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We used extreme ultraviolet (EUV) pulses to create transient gratings (TGs) with sub-100 nm spatial
periodicity in a β − Ga2O3 single crystal. The EUV TG launches acoustic modes parallel to the sample
surface, whose dynamics were revealed via backward diffraction of a third, time-delayed, EUV pulse. In
addition, the sharp penetration depth of EUV light launches acoustic modes along the surface normal with a
broad wave vector spectrum. The dynamics of selected modes at a wave vector tangibly larger (≈1 nm−1)
than the TG one is detected in the time domain via the interference between the backward diffracted TG
signal and the stimulated Brillouin backscattering of the EUV probe. While stimulated Brillouin
backscattering of an optical probe was reported in previous EUV TG experiments, its extension to
shorter wavelengths can be used as a contactless experimental tool for filling the gap between the wave
vector range accessible by inelastic hard x-ray and thermal neutron scattering techniques, and the one
accessible through Brillouin scattering of visible and UV light.
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Studying thermal and vibrational dynamics in nanoscale
materials is critical for advancing toward faster, more
efficient, and more compact nanoelectronic devices, as
well as for thermal barrier coatings [1], heat-assisted
magnetic recording [2], nano-enhanced photovoltaics,
and thermoelectric energy conversion, to name a few.
For these applications, layer upon layer of very thin
films are often used, with impurities added to tailor their
function [3]. However, the complex structure of these
materials makes it challenging to predict and characterise
their thermoelastic properties. Material properties like
elasticity, thermal conductivity, and heat capacity are
mostly determined by collective lattice dynamics, which
exhibit strong length-scale dependencies and can drasti-
cally differ when the spatial dimensions reduce from
macroscopic to microscopic scales, i.e., to sizes comparable
with the length scales of nanostructures.
An obstacle to the full description of thermoelastic

responses in the tens of nm length scale was the lack of
experimental techniques capable of accessing such
range [4] without modifying or physically contacting the
sample, which inherently complicates the experiment
design and data interpretation. Collective lattice dynamics
in condensed matter at wave vector q > 1 nm−1 can be
measured by inelastic scattering of hard x rays and thermal
neutrons, while Brillouin scattering and optical transient
grating (TG) can be used for q < 0.1 nm−1. The inter-
mediate q ¼ 0.1–1 nm−1 range (corresponding to the tens
of nm length scale) is hardly accessible, despite efforts to
expand the capabilities of Brillouin spectroscopy in the UV

range [5] and for improving the performance of x-ray
spectrometers [6]. Additionally, these spectroscopic meth-
ods are intrinsically limited by the instrumental resolu-
tion when measuring narrow lines, i.e., long dynamics.
This limitation does not affect time-domain techniques,
such as picosecond ultrasonics and time-domain thermo-
reflectance, where metal films or other nanostructures are
fabricated on the sample for transducing an ultrafast optical
excitation in a short wavelength thermoelastic perturba-
tion [7,8]. However, this intrinsically modifies the sample
under investigation.
Free-electron laser (FEL) sources permitted the exten-

sion of the TG approach in the extreme ultraviolet (EUV)
enabling the excitation and probing of nanoscale thermo-
elasticity in a contactless fashion [9,10]. In this Letter, we
exploit the EUV TG TIMER end station at the FERMI FEL
(Trieste, Italy) [11,12] to probe acoustic modes in an
Mg-doped β − Ga2O3 (001)-oriented bulk crystal with
monoclinic structure (space group C2=m), obtained
from the Czochralski method at the Leibniz-Institut für
Kristallzüchtung [13]. The excellent surface quality (rough-
ness ≈0.5 nm RMS; as measured by atomic force micros-
copy [14]) and well-known elastic parameters made this
sample suited for the present EUV TG experiment. In
particular, it permitted us to demonstrate the possibility of
detecting the dynamics of acoustic modes with a wave-
length as short as ≈6 nm via stimulated Brillouin back-
scattering (SBBS) of EUV light.
In a TG experiment, two time-coincident pulses of

wavelength λ (referred to as pumps) are overlapped on
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the sample at a crossing angle of 2θ. The interference
between these two pulses induces a spatial modulation of
light intensity, with period ΛTG ¼ λ=ð2 sin θÞ and wave
vector qTG ¼ 2π=ΛTG; see Figs. 1(a) and 1(b). Such a
patterned excitation acts as a transient diffraction grating
for a third variably delayed pulse (probe), with wavelength
λpr, giving rise to a fourth pulse: the diffracted beam
(signal).
In this experiment, two FEL pulses [time duration

≈ 60 fs full width at half maximum (FWHM), bandwidth
Δλ=λ ≈ 5 × 10−4 FWHM, repetition rate 50 Hz] are crossed
on the β − Ga2O3 (001) sample at 2θ ¼ 27.6° (set with 2%
accuracy), generating an EUV TG in the [100] direction.
Twovalues of λwere used: 39.9 nmand 26.6 nm, resulting in
ΛTG ≈ 84 nm and ≈ 56 nm, respectively. We will refer to
the 39.9 nm and 26.6 nm pump-related quantities with the

superscript 39 and 26, respectively. The FEL probe pulse
(≈ 40 fs FWHM) impinged on the sample with an angle
θi ¼ 4.6° with respect to the surface normal, and λpr ¼
13.3 nm (hereafter denoted as 13). The backward-diffracted
signal beamwas collected by anEUVmirror and detected by
aCCDcamera, as outlined in [15]. TheTIMER instrument is
designed to satisfy the TG phase matching conditions
at the Bragg angle [i.e., θi ¼ θo ¼ sin−1ðλpr=2ΛTGÞ; being
θo the diffraction angle] for λ ¼ 3λpr. However, since the
excitation light is absorbed in a subsurface layer shorter than
ΛTG [the absorption (abs) lengths of the pumps are
L39
abs ∼ 12.9 nm and L26

abs ∼ 15.9 nm), phase matching con-
ditions are relaxed. Therefore, only the wave vector com-
ponent parallel to the sample surface (q39TG ≈ 0.075 nm−1,
and q26TG ≈ 0.113 nm−1) is well-defined [10], while the
component perpendicular to the surface (qz) results in a
broad spectrum, extending up to about 2π=Labs.
Figure 1(c) further illustrates the excitation mechanism,

displaying the EUV TG generated on the sample in the
26.6=13.3 configuration plotted against the ðx; zÞ coordi-
nates, taking into account the finite value of L26

abs. The
modulation along x extends in a range much larger than the
one shown in Fig. 1(c), comparable with the width
(FWHMx ≈ hundreds of μm) of the excitation pulses.
This is what we usually call TG, which launches counter-
propagating acoustic waves with a wave vector equal to
�qTG parallel to the surface [Fig. 1(a)]. Additionally, the
steep gradient along z due to the finite value of Labs
launches an acoustic wave packet with a broad spectrum in
qz along the z direction [Fig. 1(b)]. As shown in Ref. [16],
the value of qz ¼ 2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2TG=4k

2
p

satisfies the TG phase-
matching conditions, yielding a backscattered signal that
encodes the dynamics of SBBS modes. Here, k ¼ 2πn=λpr
is the wave vector of the probe in the medium, where n is
the refractive index at λpr. Thus, the modulus of the acoustic
wave vector for the SBBS signal is

qSBBS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2z þ q2TG

q
¼ 2k ¼ 4πn

λpr
; ð1Þ

which is independent of qTG and is collinear with the
backward diffracted signal from the TG. We note that in an
excitation scheme relying on a single pump, it is impossible
to select a specific acoustic wave vector along the z axis. In
contrast, the phase matching condition imposed by the TG
[see Eq. (1)] selects a given wave vector from the broad
spectrum of acoustic modes, whose dynamics is revealed in
the time domain via interference with the backward-
diffracted EUV TG signal. Under these experimental
conditions, the combination of the sharp penetration depth
of the ultrafast EUV TG pump in the material and the
short wavelength EUV probe enables the excitation and
selective detection of acoustic modes with a well-defined
wave vector (ΔqSBBS=qSBBS ≈ 2Δλ=λ ≈ 10−3) as large as

FIG. 1. (a) Schematic of the EUV TG experiment. The two
crossed pulses generate an intensity grating with modulation
along qTG (parallel to the surface). This spatially periodic
excitation launches surface acoustic waves (SAWs) along the
surface and surface-skimming longitudinal acoustic (LA) modes
in the subsurface region. These modes are probed by a time-
delayed pulse in backward diffraction geometry. (b) Sketch of
how the setup enables the detection of the SBBS signal along
qSBBS, which is coaxial with the TG signal but generated by the
intensity variation along qz. (c) Simulation of the TG up to a
penetration depth equal to L13

abs for the 26.6=13.3 nm probe/probe
configuration.
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qSBBS ≈ 1 nm−1. While stimulated Brillouin scattering is
usually performed with frequency-detuned pulses matching
the Brillouin frequency [17], the frequency bandwidth
(Δν > 10 THz) of the ultrafast FEL pulses used here is
sufficiently large to encompass the Brillouin shift.
Figure 2 displays the backward diffracted signal as a

function of the time delay (Δt) between the EUV TG
excitation and the EUV probe pulse. Measurements were
conducted at both long timescales [Fig. 2(a)] and short
timescales [Fig. 2(c)]. At long timescales the overall signal
is characterized by a slow decay, which can be attributed to
the thermal relaxation of the EUV TG [15], modulated by
acoustic oscillations [9,15]; after few oscillations, the
modulation becomes highly regular. For larger values of
Δt, we observe double-frequency oscillations when the
slow relaxation is decayed, indicating the long-living nature
of this dominant mode [15]. Conversely, the irregular shape
of the initial oscillations suggests the presence of additional
dynamics that damp out after some tens of ps. The EUV TG
data obtained at short timescales [Fig. 2(c)] were sampled
with finer steps and exhibit modulations at significantly
higher frequencies, compatible with the previously

mentioned mixing between the SBBS signal and the
backward-diffracted signal from the EUV TG.
In order to quantitatively describe the waveform at both

long and short timescales an initial fitting procedure was
conducted using Eq. (2):

IðtÞ ¼
���� 12

�
1þ erf

�
Δt
σ

��
· Ae−

Δt
τ

����
2

; ð2Þ

where the “erf” function accounts for a sudden rise of the
signal (with σ representing the width of the rise), followed
by an exponential decay with a time constant τ; results are
shown as blue lines in Figs. 2(a)–2(c). Subsequently,
Fourier transforms (FTs) were computed on the differences
between the measured traces and their respective exponen-
tial fits. The obtained results are illustrated in Figs. 2(b)–
2(d). The FTs of the long timescale waveforms present a
well-defined mode and its second harmonic, plus a weaker
and spectrally broader feature. The presence of this broad
feature confirms the existence of a damped mode, which
predominantly affects the initial portion of the waveform,
as already evident from the raw data.
To describe the thermoelastic signal at long timescales,

we followed the same approach as in Refs. [10,12,15,18,19],
by considering the amplitude of the coherent surface
displacements, whose square module is responsible for
the TG signal, as the sum of the slow thermal decay and
these two vibrational modes, specifically a damped sinus-
oidal term and a not damped one:

IðtÞ ¼
���� 12

�
1þ erf

�
Δt
σ

��
·
h
Ae−

Δt
τ

− ASAW sinð2πνSAWΔtþ ϕSAWÞ

− ALA sinð2πνLAΔtþ ϕLAÞe−
Δt
τLA

i����
2

: ð3Þ

The best-fit results are reported as a black line in Fig. 2(a).
All parameters and uncertainties mentioned further below
have been obtained using Eq. (3); the values extracted from
the preliminary fitting with Eq. (2) and from the FTs were
used as first guesses for fitting the data with Eq. (3).
The results for the oscillation frequencies are shown in

Fig. 3(a) as a function of qTG. The undamped mode is
compatible with a surface acoustic wave (SAW), which
exhibits a linear dispersion relation vs qTG. From its slope a

value for the sound velocity of c½100�SAW ¼ 3.15� 0.01 km=s
is obtained. This value is close to the estimated velocity of
3.24 km=s, as evaluated by using the transverse acoustic

(TA) velocity c½100�TA ¼ 3.57 km=s [20] and the Poisson’s
ratio νp ¼ 0.2 [21], through the relation cSAW≈
cTA · ð0.862þ 0.14νpÞ=ð1þ νpÞ [22]. SAW modes re-
present long-living coherent surface displacements charac-
terized by mechanical energy confined to the surface. In the
employed backward-diffraction geometry, these modes are

FIG. 2. (a) The long timescale dynamic of the EUV TG signal
for the 39.9=13.3 nm pump/probe configuration. The slow decay
is displayed in blue; the thickness of this line represents the
associated error. The best fit of the signal is shown as a black line.
(c) Enlargement of the first few ps, showing SBBS oscillations.
The Fourier transforms, obtained after removing the slow signal
variation [blue line in (a) and (c)], are reported in (b) and (d),
showing respectively three modes for the long timescale and two
modes for the short timescale.
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expected to be the dominant contribution to the EUV TG
signal, as observed experimentally.
The damped mode also presents a liner dispersion with

a velocity c½100�LA ¼ 5.97� 0.14, which is similar to the
expected value (6.18 km=s) for longitudinal acoustic (LA)
modes [20]. Such marginal deviations between the
expected and observed velocities may arise from factors
such as slight misalignment of the sample relative to the
[100] crystallographic direction, sample heating caused by
the FEL, or the 10° tilt in the ðx; yÞ plane, necessary for
collecting the backward-diffracted signal [11].
Surface-skimming LA modes and, more in general, bulk

waves are expected in these types of TG experi-
ments [23,24], although they do not contribute significantly
in the employed geometry and are often disregarded. At
these q values bulk modes are not expected to show
tangible damping in the probed Δt range, while these data
indicate a quite fast decay time, i.e., τ39LA ¼ 22.5� 1.5 ps
and τ26LA ¼ 17.6� 1.5 ps, which is compatible with the

broad feature observed in the FT [see Fig. 2(b). Though
elucidating the strong damping of such modes goes beyond
the scope of the present work, a possible qualitative
explanation is the steep variation of the excitation intensity
along the sample depth. This makes LA modes strongly
influenced by the surface and they can manifest as leaky
waves [24], which move away from the subsurface region
toward the bulk (note that in this experiment we are
observing a thin region below the surface, with thickness
≈L13

abs ¼ 26.3 nm). Another aspect that may affect the
decay of the LA mode is the anharmonicity due to the
pump-induced temperature rise and related atomic dis-
placement; indeed the anharmonicity of acoustic modes in
β − Ga2O3 is already tangible at room temperature [20].
Following Ref. [15] we can estimate an amplitude of
surface displacement of 2 pm and, following Ref. [25], a
temperature rise of ≈200 K in the uppermost 10 nm of the
sample [26].
The FTs of the short timescale waveforms exhibit two

main peaks [Fig. 2(d)] rising above a noisy background,
located at considerably higher frequencies compared to
SAW and LA modes. Furthermore, these peaks do not
disperse vs qTG, as shown in Fig. 3(b). This behavior is
expected from the SBBS of the EUV probe since the
acoustic mode wave vector is given by qSBBS and in this
specific case the dependence on qTG can be neglected [see
Eq. (1)]. The absence of dispersion vs qTG does not imply
that SBBS modes do not exhibit dispersion; rather, it
indicates that the changes in qTG under these specific
experimental conditions were not sufficient to significantly
alter qSBBS. A more effective approach to modifying
qSBBS would be to vary λpr, as in this case qSBBS ∝ λ−1pr
[see Eq. (1)].
On the other hand, the observed frequencies (νSBBS; as

extracted from the FTs) match the ones expected by

considering the sound velocities of TA (c½001�SAW ¼ 4.01 km=s)

and LA (c½001�LA ¼ 7.55 km=s) modes along the relevant
crystallographic direction [20]; see Fig. 3(b). Indeed, the
LAmode detected via SBBS propagates along qSBBS, which
means at a small tilt angle (ϕ39 ¼ 4.8° and ϕ26 ¼ 7.2°) with
respect to qz, i.e., essentially toward the bulk of the sample
([001]). This is a different crystallographic direction with
respect to the leaky LA mode detected at long timescales
[see Fig. 2(a)], which essentially propagates beneath the
surface ([100]) with wave vector qTG ≪ qSBBS. However,
since the employed setup did not allow precisely selecting
crystallographic directions, all modes have to be regarded as
quasi-LA and quasi-TA. It is worth mentioning that
Brillouin backscattering from quasi-TA modes can be
observed in monoclinic crystals, exhibiting signal ampli-
tudes (in the optical regime) comparable to those fromquasi-
LAmodes [27–29]. However, while EUVSBBS reasonably
follows the same selection rules as optical Brillouin, the
signal amplitude may differ due to wavelength-dependent

FIG. 3. The frequency of the SAWand LA modes visible in the
long timescale signal are reported in (a) as a function of qTG,
dashed lines indicate the slope of the linear dispersion, full lines
represent the associated error. (b) SBBS frequencies; dashed lines
are the values expected from the sound velocity. [20].
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variations in the photoelastic constants,which are not known
in the EUV. Indeed, studying the amplitudes of LA and TA
modes in the SBBS signal as a function of the orientation of
the crystal could be an approach for determining the
photoelastic constants in the EUV regime. Most likely,
the modes associated with larger density variations provide
stronger EUV SBBS signals, as the EUV refractive index
(far from core-hole resonances) primarily depends on
density [12]. Further experiments are required to investigate
these aspects.
The combination of the sharp penetration depth of EUV

excitation pulses and the phase-matching conditions
imposed by the EUV TG permitted the detection of
stimulated backscattered Brillouin oscillations with a wave
vector as large as ≈1 nm−1. This wave vector range
overlaps with the lower limit of the wave vector range
covered by inelastic scattering of hard x-rays and thermal
neutrons. The limitations in qSBBS mainly come from the
wavelength of the probe and can be straightforwardly
overcome by using a shorter probe wavelength, which
can be envisioned extending all the way to the x-ray
spectral range [30]. This would provide a longer penetra-
tion depth and an increased range in qSBBS.
The described approach also allowed for the detection of

high-frequency surface acoustic waves and longitudinal
acoustic modes propagating below the surface, without the
need for nanofabrication. In fact, unlike optical laser
excitation, EUV photons are highly absorbed by any
material. The current setup at FERMI already makes it
possible to conduct transient grating measurements at
grating periods as short as 24 nm [10,31], and a further
extension down to approximately 10 nm is feasible,
pushing the SAW frequency close to the THz region and
qSBBS above 1 nm−1.
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