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We present experimental and theoretical results on formation of quantum vortices in a laser beam
propagating in a nonlinear medium. Topological constrains richer than the mere conservation of vorticity
impose an elaborate dynamical behavior to the formation and annihilation of vortex-antivortex pairs. We
identify two suchmechanisms, both described by the same fold-Hopf bifurcation. One of them is particularly
efficient although it is not observed in the context of liquid helium films or stationary systems because it
relies on the compressible nature of the fluid of light we consider and on the nonstationarity of its flow.
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The propagation of light in a nonlinear medium can be
described as a (dispersive) hydrodynamic phenomenon.
This approach, pioneered in the 1960s [1–6] and further
developed in the 1990s [7–10] yielded remarkable suc-
cesses: observation of bright [11–13], dark [14–17], cavity
[18,19], and oblique [20,21] solitons, of wave breaking and
dispersive shock waves [22–26], of quantized vortices
[27–36], and of superfluid flow of light [37,38]. An
extreme hydrodynamiclike behavior is the turbulent regime
in which typical observables display scale-invariant power
law spectra in momentum space. In this Letter, we focus on
two dimensional (2D) configurations, similar to those
already studied in the field of Bose-Einstein condensates,
where quantum vortices proliferation but also robust vortex
structures have been observed [39–42]. Although their role
in the different types of power laws that have been
predicted and/or observed [39,43,44] is not fully elucidated
[45–47], there is no doubt that understanding the dynamics
of vortex formation is crucial for unraveling the mecha-
nisms leading to quantum turbulence. Recent studies
have demonstrated the efficiency of optical platforms for
studying this subject [48–54].
In this Letter, we use a nonlinear optical setup [26,55,56]

for studying the formation and annihilation of vortices and
of other less conspicuous features, such as saddles and
phase extrema, that also carry a topological charge.
Although the existence of these other critical points has
a long history [57,58], their role in enforcing topological
constraints [59–62] is often overlooked. Our detection tool
is able to simultaneously record the intensity and the phase
of a light sheet and then to reconstruct the streamlines of the
flow of the fluid of light, as illustrated in Fig. 1. This enables
us to investigate the formation mechanisms of vortices and

critical points. In particular we experimentally demonstrate
for the first time a scenario of vortex and antivortex
formation first proposed by Nye et al. in 1988 [63] and
identify a new one, which appears simpler and presumably
more efficient in the time dependent flow of a compressible
quantum fluid.
Consider a quantum fluid described by a scalar order

parameter of the form

ψðr⃗Þ ¼ Aðr⃗Þ exp½iSðr⃗Þ�; ð1Þ
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FIG. 1. Experimental intensity pattern and streamlines (in red)
of the beam at the exit of the nonlinear vapor. Dark regions are of
lesser intensity. One distinctly discerns two vortex-antivortex
pairs and also a saddle located close to the origin.
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defined in the plane (r⃗ ¼ xe⃗x þ ye⃗y). In such a system the
formation of vortices is constrained by topological rules: it
is for instance well known that in the absence of externally
imparted angular momentum, vortices typically appear in
pairs with opposite quantized vorticity. This scenario is
enriched by other constraints [63] originating from the
fact that, to any closed curve C of the plane, are associated
not one, but two topological indices: the vorticity
IVðCÞ ¼ ð1=2πÞ HC dS and the Poincaré-Hopf index
IPðCÞ ¼ ð1=2πÞ HC dθ, where θ is a polar angle of the

“velocity field” v⃗ðr⃗Þ ¼ ∇!S and in both cases the integral is
performed clockwise. IV and IP are (positive or negative)
integers. This stems from the fact that along a close contour
the phase S of the order parameter (1) and the orientation θ
of the velocity must both vary by integer multiples of
2π [64]. If S is regular and well-defined in the interior of C,
then IVðCÞ ¼ 0. This value does not change unless a vortex
[67] crosses C. To each vortex one can associate a vorticity
and a Poincaré-Hopf index by integrating along a small
circle around the vortex core. This yields IP ¼ þ1 and
typically [68] IV ¼ �1 for each vortex. Besides vortices,
other points are also associated with a finite Poincaré-Hopf
index: those at which the velocity of the flow cancels. They
are known as critical points, or equilibria. For a potential
flow such as ours, where the phase S is the velocity
potential, they are of two types: phase extrema (local
maxima or local minima) and phase saddles. For an
extremum IP ¼ þ1 and for a saddle IP ¼ −1 [69], while
for both IV ¼ 0 [72]. Similarly to what occurs for the
vorticity, IPðCÞ does not change unless a critical point with
nonzero Poincaré-Hopf index (a vortex, a saddle, or an
extremum) crosses C.
These topological considerations are generic and apply

to any system described by a complex scalar order
parameter. The physical implementation we consider in
this Letter consists in the propagation of a linearly polarized
laser beam of wavelength λ0 ¼ 2π=k0 ¼ 780 nm in a cell
filled with a nonlinear medium consisting in a natural Rb
vapor at a temperature T ≈ 120°. Within the paraxial
approximation, denoting as z the coordinate along the
beam axis, and r⃗ the transverse coordinate, this propagation
is described by a complex scalar field ψðr⃗; zÞ that obeys a
generalized nonlinear Schrödinger equation [75] where z
plays the role of an effective time:

i∂zψ ¼ −
1

2n0k0
ð∂2x þ ∂

2
yÞψ þ k0n2jψ j2ψ −

i
2Λabs

ψ ; ð2Þ

jψ j2 being the intensity, expressed in W:mm−2. Λabs
describes the effects of absorption: if T denotes the
coefficient of energy transmission, then Λabs ¼
−zmax= lnðT Þ, where zmax ¼ 7 cm is the total length of
propagation through the vapor. n0 is the refractive index of
the medium and n2 is the nonlinear Kerr coefficient. The

values of the parameters are T ¼ 0.16, n0 ¼ 1, and
n2 ¼ 2.2 × 10−4 W−1:mm2 [76].
For studying the above discussed topological constraints,

we use a specifically designed incident light pattern that
consists of the superposition of a main Gaussian beam
(wide and isotropic) with an auxiliary one, more tightly
focused and anisotropic. The initial amplitude accordingly
reads

ψðr⃗; 0Þ ¼
ffiffiffiffi
I1

p
exp

�

−
r2

w2
G

�

þ
ffiffiffiffi
I2

p
exp

�

−
x2

w2
x
−
y2

w2
y

�

expfiφ2ðr⃗Þg; ð3Þ

where r ¼ jr⃗j, wG ¼ 1.1 mm, wx ¼ 0.55 mm,
wy ¼ 0.08 mm, and I1 ¼ I2 ¼ 0.4 W:mm−2. The initial
phase of the auxiliary beam is φ2ðr⃗Þ ¼ −k0r2=R2 þΦ2,

FIG. 2. Comparison of experimental measurements (left plots)
and simulations (right plots) of the beam intensity pattern at
the exit of the vapor. The initial amplitude is given by (3) with
Φ2 ¼ 0.96π in panels (a) and (b); Φ2 ¼ π in panels (c) and (d)
and Φ2 ¼ 1.05π in panels (e) and (f). The red rectangle in
panel (b) marks the location of a vortex-antivortex pair whose
formation is analyzed below; see Fig. 3.
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where R2 ¼ −0.5 m is the initial curvature of the wavefront
of the auxiliary beam and Φ2 is the global phase difference
between the auxiliary and the main beam. An antiphase
relationship (Φ2 ¼ π) corresponds to an intensity dip
induced by the narrow auxiliary beam on the main one.
We image the beam pattern at the exit of the cell for
different initial phase differences Φ2 ¼ πð1� 0.05Þ. This
is performed thanks to a wavefront sensor that captures the
amplitude and phase of the near field at the output of the
nonlinear medium. As exemplified in Fig. 1 this enables us
to simultaneously measure the output optical fluid intensity
jψ j2 and velocity v⃗.
Figure 2 compares the experimental and theoretical

intensity profiles jψðx; y; zmaxÞj2 at the exit of the cell.
In panels (a) and (b) eight vortices distributed symmetri-
cally with respect to the horizontal and vertical axes are
observed, which have been created during the nonlinear
propagation within the cell. When increasing the initial
phase difference Φ2 between the main and auxiliary beam,
the vortices close to the y axis get even closer [panels (c)
and (d)] and eventually merge [panels (e) and (f)]. The
agreement between the experimental and numerical results
displayed in Fig. 2 is excellent, especially if one considers
that there are no free parameters: all the constants of the
model have been determined by independent experimental
measurements [76]. This validates the use of the nonlinear
Schrödinger equation (2) for studying the intermediate
steps (0 < z < zmax), which are not accessible in our
experiment.
The dynamics of the critical points during the propaga-

tion within the nonlinear vapor can be complex, but it
always fulfills the previously stated topological require-
ments. For instance, in numerical simulations, we have
observed the concomitant apparition of a phase saddle and
of a phase extremum, a process that preserves the total
Poincaré-Hopf index. In a similar way, the topological rules

impose that the annihilation of a vortex-antivortex pair be
associated to the simultaneous disappearance of two
saddles in order to ensure the conservation not only of
IV but also of IP. This is the process at play in the
disappearance of the two pairs of central vortices observed
in Fig. 2, when going from the top to the bottom row. We
will not go into the particulars of this mechanism here (see
however the discussion in [76]) because it has been
described in detail by the Bristol team [63] and also
because it is seldom observed in our investigation. In the
following we describe an alternative mechanism of vortex
formation, much more often encountered in our setting: two
phase extrema collide and annihilate one another, giving
birth to a vortex-antivortex pair. During this process the
total Poincaré-Hopf index and total vorticity keep the value
2 and 0, respectively. This mechanism is at the origin of the
formation of the two vortices in the red square of Fig. 2(b).
Numerically computed intermediate beam structures lead-
ing to the output pattern shown in Figs. 2(a) and 2(b) are
presented in Fig. 3. A phase minimum (white dot)
approaches a phase maximum (red dot), pinching a low
density region. The two extrema annihilate each other
giving birth to a vortex-antivortex pair [cyan circles in
Fig. 3(b)]. The fact that the two vortices have opposite
vorticity is clearly seen from the orientation of the stream-
lines in the vicinity of each of them. After their formation,
the two vortices slowly drift apart, eventually reaching in
Fig. 3(c) the configuration identified by a red rectangle in
Fig. 2(b).
The structure of the flow, entailed in the velocity field

v⃗ðr⃗Þ, can be interpreted within the theory of dynamical
systems by considering streamlines (red lines in Figs. 1
and 3) as trajectories of a 2D system:

dr⃗
dγ

¼ v⃗ðr⃗Þ; ð4Þ

FIG. 3. Snapshots of simulations of the intensity pattern at several propagation distances within the nonlinear vapor. The initial profile
is (3) withΦ2 ¼ 0.96π. The corresponding final intensity pattern is represented in Fig. 2(b), of which plot (c) is an enlargement. Regions
of low intensity are dark. The oriented curves are the streamlines spanned by the vector field v⃗ðr⃗Þ. A red (white) circle locates a phase
maximum (minimum), i.e., a stable (unstable) node. Cyan circles are vortices. Their vorticity is indicated by a þ or − sign (IV ¼ �1).
The blue diamond is a saddle that plays no part in the vortex formation mechanism.
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with γ an arbitrary parametrization on the trajectory. In the
terminology of dynamical systems, phase extrema are
known as nodes (stable or unstable) and saddles as saddle
points [85]. Although vortices are not equilibria of the
velocity field, the streamlines encircling a vortex are closed
trajectories, and vortices can be seen as “centers” of the
dynamical system (4). Within this framework, the change
of topology of the flow can be viewed as a bifurcation
of (4): for instance, the above mentioned concomitant
apparition of a saddle point (phase saddle) and of a node
(phase extremum) is described by a so-called saddle-node
bifurcation. In the same line, the mechanism described
previously, and displayed in Fig. 3, appears in the fold-
Hopf bifurcation [86,87] for which a generic normal form is
given explicitly in [76]. For the present discussion it
suffices to consider the system (4) with the specific form

v⃗ ¼ v⃗fHðr⃗Þ≡ −2σxye⃗x þ ðμþ σx2 − y2Þe⃗y; ð5Þ

where σ ¼ �1 is fixed, and μ∈R is a parameter of the
bifurcation. The phase portrait of the dynamical system (4),
(5) for σ ¼ 1 and two different values of μ (before and after
the bifurcation) is shown in Fig. 4. In this case, the stable
and unstable nodes (red and white dot respectively) that
exist when μ > 0 annihilate when μ becomes negative to
form two centers (represented by cyan circles); note that the
latter are not singularities but true equilibria of the velocity
field (5).
The velocity field (5) is not that of a potential flow, as

should be the case for a quantum fluid. However, it is
possible to derive a potential flow that shares the same
phase portrait. The corresponding velocity field reads (see
Ref. [76])

v⃗ ¼ ∇!SfH; SfHðr⃗Þ≡ arg½x2 þ σðy2 þ μÞ þ iσy�: ð6Þ

The system (4), (6) is not only a gradient flow, it also obeys
the Onsager-Feynman quantization condition [64]. In
particular the centers of (4), (5) are replaced by singularities
(where SfH is ill-defined) that are encircled by closed orbits

along which the circulation of ∇!SfH is �2π [as depicted in
Fig. 4(b)], i.e., quantum vortices. Note that SfH is not the
phase of a wave function that exactly obeys the nonlinear
Schrödinger equation (2). However, comparing the phase
portraits of Fig. 4 with the flow patterns obtained in
Figs. 3(a) and 3(b) shows that varying μ in (6) effectively
reproduces the local flow pattern of a z-varying wave
function solving (2). Besides, SfH fulfills the requirements
expected from the phase of the order parameter (1) of a 2D
quantum fluid.
It is interesting to remark that the normal form (5), once

modified to derive from the velocity potential (6) as just
explained, also describes when σ ¼ −1 the scenario of
vortex annihilation presented in [63], which we henceforth
denote as the Bristol mechanism: two vortices and two
saddle points annihilate when μ goes from positive to
negative, yielding a featureless flow. Notably, the model
wave function given in [63] reduces to ψ ¼ x2 − y2 − μ −
iy close to the bifurcation point (see Ref. [76]), i.e.,
its phase is SfH with σ ¼ −1, validating the analogy
presented here: the normal form of the fold-Hopf bifurca-
tion provides an approximated theoretical model of the
Bristol mechanism.
The mechanism of vortex formation illustrated in Figs. 3

and 4, although generic, cannot be observed in the special
case of an incompressible 2D quantum fluid, such as
commonly used to model liquid helium films for instance.
Indeed, in such a system the phase S is a harmonic function,
which, by the maximum principle cannot have maxima nor
minima: the only possible critical points with zero velocity
are saddles and no phase extrema occur, contrary to what is
observed in Fig. 3 (see an extended discussion of this point
in [76]). Phase extrema are also forbidden in a stationary
(i.e., z-independent in our case) system, as proven in
Ref. [63], but nothing prevents their formation in a z-
dependent configuration. Indeed, such extrema have been
theoretically considered [59] and experimentally observed
in a random linear speckle pattern [88], but were found to
be relatively scarce, being outnumbered in a ratio 14∶1 by
saddles. Although our use of a specific initial condition (3)
prevents a systematic statistical study, we also observe that
phase extrema are less numerous than saddles. This
corresponds to physical intuition: extrema are typically
born in saddle-node bifurcations, which create an equal
number of extrema and saddles, whereas pairs of saddles
could be additionally created thanks to the Bristol mecha-
nism. More significantly, the new mechanism of vortex
formation we have identified and observed in many
instances, efficiently diminishes the number of extrema.
As a result, when vortices proliferate, saddles tend to be
more numerous than extrema.

FIG. 4. Phase portraits of the dynamical system (4), (5) [or
equivalently (4), (6)] with σ ¼ 1 for two different values of the
bifurcation parameter μ. The color scale corresponds here to the
phase SfH ∈ ½−π; π� (light yellow corresponds to SfH ¼ π and dark
green to SfH ¼ −π). Note that the position of the 2π jump of
SfHðr⃗Þ [dashed line in panel (b)] is arbitrary and fixed by the
choice of constant of integration in (6).
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In conclusion we emphasize that our experiment uses a
new generation of optical techniques that enables a precise
measure of both the intensity and the phase of a light sheet
[32,35,36,52–54]. As demonstrated in the present Letter,
this offers the possibility of an accurate and simple location
not only of vortices but also of other critical points, such as
saddles. This enabled us to obtain evidences of several
(topologically constrained) mechanisms of formation of
vortices and of associated singular points in the time
domain, with an account of the evolution of the streamlines.
As far as vortex formation is concerned, we experimentally
demonstrated a scenario proposed more than 30 years ago
(the Bristol mechanism). We also identified a new scenario,
simpler and more common in our setting, in which two
nodes collide and give birth to a vortex-antivortex pair. This
process requires a nonstationary flow and a compressible
fluid. We showed that the two mechanisms of vortex
formation (Bristol and nodes collision) pertain to the same
fold-Hopf type of bifurcation. We demonstrated that the
corresponding normal form can be enriched in order to
account for the quantum nature of our system. This
suggests that these mechanisms are universal. It would
thus be of great interest to uncover to what extent they are
involved in the nucleation or annihilation of vortices and of
more exotic defects recently studied in Refs. [89–92] or
also during the Kibble-Zurek process [93,94]. As a final
remark we stress that our Letter illustrates the efficiency of
tools issued from the theory of dynamical systems to
investigate the route to turbulence. This opens the path
of a new line of research devoted to the statistical study of
nodes and saddles dynamics in a turbulent quantum fluid.
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