors to
the side surfaces of TIs to fabricate SC/TI hybrids while
keeping the TI bulk insulated. As our proposal has no
requirement for the direction of the SC/TI/SC sandwich
junction, this technique can be applied to our proposal, as
shown in the Supplemental Material [58]. Therefore owing
to the insulating bulk and finite thickness of TI, we can
neglect the diamagnetic effect of the Josephson current
[58,99]. In summary, we propose that the Meissner effect
induced diamagnetic current can form MZMs in SC/TI/SC
sandwich junctions when a small magnetic field (< 10 mT)
is present. The diamagnetic current causes the Doppler
shifts on TI surfaces, resulting in two sizable mass terms,
which can implement MZMs with controllable numbers
and positions. Further, incorporating the self-consistent
Schrödinger-Poisson calculation, we show that our results
are insensitive to the electrostatic potential near the SC/TI
interface.
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