
Self-Trapping of Slow Electrons in the Energy Domain

Maor Eldar,1,2,3 Zhaopin Chen ,1,2,3 Yiming Pan ,1,3,4 and Michael Krüger 1,2,3,*

1Department of Physics, Technion—Israel Institute of Technology, Haifa 32000, Israel
2Solid State Institute, Technion—Israel Institute of Technology, Haifa 32000, Israel

3The Helen Diller Quantum Center, Technion—Israel Institute of Technology, Haifa 32000, Israel
4School of Physical Science and Technology and Center for Transformative Science, ShanghaiTech University,

Shanghai 200031, China

(Received 29 September 2022; revised 22 September 2023; accepted 5 December 2023; published 17 January 2024)

The interaction of light and swift electrons has enabled phase-coherent manipulation and acceleration of
electron wave packets. Here, we investigate this interaction in a new regime where low-energy electrons
(∼20–200 eV) interact with a phase-matched light field. Our analytical and one-dimensional numerical
study shows that slow electrons are subject to strong confinement in the energy domain due to the
nonvanishing curvature of the electron dispersion. The spectral trap is tunable and an appropriate choice of
light field parameters can reduce the interaction dynamics to only two energy states. The capacity to trap
electrons expands the scope of electron beam physics, free-electron quantum optics and quantum
simulators.
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The interaction between free electrons and light, result-
ing in a high degree of coherent control of the electron
wave function, has been intensively studied during the past
two decades [1–6]. While energy-momentum conservation
in this interaction cannot be fulfilled in free space, intro-
ducing a third medium or body allows for the exchange of
energy between photons and electrons. This can be achi-
eved using different approaches, such as photon-induced
near-field electron microscopy (PINEM, [1,4,7]), optical
field discontinuities at interfaces [3,8], dielectric laser
acceleration (DLA, [9–11]), flat surfaces with phase-
matched near fields [5,12], photonic cavities [6,13], or
ponderomotive acceleration [14–16]. The main signature of
the interaction is the appearance of sidebands in the
electron energy spectrum that are spaced by photon energy
quanta of the driving light as a result of energy and
momentum transfer between electrons and light (see,
e.g., [1,4,11,16,17]). The sidebands enable attosecond
electron pulses [8,18–23]. All these works have employed
fast electrons (10–200 keV), enabling a straightforward
understanding of much of the physics, primarily in the
simplified picture of multilevel Rabi oscillations [4]. Here,
the interaction with the optical field allows the electron to
perform a quantum random walk on an infinite energy
ladder. The multilevel Rabi oscillations model is based on

approximations for fast electrons which include neglecting
the electron momentum recoil (nonrecoil approximation),
applying the short-time interaction approximation without
phase matching, and neglecting the ponderomotive forces
exerted by the strong light field. However, recent theory
works have begun focusing on strong-field slow-electron
interactions, for example via numerical study of strong off-
resonant coupling at ∼0.1–1 keV [24], inelastic pondero-
motive scattering at ∼10 keV [25], and Jaynes-Cummings-
type interactions with a cavity [26]. Recent advancements in
low-energy electron microscopy and source development
have enabled the generation of tailored low-energy electron
pulses [27–37], opening up first experimental studies of
electron-light interactions in this novel regime.
In this Letter, we perform a theory study of the phase-

matched interaction of slow electrons (∼20–200 eV) with a
strong optical field. We find that resonant interactions in this
regime cause a strong confinement of the low-energy electron
spectrum due to the nonvanishing curvature of the electron
dispersion. The latter acts as a quadratic trapping potential in
the energy domain, setting a limit to the quantum random
walk of the electrons.We show that this trapping in the energy
domain is tunable due to the competition of energy ladder
hopping and electron dispersion which depends strongly on
the frequency and strength of the optical driving field. Our
findings demonstrate that the rich toolbox for manipulating
free electrons with light is not restricted to fast electrons, but
gives rise to interesting new phenomena in the regime of low-
energy electrons, much beyond the multilevel Rabi picture.
In order to understand the strong-field dynamics of slow

electrons, we perform a Floquet-Bloch analysis of the
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time-dependent Schrödinger equation (TDSE). We reduce
the problem to one spatial dimension along the electron’s
propagation direction (see Supplemental Material [38]
for a full derivation and justification of this reduction).
Key to our analysis is the electron’s Hamiltonian given
by H0 ¼ E0 þ v0ðp − p0Þ þ ðp − p0Þ2=ð2γ3mÞ, which we
retrieve from expanding the relativistic dispersion to second
order around the initial electron momentum p0. The full
relativistic dispersion is illustrated in Fig. 1(a). It displays a
nonvanishing curvature βd for low energies, which neces-
sitates the second-order expansion for H0. Here, m is the
electron rest mass and E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c4 þ p2
0c

2
p

−mc2, p0 ¼
γmv0 and v0 are the initial kinetic energy, momentum, and
velocity, respectively, of the electron, while γ is the Lorentz
factor and c the speed of light. In our proposed setup, we
assume an optical mode with wave vector kz, where kz can

be chosen such that a phase-matched electron-light inter-
action is achieved. An example of this is an evanescent
mode induced at a DLA-type double grating structure with
period λz [10], where kz ¼ 2π=λz [see Fig. 1(b) and
Supplemental Material [38] for a detailed discussion].
We neglect other modes in our theory study since they
cannot lead to a net modulation of the electron. The inter-
action Hamiltonian is given by HI ¼ −ðe=2γmÞðApþ
pAÞ þ ðe2A2=2γmÞ, where A is the optical field’s vector
potential and e the elementary charge. For a monochro-
matic field, the vector potential is given by Aðz; tÞ ¼
−ðEf=ωÞ sinðωt − kzzþ ϕ0Þ, where Ef and ω are the
electric field amplitude and angular frequency, respectively.
ϕ0 is the initial phase of the electric field at the beginning of
the interaction (t ¼ 0).
The electron-light interaction is imprinted on the result-

ing energy spectrum. After the electron enters the inter-
action region where the optical field is present it absorbs or
emits an integer number of photons from the field, resulting
in equally spaced energy states. Hence, encapsulating this
spatiotemporal periodicity we employ the Floquet-Bloch
ansatz jψðtÞi ¼ P∞

n¼−∞ anðtÞe−iωntjkni, where n denotes
the number of photons absorbed (n > 0) or emitted (n < 0)
and an are the probability amplitudes corresponding to the
respective energy-momentum states jkni. Here, kn ¼ k0 þ
nkz and ωn ¼ ω0 þ nω denote the wave number and
angular frequency values, respectively. The electron’s
initial kinetic energy and momentum are given by ℏω0 ≡
ðγ − 1Þmc2 and ℏk0 ≡ γmv0, respectively. Substituting the
ansatz into the Schrödinger equation we find

iℏ
∂anðtÞ
∂t

¼ −
�

nℏðω − v0kzÞ − n2
ðℏkzÞ2
2m

þUp

�

anðtÞ

þ δ

��

knþ1 −
kz
2

�

anþ1ðtÞeiϕ

þ
�

kn−1 þ
kz
2

�

an−1ðtÞe−iϕ
�

−
Up

2

�

anþ2ðtÞei2ϕ0 þ an−2ðtÞe−i2ϕ0

�

; ð1Þ

where Up ¼ e2E2
f =ð4mω2Þ is the ponderomotive energy,

δ ¼ eℏEf=ð2mωÞ and ϕ ¼ ϕ0 þ ðπ=2Þ. Equation (1)
reveals several intriguing and unique characteristics of the
slow electron-light interaction, as we will explain below.
In order to resonantly couple the slow electron and the

field, we require the conservation of both energy and
momentum for single photon emission or absorption by
the electron at the quantum level, resulting in the phase-
matching condition of equal electron (group) velocity and
optical field (phase) velocity [42]. This phase-matching
condition also holds true for low-energy electrons (see
Supplemental Material [38]). In a DLA realization of our
scheme using a grating, phase matching requires setting the
grating period in accordance with the electron velocity
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FIG. 1. Phase-matched low-energy electron light-matter inter-
actions. (a) The electron dispersion for low-energy electrons
displays a strong curvature βd. (b) Sketch of a possible exper-
imental setup. An electron is entering into a region of interaction
with a phase-matched optical mode with wave vector kz. Phase
matching is achieved via a mirror-symmetric pair of dielectric
gratings with a period of λz illuminated from both sides.
(c) Evolution of the electron spectrum as a function of interaction
time, as obtained from Eq. (1). The initial state is a localized wave
packet with an energy width corresponding to five photons ΔE ∼
7.5 eV (438 as temporal duration). The dashed lines represent the
trap edges and the trap width ΔEtrap. (d) The same for a plane
wave. In (c) and (d), the initial kinetic energy is set to
E0 ¼ 100 eV. The optical field amplitude is Ef ¼ 0.5Vnm−1,
the photon energy is ℏω ¼ 1.54 eV, and the phase is ϕ0 ¼ 0.
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(v ¼ βc) and the impinging field’s wavelength λf , namely
λz ¼ βλf [9]. We note that it is challenging to achieve phase
matching for slow electrons (E0 ≈ 100 eV) since it requires
a significant reduction of the phase velocity of the optical
field, but it is not impossible. For instance, DLA requires a
grating structure with a period λz ∼ 16 nm for 100 eV
electrons and 800 nm free-space light wavelength, which is
in reach of today’s technological capabilities. As an
alternative to DLA-type gratings, the use of plasmonic
metamaterials [43] or materials with very high refractive
index (n ≈ 50), such as SrTiO3 at low temperatures
(∼10 K, experimentally realized in [44]), can generate
evanescent waves with an extremely small phase velocity.
A prism configuration incorporating such materials enables
phase-matched interactions [17]. Laser-triggered needle
tips [27–36] produce suitable electron pulses with tunable
bandwidth [32].
The A2 ponderomotive term of the interaction

Hamiltonian is reflected in the third line of Eq. (1),
permitting two-photon exchanges in each interaction event.
It becomes more important for slow electrons since the
competing linear interaction term pA decreases with
velocity. However, even for a 50 eVelectron, strong electric
fields with amplitudes on the order of 10 Vnm−1 have to be
applied to make the ponderomotive term comparable to the
pA term. In contrast to free-space ponderomotive schemes
[14,25,45], material damage thresholds limit the applicable
field intensity. Under this limitation, a strong ponder-
omotive effect can still be reached if the electron kinetic
energy approaches the single photon energy, eEf=ω ≈ p0

(see Supplemental Material [38]).
The second characteristic of slow-electron strong-field

interaction is the breakdown of the nonrecoil approxima-
tion. For fast electrons, the detuning in momentum recoil
owing to photon absorption and emission may be neglec-
ted, as explicitly represented by knþ1 ≈ kn−1 ≈ k0 [4].
However, this is no longer true for slow electrons. In order
to reveal this, we focus on the ratio jΔvj=v0, where Δv is
the velocity change caused by a single photon exchange.
This quantity does not depend on the field strength.
For an electron with E0 ¼ 50 eV and a photon energy
ℏω ¼ 1.54 eV, we find jΔvj=v0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏω=E0

p

≈ 10−1. In
contrast, for a fast electron of E0 ¼ 200 keV we find
jΔvj=v0 ≈ 10−3, hence the detuning can be neglected. The
breakdown of the nonrecoil approximation amounts to an
effective symmetry breaking between absorption and
emission, which is most pronounced at higher orders of
photon scattering and manifests as a slightly altered
coupling constant at the level of single photon exchange.
In addition, we find an asymmetric evolution pattern in the
electron spectrum when electrons and light are not phase
matched. This leads to a different group velocity dispersion
for emission and absorption sidebands, resulting in
asymmetric Bloch-type oscillations (see Supplemental
Material [38]).

The first line of Eq. (1) reveals two potentials acting on
the time evolution of the sideband momentum states,
nℏðω − v0kzÞ and −ðnℏkzÞ2=ð2mÞ. The first potential term
is linear in n and results from the mismatch between
electron group velocity and light field phase velocity.
Under the condition ω ≠ v0kz, this phase mismatch acts
effectively as a linear potential on a synthetic frequency
space resulting in Bloch oscillation dynamics in the energy
spectrum as reported previously for fast free electrons
[46,47], which lead to Wannier-Stark localization [48].
However, when we introduce phase matching through
ω ¼ v0kz, the linear term vanishes and we are left with
the quadratic potential term. The latter is only significant
for slow electrons and acts as a confining potential for the
electron’s spectral evolution. Figures 1(c) and 1(d) display
the population probability of the sideband momentum
states as function of interaction time obtained from
numerical solutions of Eq. (1). We show the results for
two initial conditions, a localized Gaussian wave packet
[Fig. 1(c)] and a single energy [plane wave, Fig. 1(d)], both
centered at 100 eV initial kinetic energy. The field strength
is set to Ef ¼ 0.5Vnm−1 and the single photon energy is
ℏω ¼ 1.54 eV. We observe a spectral evolution exhibiting
strong confinement and oscillations. For the electron wave
packet, we find that the spectral evolution follows a
classical Lorentz-like trajectory for a charged particle in
an electric field. In contrast, for a plane-wave electron we
see spectral broadening to a superposition state, which
subsequently ceases to expand and suddenly collapses to a
single sideband. In both cases, we observe a spectral
asymmetry in the energy spectrum as a small but noticeable
difference (Δn ≈ 3) between the maximally populated
energy states of absorption and emission. This asymmetry
is a signature of the nonvanishing curvature of the electron
dispersion at low energies and accumulates across succes-
sive photon scattering events. The validity of the results of
our Floquet-Bloch model given by Eq. (1) is confirmed by a
numerical solution of the full TDSE (see Supplemental
Material [38]).
In order to analytically capture the basic underlying

physics in Fig. 1, we lay aside the asymmetry in absorption
and emission by applying the approximation knþ1 ≈ kn−1 ≈
k0 and neglect ponderomotive effects. We are thus left with
a simplified equation,

iℏ
∂an
∂t

¼ βdn2an þ κanþ1 þ κ�an−1; ð2Þ

where βd¼ððℏkzÞ2=2mÞ and κ ¼ ðeEfℏk0=2mωÞeiðϕ0þπ=2Þ.
By relating βd to the electron and light field parameters
under phase matching, we find βd ≈ 1

4
ðℏωÞ2=E0. From

Eq. (2) we can easily read the two competing processes that
govern the spectral dynamics, namely harmonic oscilla-
tions and hopping. In analogy to solid-state terminology,
we refer to the two terms on the rhs of Eq. (2) as quadratic
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on-site potential (n2βd) and nearest-neighbor hopping (κ).
Both parameters depend on the optical field parameters and
the electron’s energy dispersion. We note that the evolution
of the electron spectrum governed by Eq. (2) is analogous
to the Schrödinger equation for atomic diffraction [49], the
transversal Kapitza-Dirac effect for electron diffraction [50]
and acousto-optics (see Supplemental Material [38]). In
order to distinguish the relative contribution of the two
effects we invoke the Nath parameter, ρ ¼ βd=κ [51]. In
Fig. 2(a), we show log ρ as a function of photon energy and
field strength. For ρ ≪ 1, the hopping dominates, indicat-
ing the Raman-Nath regime, whereas for ρ ≫ 1 we find the
Bragg regime [52]. In the following, we will discuss both
regimes and their effects on electron spectral evolution.
We first discuss the Raman-Nath regime (ρ ≪ 1) which is

reachedwhen the hopping energy ismuch larger than the on-
site energy.We can thus treat the latter as a perturbation. For
instance, a slow electron with kinetic energy of 100 eV can
reach this regimewhile interactingwith an electric field with
wavelength 800 nm and Ef ¼ 1 Vnm−1, yielding ρ ∼ 10−3.
The unperturbed equation then reads iℏð∂anðtÞ=∂tÞ ¼
κanþ1ðtÞ þ κ�an−1ðtÞ, which has a known analytical solu-
tion in the form of a Bessel function of the first kind, anðtÞ ¼
Jnðð2jκj=iℏÞtÞeinϕ0 (see Supplemental Material [38]). We
obtain the probability PnðtÞ of locating the electron at a
certain sideband asPnðtÞ ¼ jJnðð2jκj=iℏÞtÞj2. The quantum
coherent dynamics given by the Bessel function solution
entail a symmetric diffraction pattern, as observed in
Fig. 1(d) for times smaller than t1 ∼ 9 fs, in full analogy
to PINEMwith fast electrons [4]. However, at later times, up
to t2 ∼ 19 fs, the rapid expansion is considerably slowed
down as the confining term ð∝ n2Þ becomes significant at
these high sidebands. Physically, this is the result of energy–
momentum conservation being violated at high photon
scattering orders, due to the growing phase mismatch
between light (linear dispersion) and free electron (quadratic
dispersion). As a result, all electron trajectories are deflected
from the trap edges and self-collapse in close vicinity of the

initial momentum state at around t2 ∼ 19 fs, creating com-
plex interference structures. This evolution pattern then
repeats periodically throughout the interaction time due to
the quadratic on-site potential.
For ρ ≫ 1 where the hopping is smaller than the on-site

potential term, we find the Bragg regime [50]. As shown in
Fig. 2(a), entering the Bragg regime necessitates relatively
weak electric fields (∼106–108 Vm−1) and high-energy
photons (ℏω ∼ 4–20 eV). In this regime, fewer sideband
orders are populated compared to the Raman-Nath regime,
which can be understood as the quantum electron optics
analog of optical Bragg diffraction but occurring here in the
electron spectrum. The on-site term ∝ n2 invokes a sym-
metry between photon emission and absorption scattering
orders (n;−n). Therefore, even with a small hopping term
of the Bragg regime, there exists a non-negligible coupling
between these sidebands. For an initial spectrum containing
only a single sideband, the Bragg regime can offer the
strongest possible confinement involving only two side-
bands, i.e., a coherent splitting of the electron spectrum
much like a diffraction grating in optics. The dynamics
takes the form of periodic oscillation between the two
energy components, an effect known in neutron diffraction
as Pendellösung oscillations [53], and was also observed in
atom optics experiments [54]. A pure quantum effect
occurs if the photon energy is on the order of the electron
energy. Here, the slow electron populates only a few side-
bands within a strong spectral confinement. The quantiza-
tion grid in the electron phase space is comparable to its
volume, therefore already exchanging a small number of
photons leads to a large energy-momentum violation (large
phase mismatch) and therefore eliminates higher sidebands
[see Fig. 2(b) for an example]. Interestingly, for free-
electron lasers a similar transition to a quantum regime
was found [55]. We note that the truncation down to a two-
level system with Rabi-like oscillations is only possible in
the phase-matched Bragg regime and cannot be reached by
other means, such as strong phase mismatch [46] or ponde-
romotive schemes [15,25] (see Supplemental Material [38]).
At this moment, we can control and manipulate the

spectral confinement of the laser-modulated free electrons,
enabling their trapping in the energy domain. This is
achievable because the preceding analysis clarifies both
the electron and light field parameters in each regime, as
we will now demonstrate in detail. From now on throughout
our Letter we stay in the Raman-Nath regime (Ef ≈ 1Vnm−1

and ℏω ¼ 1.54 eV). For our spectral trap, it is reasonable to
define an effective trap width ΔEtrap as the energy difference
between the minimum and the maximum populated side-
bands [see Fig. 1(c)]. Large widths ΔEtrap correspond to
weak trapping, whereas narrow ΔEtrap allow only a small
number of sidebands to be populated. ΔEtrap stays the same
for long interaction times and only depends on the field
parameters and the initial electron energy distribution. In
Fig. 3(a), we show the dependence of ΔEtrap on the electron
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We show log ρ as a function of photon energy ℏω and electric
field strengthEf . The initial electron energy is 100 eV. (b) Spectral
evolution in the Bragg regime following Eq. (1) for an initial off-
resonant electron energy of 12 eV, photon energy ℏω ¼ 4 eV,
and Ef ¼ 1 × 108 Vnm−1 (ρ ≈ 10, λz ∼ 3 nm for phase matching
to 16 eV electron energy, which corresponds to n ¼ 0). We
observe Rabi-like oscillations between 12 eV (n ¼ −1) and
20 eV (n ¼ þ1).
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energy for the wave packet and the plane wave from
Figs. 1(c) and 1(d), respectively, with the phase matching
adjusted to each energy. Not surprisingly, an increase in
energy leads to weaker influence of the quadratic potential
and therefore weaker trapping. A similar increase in width is
reached by increasing the optical field strength, which
enhances the hopping [see Fig. 3(b)]. The definition of κ
reveals another parameter that influences the trap width, the
phase ϕ0 of the optical field at t ¼ 0. This dependence can
be explained with an analogy to the classical harmonic
oscillator, for which the largest energy transfer between the
driving force and mass occurs when the phase difference
(time difference) between the two is ðπ=2Þ. In our defi-
nitions, this phase difference corresponds to ϕ0 ¼ ð3π=2Þ,
where we indeed find the maximum ΔEtrap [see Fig. 3(c)].
Figure 3(d) shows the dependence of ΔEtrap on the group
velocity dispersion (GVD) of the electron wave packet for
ϕ0 ¼ 0. As we move away from zero GVD, the trap width is
increasing as the initial wave packet stretches in time
and starts to resemble a continuous wave packet (see
Supplemental Material [38] for details).We note that spectral
trapping can also occur for larger electron energies than
those treated in this Letter. However, the trap width will be
on the order of the electron energy, making the effect hard to
observe (see Supplemental Material [38]).
In Fig. 1(c), we notice the appearance of spectral Airy-

like fringes forming at intermediate and long evolution
times in the vicinity of the trap edges, i.e., at the turning
points for a confined and oscillatory localized wave packet.
These fringes are due to an interference pattern which
emerges from the different phases accumulated by the set of

initially occupied sideband states. The difference in phase
accumulation by the different plane waves is strongest in
the vicinity of the trap edges. A few oscillation cycles are
required to develop a pronounced fringe pattern. This may
be demonstrated by initializing the wave packet closer to
the quadratic potential minimum by altering the phase
difference, which results in longer interaction times for the
fringes to form and vice versa.
In conclusion, our Letter explores the spectral dynamics

of the resonant interaction of a low-energy electron with a
strong light field. With the help of analytical models and
numerical simulations, we find new spectral features
appearing as the interaction evolves. Particularly, we report
a confinement of the electron spectrum induced by the
curvature of the electron dispersion which is not accessible
for fast electrons. Tunable with the help of the optical field
parameters, effective trap widths ranging from a few tens to
a few hundred electron volts can be achieved. Our findings
can be highly useful for quantum coherent electron
manipulation. First, a confinement to only a few energy
sidebands in the Bragg regime offers a natural truncation of
the infinite Hilbert space of the multilevel Rabi ladder,
allowing for adiabatic eliminations that enable us to get rid
of undesired sidebands and higher-order photon transitions.
Second, the finite Hilbert space as a synthetic spatial
dimension can be then of aid for carrying out quantum
simulations and computations utilizing coherent laser-
electron interactions, as proposed recently for fast electrons
[47]. Finally, the dynamical confinement in the low-energy
regime can help to control the maximum energy transfer for
laser-driven charged-particle acceleration, the minimum
bunching size of an electron beam, and the maximum
photon energy produced in free-electron radiation.
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