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Reducing geometrical complexity while preserving desired wave properties is critical for proof-of-
concept studies in wave physics, as evidenced by recent efforts to realize photonic synthetic dimensions,
isospectrality, and hyperbolic lattices. Laughlin’s topological pump, which elucidates quantum Hall states
in cylindrical geometry with a radial magnetic field and a time-varying axial magnetic flux, is a prime
example of these efforts. Here we propose a two-dimensional dynamical photonic system for the
topological pumping of pseudospin modes by exploiting synthetic frequency dimensions. The system
provides the independent control of pseudomagnetic fields and electromotive forces achieved by the
interplay between mode-dependent and mode-independent gauge fields. To address the axial open
boundaries and azimuthal periodicity of the system, we define the adjusted local Chern marker with
rotating azimuthal coordinates, proving the nontrivial topology of the system. We demonstrate the adiabatic
pumping for crosstalk-free frequency conversion with wave front molding. Our approach allows for
reproducing Laughlin’s thought experiment at room temperature with a scalable setup.
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The quantum Hall effect represents one of the most
important effects in topological physics, with potential
applications for achieving backscattering-suppressed wave
transport through disorder [1–4]. Laughlin’s argument
[5,6], which is based on gauge transformation and
describes quantized conductance [7,8] through the adia-
batic pumping of wave functions, represents an important
milestone in the understanding of quantum Hall effects.
Laughlin’s model is composed of a cylinder subjected to a
radial magnetic field Bρ and an adiabatically varying axial
magnetic flux ΦzðtÞ that induces an electromotive force
(EMF). Given its theoretical importance, it is certainly of
interest to directly implement this model. However, the
intrinsic geometry of the cylinder necessitates a three-
dimensional (3D) platform, complicating its experimental
realization. One of the intriguing approaches to address
such a geometrical challenge is the implementation of
3D or even higher-dimensional systems and Hamiltonians
in physical systems with lower geometrical dimensions
[9–11], as shown in the realization of topological phenom-
ena in non-Euclidean geometry [12] and quasicrystals [13].
Using this approach, demonstrating Laughlin’s pump by
emulating the axial transport on a cylindrical surface with a
radial transport on a disk was achieved in [14,15].
The concept of synthetic frequency dimensions [16] has

provided new design freedom in addressing the geometrical
challenge of Laughlin’s pump [5]. By introducing inter-
modal coupling via spatiotemporal modulation, a synthetic

frequency dimension can be realized through the coupling
of modes with different frequencies, resulting in dynamics
along a frequency axis. In this way, higher-dimensional
physics can be reproduced with experimentally accessible
lower-dimensional platforms. Synthetic dimensions have
been used in the study of topological phenomena [17–22],
quantum computing [23,24], and matrix-vector multiplica-
tions [25]. In a cold-atom system, Laughlin’s pump in
synthetic dimensions was implemented recently with very
few spin states for the azimuthal axis [26]. However, it
remains a challenge to achieve pumping operations at room
temperature with geometrical scalability beyond the limited
number of spin states. Given the demonstrated potential
of synthetic dimensions in photonics—evidenced by the
experimental realization of tunable pseudomagnetic fields
in ladders using a single resonator [27]—suitable photonic
systems could tackle the geometrical complexities of
Laughlin’s pump while ensuring a room-temperature and
scalable configuration.
Here we propose a photonic realization of Laughlin’s

pump. In our realization, the axial dimension of the
cylindrical geometry in Laughlin’s pump is implemented
in the synthetic dimension. Our realization enables the
creation of pseudomagnetic fluxes of Bρ and ΦzðtÞ as
well as their independent control, which is essential for
Laughlin’s pump.We demonstrate adiabatic pumping in the
synthetic dimension with designed light injections, which
allows for crosstalk-free frequency conversion of light as
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well as the molding of spatial profiles. To examine the
nontrivial topological nature of the cylinder, we introduce
the adjusted local Chern marker, which clarifies the origin
of the adiabatic pumping rate of the system. Our imple-
mentation is the first study of bulk topological dynamics on
Laughlin cylinder using integrated photonic platforms,
achieving scalable geometry.
Hardware implementation.—Laughlin’s pump is imple-

mented with a radial magnetic field and an EMF from an
axial magnetic flux [28] [Fig. 1(a)]. It is well known that the
necessary field and EMF can be achieved by employing
the gauge field Aðz; tÞ ¼ ½−BρzþΦzðtÞ=2πρ�φ [29], as
ð∇ ×AÞ · ρ ¼ Bρ and ∂t

H
A · dl ¼ ∂tΦzðtÞ, where dl

denotes the φ-axis infinitesimal length. In an ultracold
atom system [26], the gauge field was realized with the
momentum exchange in two-photon transitions and the

relative phase difference of laser fields involved in �φ
hopping.
We emulate Laughlin’s pump by achieving the necessary

time-reversal symmetry breaking for topological phenom-
ena effectivelywith one of the pseudospinmodes: clockwise
traveling-wave resonances. The magnetic fluxes of the
pump are implemented through the pseudogauge field A,
extending two-dimensional (2D) topological photonics
[30,31] to the cylindrical geometry defined with the syn-
thetic dimension. Figure 1 illustrates the resonator-based
implementation of Laughlin’s pump. Each point of the
space-mode (φ − z) cylindrical coordinate corresponds to
an individual resonance. The arrows connecting points
represent the spatial (φ-axis) and intermodal (z-axis) cou-
pling.We utilize nonresonant waveguide loops as the spatial
couplers between resonators, which have been employed in
realizing gauge fields [30,32]. The couplers are assumed
to have a length Lw, obtaining the phase evolution of
½4ðmþm0Þ þ 1�π per circulation for the mth resonance
mode, wherem0 is a sufficiently large integer for the offset.
As demonstrated in 2D planar structures [30,32], the
couplers allow for space-mode hopping with the desired
gauge field A, while maintaining destructive interferences
within the couplers.
In the proposed platform, we achieve ΦzðtÞ, the synthetic

z axis, and Bρ as follows. First, employing the method of
realizing magnetic fluxes across a 2D plane [30,33], we
derive the EMF ∂tΦzðtÞ from the dynamic gauge ADðtÞ ¼
ΦzðtÞ=2πρ by applying the time-varying modulation of the
coupling phase [red regions in Fig. 1(b)]. While applying
the opposite perturbations in the upper and lower arms to
maintain the nonresonant condition, we utilize time-varying
phase shifters [34,35], which are set to assign ηðtÞ phase
evolutions to the modes of interest. The phase evolutions
derive ADðtÞ ¼ ηðtÞ, which is mode independent around the
mode numbermwithin the linear dispersion regime (note S1
in the Supplemental Material [36]).
Second, we implement the synthetic z axis following the

method in previous studies [37,44]: employing spatiotem-
porally varying modulations within resonators [yellow
regions in Fig. 1(b)] to achieve intermodal coupling.
Hopping amplitudes along the φ and z axes are set to be
equal, and there is no additional phase shift along the z axis.
Finally, the static gauge field ASðzÞ ¼ −Bρz corresponds

to the coupling phases linear to mode numbers. To achieve
ASðzÞ, we introduce the structural imbalance in the upper
and lower arms by introducing the dislocation ΔL=2
[blue regions in Fig. 1(b)]. Each mode experiences different
path lengths for the imbalance and the following gauges,
which leads to m-dependent hopping phase difference
�½4ðmþm0Þ þ 1�πΔL=Lw and the consequent magnetic
field Bρ ¼ −4πΔL=Lw. Such a Bρ field has been exper-
imentally demonstrated in [27] with two pseudospin
modes. To realize the cylindrical geometry of Laughlin’s
pump, we extend the prior work to implement the Bρ field

(a)

(c)

(b)

FIG. 1. Photonic hardware for topological spin pumps. (a) Sche-
matic of the pump. Each site for a resonance mode is labelled by
the indices m∈ ½1;M� and n∈ ½1; N�, where M and N are the
numbers of the modes and resonators, respectively. Colored
arrows indicate the coupling. (b) Coupled-resonator platform for
realizing (a). Black circles and gray curved squares denote
resonators and waveguide loops, respectively. The red and yellow
regions are tunable phase shifters for the loops and resonators,
respectively. Purple arrows show wave circulations. Blue regions
indicate structural imbalance. (c) Layers of coupled resonators
along the synthetic axis. ωm is the mth-mode resonance fre-
quency.
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for a larger number of resonators. Although introducing the
structural imbalance for ASðzÞ is similar to ADðtÞ in terms
of achieving gauge fields, the critical difference is that
ADðtÞ is designed to be m independent.
Our construction allows independent control of a

pseudomagnetic field and flux through structural and
temporal modulations, completing the implementation of
Laughlin’s pump for pseudospin modes in the synthetic
dimension. The Hamiltonian of the system is given by (note
S1 in [36]):

H ¼ −J
�X

z

X
ðφ1;φ2Þ∈Λφ

ei½AsðzÞþADðtÞ�a†z;φ2
az;φ1

þ
X

ðz1;z2Þ∈Λz

X
φ

a†z2;φaz1;φ

�
þ H:c:; ð1Þ

where J is the hopping amplitude between nearest neigh-
bors (NNs) in the φ − z coordinate, az;φ (or a†z;φ) is the
annihilation (or creation) operator at the site ðz;φÞ, Λz (or
Λφ) is a set of NN pairs along the z (or φ) axis, and H.c. is
the Hermitian conjugate. Assuming the adiabatic change of
ADðtÞ, the instantaneous band ΩmðkφÞ can be obtained,
where m∈ ½1;M� and kφ is the discretized quasimomentum
from φ periodicity.
Pseudomagnetic fields and EMFs.—Before exploring

the interplay of Bρ and ∂tΦzðtÞ, we examine their
separate impacts. First, we consider the scenario where

ADðtÞ ¼ 0 and Bρ is static: only the mode-dependent gauge
[ASðzÞ ¼ −Bρz] exists. This system corresponds to the
modified Hofstadter model with a finite and rotationally
symmetric structure [45]. Figure 2(a) illustrates the band
diagram of the system obtained from Eq. (1). We set a
pseudomagnetic flux per plaquette by Bρ to be π=8, which
ideally leads to the Chern number of 1 to each magnetic
Bloch band at the 7 lowest eigenenergies [46] in the
thermodynamic limit. The magnetic Bloch bands compris-
ing Landau levels support the eigenfunctions with the z
centers of kφl2B [(B) and (C) in Figs. 2(a) and 2(b)], where
lB is the magnetic length ð1=BρÞ1=2 [28]. The finite length
of the cylinder along the synthetic z axis results in topo-
logically protected edge states crossing the gaps [4,20]. In
the synthetic frequency dimension, the existence of edge
states corresponds to the maintenance of either the lowest
or highest resonance frequencies despite intermodal cou-
pling [(A) and (D) in Figs. 2(a) and 2(b)].
Second, we consider the system where Bρ ¼ 0; only the

mode-independent gauge field ADðtÞ exists. The system
with Bρ ¼ 0 is topologically trivial, and thus, the Bloch
band becomes sinusoidal with respect to kφ [Fig. 2(c)].
Because of gauge transformation [29], ADðtÞ applied to this
topologically trivial system leads to the band shift along the
kφ axis, which corresponds to the intraband transition when
the band diagram remains fixed. The constant EMF ∂tΦzðtÞ
with linearly varying ADðtÞ, which corresponds to the
electric field along the azimuthal axis, results in Bloch
oscillations [Fig. 2(d)]. As widely studied [47,48], the
angular frequency j∂tADðtÞj and amplitude 2J=j∂tADðtÞj
of the oscillation are determined by the slope of ADðtÞ
[(d2–d4) in Fig. 2(d)], while the z centers remain constant
[(d1) in Fig. 2(d)].
Local Chern marker.—Because the modes participating

in the synthetic dimension are constrained by the natural
boundary originating from the group velocity dispersion
(GVD) [49,50], the proposed pump geometry is inherently
finite. Such finite systems impede the direct use of the
Chern number defined under the periodic boundary con-
dition. Therefore, we employ an alternative measure: local
Chern marker [51]. This marker, approaching the Chern
number through the integration across the infinite crystal-
line structure, serves as a useful local measure that captures
the topological features of the bulk, even in finite-size
samples. Therefore, comparing the local Chern marker in
the bulk with the ideal Chern number allows for examining
the validity of the synthetic axis length for the analogy of
Laughlin’s pump. In discussing topological properties, we
assume sharp boundaries along the synthetic dimension
achievable with abrupt changes in the GVD [49] or the
coupling with auxiliary rings [25,38].
The local Chern marker CLðrmnÞ is defined as [51]

CLðrmnÞ ¼ 2πihrmnj½PmP;PnP�jrmni; ð2Þ

(a) (b)

(c) (d)

FIG. 2. Band properties of pseudospin pumps with either Bρ or
∂tΦzðtÞ. (a) Pump spectrum with ADðtÞ ¼ 0 for Bρ ¼ π=8,
M ¼ 32, and N ¼ 16. (b) Eigenfunction intensities along the
frequency (m−) axis. (c) Pump spectrum with Bρ ¼ 0 for
ADðtÞ ¼ 0. (d) Temporal evolution of the beam profiles on the
cylinder according to linearly varying ADðtÞ. An initial wave
packet is a superposition of two adjacent eigenfunctions in the
lowest band [red dots in (c)]. Tc ¼ 8=J is the characteristic time.
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where jrmni ¼ ðm; nÞ is the discretized position state on the
z − φ cylinder surface of Fig. 1(a), and P is the Fermi
projection operator to the valence band [52]. The projected
operators PmP and PnP originate from remedying ill-
defined position operators in the real-space representation
of Chern number and the modern theory of polarization.
Although CLðrmnÞ is defined for a 2D plane, our

synthetic-dimensional system has cylindrical geometry
with axial open boundaries and azimuthal periodicity.
Therefore, we redefine the index set of n in calculating
CLðrmnÞ, as fng ¼ f…;−2;−1; 0;þ1;þ2;…g, where we
set an index n for the pth element to zero [a subset of
Figs. 3(a) and 3(b)]. This rotating coordinate guarantees the
local continuity of the azimuthal position near rmp, which is
necessary for reflecting the periodicity of the cylinder.
Although such a configuration breaks the trivial condition
of global topology for open-boundary systems, the non-
trivial feature at each local position is preserved because
the position discontinuity does not affect the nearsighted
operator P in evaluating CLðrmpÞ [51,53].
Figures 3(a) and 3(b) show the distribution of CLðrmnÞ

for the lowest band with different values of M. While the
ideal Chern number with M → ∞ is 1 with Bρ ¼ π=8, the
local Chern marker within the bulk has a near unity value,
demonstrating the validity of the local Chern marker.
Because of the broken translational symmetry, the value
of CLðrmnÞ decreases near the boundary [Figs. 3(a)–3(d)].
Figure 3(c) demonstrates that CLðrmnÞ serves as a well-
defined local quantity to examine the valid range of our
model (M ≥ 16) as an approximation of the ideal
Laughlin’s pump. CLðrmnÞ is robust to diagonal disorder,
demonstrating the noise immunity of the pump [Fig. 3(d)].
Adiabatic pumping.—Based on Fig. 3, we investigate

adiabatic pumping of topological edge states. We employ
an external waveguide coupled to one of the resonators to

excite the edge state. The incident frequency is the
reference frequency along the synthetic axis detuned with
the eigenfrequency of the target edge state.
Figure 4 shows examples of adiabatic pumping with

slowly varying ΦzðtÞ for the temporally bounded wave
excitations. The origin of this phenomenon is the adiabatic
change of kφ induced by ∂tΦzðtÞ, which results in the
adiabatic intraband transition of edge states to bulk states
[red and blue arrows in Fig. 4(a)]. Because the states are
localized along the z axis around their kφ-dependent centers
kφl2B [Fig. 2(b)], the intraband transition leads to the
transport along the z axis [Figs. 4(c) and 4(d)]. After the
transition to the bulk modes, the azimuthal group velocity
∂Ωm=∂kφ becomes zero, maintaining the spatial profile
inside the coupled resonator platform. The phenomena can
be interpreted as the E × B drift in crystalline structures
from the viewpoint of classical electrodynamics [46,54].
Because of the synthetic-dimensional configuration, the

adiabatic pumping in our example corresponds to fre-
quency conversion along the synthetic dimension. The
separation of the wave excitation and EMF pumping in
Figs. 4(a), 4(c), and 4(d) corresponds to the one-shot
excitation of a topological band and its sequential pumping.
Such an implementation leads to the localization in the
reciprocal space [black circles in Fig. 4(a)], resulting in the

(a) (b)

(c) (d)

FIG. 3. Real-space topological measures. (a),(b) Coordinate-
indexing scheme and the lowest-band CLðrmnÞ for (a) M ¼ 32
and (b) M ¼ 16. (c) CLðrmnÞ as a function of m=M for different
M. (d) The averages and standard deviations of CLðrmnÞ for 100
random realizations for each W, where W denotes the degree
of diagonal disorder uniformly distributed over ½−W;þW�. The
error bars are 10 times the standard deviations for clarity.

(a)

(c) (d) (e)

(b)

FIG. 4. Adiabatic pumping. Pumping dynamics in (a),(b) band
diagrams and (c)–(e) the corresponding temporal monitoring of
beam profiles: (c),(d) for (a) and (e) for (b). In (a),(c),(d), initial
states (black circles) undergo adiabatic intraband transition due to
ΦzðtÞ and arrive at the final states (black triangles). In (b), black
dots denote each excitation at the time t. The colored numbers of
the lower (‘1,2’) and higher (‘1–4’) bands in (a) denote the
sequences of the pumping in (c) and (d), respectively. In the left
figures of (c)–(e), solid and dashed arrows represent ΦzðtÞ and
the temporal range of wave excitations, respectively. (b) shows
the lowest band occupation after the simultaneous excitation of the
incidence and pumping, which leads to spatial (n) localization in (e).
The displacement along the frequency (m) axis [center figures in
(c)–(e)] is proportional toΔΦz. Nodeless single rails in (c),(e) and
double rails with a node in (d) originate from the ground and first
excited state excitations in (a),(b).
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spatial broadening of the pumped mode. To achieve the
spatial engineering of frequency-conversion functionality,
we devise the configuration of filling the topological band
by simultaneously applying the wave incidence and pump-
ing [dashed and solid arrows in Fig. 4(e)]. This pumping
technique enables the broadening in kφ-axis [Fig. 4(b)],
leading to spatial localization [Fig. 4(e)] while preserving
frequency conversion functionality. Therefore, engineering
incident waves allows for the designed excitation in the
kφ axis and the following spatial profiles in frequency
conversion.
Importantly, the pumping example demonstrates the

validity of local Chern markers in Fig. 3. The ratio of
the normalized frequency drift Δhmi=ð2πl2B=NÞ measured
inside the bulk to the normalized magnetic flux change
ΔΦz=2π is close to unity in Fig. 4, which is theoretically
identical to the Chern number [28]. This result is consistent
with the local Chern marker CLðrmnÞ ∼ 1 in Fig. 3.
To explore the experimental feasibility, we perform

numerical simulations in note S2 in [36], using standard
parameters in integrated photonics of 1550 nm wave-
length operations. By employing finite-difference time-
domain simulations with Tidy3d [39,40], we show that the
pump can be designed with acceptable system parameters
[38,41–43]: a space-mode hopping near J ¼ 1.25 GHz
and 4π-range phase shifters, by applying a 100 nm coupling
gap and <1% refractive index change. In light of the
temporal ranges applied in Figs. 2 and 4, the obtained para-
meters align well with resonator quality factors of ∼106; a
feasible requirement for all-waveguide resonators [55] or
fiber-ring systems [27] with electro-optic modulations [56].
Designing larger J alleviates the constraints on quality
factors.
We also examine the valid range of crosstalk-free pump

operations, by analyzing broken adiabaticity (note S3
in [36]), and the emergences of diagonal, spin-mixing
(note S4 in [36]), and synthetic-dimensional disorder (note
S5 in [36]). The results demonstrate topological natures of
the spin pump; more robust pumping to diagonal disorder
than spin-mixing disorder, in a similar context to the
quantum spin Hall effect [30]. However, using both
pseudospin modes may enable more multifaceted phenom-
ena, such as Rashba interactions [57].
We have demonstrated the scalable photonic realization

of a topological spin pump analogous to Laughlin’s
configuration by harnessing the synthetic dimension and
time-varying gauge fields. By engineering dynamical
gauges and resonances that were recently employed in
programmable photonics [58], we develop the design
strategy for Bρ, ΦzðtÞ, and the synthetic z axis to realize
the topological spin pump: the mode-dependent structural
imbalance, mode-independent gauge fields, and spatiotem-
poral modulation of resonances. The platform allows for
controlling the magnetic field and EMF independently in
spatial and modal axes. By employing the local Chern

marker, we proved that the suggested structure provides
nontrivial topological features within finite spaces. The
pumping examples illustrate substantial design freedom for
frequency conversion, including the designed conversion
trajectory with wave front engineering. Our proposal
provides enhanced scalability because the spatial footprint
relies solely on azimuthally arranged resonators. This
synthetic-dimensional configuration using classical optic
elements is more extendable than 2D topological platforms
where the spatial footprint is determined by the discretiza-
tion of the entire geometry [9,10,14], or a cold-atom
Laughlin’s pump with an azimuthal axis composed of
limited spin states [26]. We also envisage that band filling
through the sequential edge mode incidence and adiabatic
pumping allows for classical realizations of quantized
conductance and magnetic Bloch bands by imaging energy
flows.
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B. Kanté, Nonreciprocal lasing in topological cavities of
arbitrary geometries, Science 358, 636 (2017).

[3] Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B.
Zhang, Topological acoustics, Phys. Rev. Lett. 114, 114301
(2015).

[4] M. Z. Hasan and C. L. Kane, Colloquium: Topological
insulators, Rev. Mod. Phys. 82, 3045 (2010).

[5] R. B. Laughlin, Quantized Hall conductivity in two dimen-
sions, Phys. Rev. B 23, 5632 (1981).

[6] B. I. Halperin, Quantized Hall conductance, current-
carrying edge states, and the existence of extended states
in a two-dimensional disordered potential, Phys. Rev. B 25,
2185 (1982).

[7] K. von Klitzing, G. Dorda, and M. Pepper, New method for
high-accuracy determination of the fine-structure constant
based on quantized Hall resistance, Phys. Rev. Lett. 45, 494
(1980).

PHYSICAL REVIEW LETTERS 132, 033803 (2024)

033803-5

https://doi.org/10.1103/PhysRevLett.100.013905
https://doi.org/10.1126/science.aao4551
https://doi.org/10.1103/PhysRevLett.114.114301
https://doi.org/10.1103/PhysRevLett.114.114301
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1103/PhysRevB.25.2185
https://doi.org/10.1103/PhysRevB.25.2185
https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1103/PhysRevLett.45.494


[8] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, Quantized Hall conductance in a two-dimensional
periodic potential, Phys. Rev. Lett. 49, 405 (1982).

[9] M. Hafezi, Measuring topological invariants in photonic
systems, Phys. Rev. Lett. 112, 210405 (2014).

[10] S. Mittal, S. Ganeshan, J. Fan, A. Vaezi, and M. Hafezi,
Measurement of topological invariants in a 2D photonic
system, Nat. Photonics 10, 180 (2016).

[11] W. Hu, J. C. Pillay, K. Wu, M. Pasek, P. P. Shum, and Y.
Chong, Measurement of a topological edge invariant in a
microwave network, Phys. Rev. X 5, 011012 (2015).

[12] S. Yu, X. Piao, and N. Park, Topological hyperbolic lattices,
Phys. Rev. Lett. 125, 053901 (2020).

[13] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O.
Zilberberg, Topological states and adiabatic pumping in
quasicrystals, Phys. Rev. Lett. 109, 106402 (2012).

[14] B. Jeanneret, B. D. Hall, H.-J. Bühlmann, R. Houdré, M.
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