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Motivated by recent surprising experimental findings, we develop a strong-coupling theory for Bose-
Fermi mixtures capable of treating resonant interspecies interactions while satisfying the compressibility
sum rule. We show that the mixture can be stable at large interaction strengths close to resonance, in
agreement with the experiment, but at odds with the widely used perturbation theory. We also calculate the
sound velocity of the Bose gas in the 133Cs-6Li mixture, again finding good agreement with the
experimental observations both at weak and strong interactions. A central ingredient of our theory is the
generalization of a fermion mediated interaction to strong Bose-Fermi scatterings and to finite frequencies.
This further leads to a predicted hybridization of the sound modes of the Bose and Fermi gases, which can
be directly observed using Bragg spectroscopy.

DOI: 10.1103/PhysRevLett.132.033401

Introduction.—The interest in mixtures of bosonic and
fermionic quantum fluids has long predated the discovery of
ultracold atomic gases. Indeed, as early as in the 1960s
3He-4He solutions were studied by London et al. [1], which
led to the creation of an indispensable workhorse of low-
temperature experiments—the dilution refrigerator [2]. For
ultracold atomic gases, the Bose-Fermi mixture is not only
practically valuable for sympathetically cooling the Fermi
gas [3,4], but also serves as a versatile platform for studying
a variety of physics, including polarons [5,6], mediated
interactions [7–15], unconventional pairing [16,17], and
dual superfluidity [18–20]. Because of its importance, more
than a dozen different Bose-Fermi mixtures have so far been
realized and studied experimentally (see Ref. [21] for a
review).
Since the interspecies interaction can be tuned in an

atomic Bose-Fermi mixture, the first fundamental question
concerns its stability and miscibility [22–37]. For a weakly
interacting Bose-Einstein condensate (BEC) mixed with a
single-component Fermi gas, perturbation theory predicts
that a sufficiently large Bose-Fermi scattering length will
lead to the collapse of the system on the attractive side and
to phase separation on the repulsive side [22–31]. At typical
atomic gas densities, the predicted critical values of the
scattering length are quite small such that perturbation
theory is expected to be valid. The recent experimental

results for the 133Cs-6Li mixture have therefore come as a
surprise [38]. By measuring the bosonic sound propagation
at varying Bose-Fermi scattering lengths, the experiments
found that the mixture regains its stability near the
interspecies Feshbach resonance, in contradiction with
the perturbation theory [38].
In order to understand this puzzling phenomenon and

more broadly the properties of resonant Bose-Fermi mix-
tures, we develop a strong-coupling approach based on the
many-body Bose-Fermi scattering matrix. Importantly, our
theory satisfies the compressibility sum rule [39], which
plays a crucial role in determining the stability of the
mixture. With this approach, we first obtain the zero-
temperature phase diagram of the mixture corresponding
to the experimental setup. The predicted region of stability is
consistent with the experimental observation but differs
significantly from that of the perturbative theory near reso-
nance.An integral part of our theory is a generalization of the
well-known Ruderman-Kittel-Kasuya-Yosida (RKKY) fer-
mionmediated interaction [40] to the regime of strongBose-
Fermi scattering. Based on this interaction, we further
calculate the speed of sound in the BEC and find reasonable
agreement with the recent experiment for all interaction
strengths. Finally, we show that the retarded nature of this
mediated interaction leads to an intriguing hybridization of
the BEC sound mode and an induced fermionic zero sound
mode, which can be observed by Bragg spectroscopy.
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Bose-Fermi mixture.—We consider a mixture of a
weakly interacting BEC of bosons with mass mb and a
noninteracting gas of fermions with mass mf at zero
temperature and in a configuration that is representative
of many current experimental systems [14,15,38]. Namely,
the BEC is completely immersed in a spatially much larger
Fermi gas such that the Fermi gas surrounding the bosons
acts effectively as a reservoir for the Fermi gas inside the
mixture; this is illustrated in the inset of Fig. 1. The
Hamiltonian for the mixture is

Ĥ ¼
X

p≠0

�
ðϵb;p þ 2gbnbÞb̂†pb̂p þ

1

2
gbnbðb̂†pb̂†−p þ H:c:Þ

�

þ
X

p

ϵf;pf̂
†
pf̂p þ gbf

X

pp0q

f̂†pb̂
†
p0 b̂p0þqf̂p−q; ð1Þ

where b̂†pðf̂†pÞ creates a boson (fermion) of momentum p
and energy ϵi;p ¼ p2=2mi with i ¼ bðfÞ. We have used the
Bogoliubov theory to describe the BEC with density nb and
interaction strength gb ¼ 4πab=mb, where ab is the bosonic
scattering length. The interspecies interaction strength gbf
is related to the Bose-Fermi scattering length in the usual
way of 2πabf=mr ¼ gbf=½1þ gbf

R
d3kð2πÞ−32mr=k2�,

where mr ¼ mbmf=ðmb þmfÞ is the reduced mass.
Here we use units where ℏ and the system volume are unity.
Strong-coupling theory.—In order to describe strong

Bose-Fermi interactions, we use a Green’s function
approach with the Bose-Fermi scattering matrix as a basic
building block [41–45]. Within this framework, the fer-
mionic Green’s function is given by [see Fig. 2(a)],

GfðpÞ ¼
1

iωp − ðϵf;p − μfÞ − nbT bfðpÞ
; ð2Þ

where μf is the chemical potential of the fermions inside the
mixture, ωp is the Matsubara frequency, and p≡ ðiωp; pÞ.
The scattering matrix between a boson and a Fermi gas of

density nf is

T bfðpÞ ¼
1

mr=2πabf − ΠbfðpÞ
; ð3Þ

with the pair propagator

ΠbfðpÞ ¼
Z

d3k
ð2πÞ3

�
1 − nFDðkÞ

iωp − ϵb;p−k − ξf;k
þ 2mr

k2

�
: ð4Þ

Here ξf;k ¼ k2=2mf − k2f=2mf with kf ≡ ð6π2nfÞ1=3 and
nFDðkÞ ¼ θðξf;kÞ is the Fermi-Dirac distribution. We have
neglected the effects of the BEC on the pair propagator in
Eq. (4) and therefore the dependence of the fermion density
nf on the Bose scattering length ab, which is a good
approximation for weakly interacting Bose gases with
nba3b ≪ 1 [46].
To the lowest order in the scattering matrix, the effects of

the Fermi gas on the BEC are captured by the self-energy
diagram shown in Fig. 2(b). As shown in the Supplemental
Material [47], in order to fulfill the compressibility sum
rule, one also needs to include the diagrams in Figs. 2(c)
and 2(d), which are second order in T bf. Incorporating also
the usual Bogoliubov self-energies due to the weak boson-
boson scattering, we find

Σ11ðpÞ ¼ 2nbgb þ
X

k

GfðkÞT bfðkþ pÞ þ nbΓMIðp; 0;pÞ;

Σ12ðpÞ ¼ nbgb þ nbΓMIðp;−p;pÞ ð5Þ

as the normal and anomalous self-energies of the BEC.
Here we have defined the generalized fermion mediated
interaction [shown in Fig. 2(e)],

ΓMIðp; p0; qÞ ¼
X

k

GfðkÞGfðkþ qÞ

× T bfðpþ kÞT bfðp0 þ kþ qÞ; ð6Þ

where
P

k ≡T
P

iωk

R ½d3k=ð2πÞ3� with temperature T. The
normal and anomalous Green’s functions of the BEC can
be obtained from the coupled equations [48,49]

FIG. 1. Adiabatic phase diagram of the 133Cs-6Li mixture with
density ratio nb=nf;res ¼ 10, where nf;res is the reservoir fermion
density and kf;res ≡ ð6π2nf;resÞ1=3 is the corresponding Fermi
momentum. The dashed lines are the stability boundaries
calculated by the perturbation theory.

FIG. 2. Self-energy diagrams for (a) fermions and (b)–(d) bo-
sons due to the Bose-Fermi interaction. The (dashed) red line
denotes a (condensate) boson and the black line a fermion. The
wavy line denotes the fermion mediated interaction in Eq. (6),
which is described by the Feynman diagram in (e).
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½G0ðpÞ−1 − Σ11ðpÞ�G11ðpÞ − Σ12ðpÞG12ðpÞ ¼ 1; ð7Þ

½G0ð−pÞ−1 − Σ11ð−pÞ�G12ðpÞ − Σ12ðpÞG11ðpÞ ¼ 0; ð8Þ

where G0ðpÞ ¼ ðiωp − ϵb;p þ μbÞ−1 and μb is the bosonic
chemical potential. To ensure that the bosonic spectrum
is gapless, the chemical potential must satisfy the
Hugenholtz-Pines theorem μb ¼ Σ11ð0Þ − Σ12ð0Þ [48].
From Eq. (5), we find

μb ¼ nbgb þ
X

k

GfðkÞT bfðkÞ: ð9Þ

Solving Eqs. (7)–(9) yields the bosonic Green’s functions,
which can be used to calculate the Bogoliubov spectrum
Eb;p and other physical properties. We emphasize that we
focus on mixtures in which the condensate depletion due to
the Bose-Fermi scattering is negligible even in the strong-
coupling regime [47].
Adiabatic phase diagram.—We first use our strong-

coupling theory to construct the zero-temperature adiabatic
phase diagram spanned by the two scattering lengths ab and
abf. The stability and miscibility of the mixture are
determined by two conditions [50]: (a) the chemical
potential μf of the Fermi gas within the mixture equals
that of the reservoir μf;res; (b) the compressibility of the
BEC under a fixed fermion chemical potential is positive
definite [51], i.e., ð∂μb=∂nbÞjμf ≥ 0. The first condition
places a constraint on the fermion density inside the
mixture, while the second ensures that the mixture is stable
against collapse. In Fig. 1, we show the phase diagram
obtained from these conditions for the experimentally
relevant case of a 133Cs-6Li mixture with density ratio
nb=nf;res ¼ 10, where the reservoir density is nf;res ¼
k3f;res=6π

2 with kf;res ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mfμf;res

p
. We now discuss in

detail how this phase diagram is obtained.
Using the condition μf ¼ μf;res, the fermionic quasipar-

ticle dispersion εf;p is determined from the poles of GfðpÞ
and the fermion density inside the mixture is calculated as
nf ¼ P

p GfðpÞ. We find that, similar to the so-called Bose
polaron, i.e., a single fermion in a BEC [52–54], the
fermionic Green’s function also has two quasiparticle
branches: an attractive and a repulsive one; the attractive
(repulsive) branch has negative (positive) energy and takes
most of the spectral weight for abf < 0 (abf > 0). These
two branches are shown in Fig. 3(a) for the 133Cs-6Li
mixture. Hence, we assume that the fermions occupy the
attractive branch for abf < 0 and the repulsive branch for
abf > 0. This corresponds to scenarios where the mixture is
initially prepared at weak Bose-Fermi interactions on either
side of the resonance and is then adiabatically ramped
toward the resonance by tuning abf infinitely slowly. Since
μf is fixed by the reservoir, it follows that the density nf of
fermions occupying the attractive branch increases as abf is

tuned from a small negative value to resonance; the
opposite is true for fermions occupying the repulsive
branch. This is shown in Fig. 3(b). Thus, in the latter
case, the fermion density inside the mixture vanishes
beyond a critical value of abf as the fermions in the
repulsive branch are eventually all repelled from the
mixture, leading to phase separation between the fermions
and the bosons indicated by the gray region in Fig. 1.
Outside the region of phase separation, the stability of

the mixture is determined by the compressibility of the
BEC. From Eq. (9), we find

∂μb
∂nb

����
μf

¼ 4π

mb

�
ab þ

mb

4π
ΓMIð0; 0; 0Þ

�
: ð10Þ

This relation naturally leads to an effective scattering length
from the fermion mediated interaction given by

aeff ≡mb

4π
ΓMIð0; 0; 0Þ: ð11Þ

It then follows from Eq. (10) that the BEC collapses when
the total scattering length ab þ aeff turns negative.
In the weak Bose-Fermi interaction limit, we can replace

T bf by 2πabf=mr and the fermion mediated interaction in

Eq. (6) reduces to the familiar RKKY form ΓMIðqÞ ¼
ð4π2a2bf=m2

rÞχð0Þf ðiωq; qÞ [10,11], where χð0Þf ðiωq; qÞ is the
Lindhard function of a free Fermi gas. Since χð0Þf ð0; qÞ ¼
−ðmfkf=2π2Þð1 − q2=8k2fÞ in the long wavelength limit,
second order perturbation theory predicts that aeff ¼
−ð1=2πÞðmf=mb þmb=mf þ 2Þkfa2bf [38,47]. In Fig. 4
we compare this result against that calculated by our
strong-coupling theory. We find that, while the two
approaches agree for weak coupling as expected, the
strong-coupling result for aeff is significantly smaller close
to unitarity. Qualitatively similar behavior of the effective
scattering length was also found using the Born-
Oppenheimer approximation in the absence of a BEC [55].

FIG. 3. (a) The attractive and repulsive fermion quasiparticle
branch εf;p¼0 for the 133Cs-6Li mixture of Fig. 1. (b) Correspond-
ing fermion densities inside the mixture. Solid and dashed lines
are the strong-coupling and perturbation theory, respectively. We
assume for the moment that the mixture is always stable.
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This has important consequences for the phase diagram.
Since the BEC collapses for ab þ aeff < 0 as discussed
above, the values of aeff shown in Fig. 4 directly give the
boundaries for the collapse regions shown in Fig. 1. While
perturbation theory predicts a collapse region that extends
to arbitrarily large values of ab as unitarity 1=abf ¼ 0 is
approached, our strong-coupling theory predicts a much
smaller collapse region bounded by a maximum value of ab
near resonance. It follows that the mixture is stable even at
resonance provided that ab is sufficiently large. In Fig. 1,
we see that the region of stability of the Bose-Fermi
mixture, indeed, is significantly larger than that predicted
from the perturbation theory.
Bosonic sound propagation.—We next turn to the dis-

cussion of bosonic sound propagation observed recently in
a strongly interacting 133Cs-6Li mixture [38]. As usual, the
Bogoliubov sound velocity in the BEC is defined from the
Bogoliubov spectrum as cb ¼ limp→0Eb;p=jpj. In a pure

BEC, this velocity is given by cð0Þb ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nbgb=mb

p
, which

coincides with that defined by the compressibility cb;com ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnb=mbÞ∂μb=∂nb
p

[39]. Interestingly, these two quantities
are not equal in the Bose-Fermi mixture due to the retarded
nature of the fermion mediated interaction. Retardation
effects can, however, be ignored when the Fermi velocity
vf is much larger than the sound velocity in the pure BEC,

i.e., when cð0Þb =vf¼ðmf=mbÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2=3πÞðnb=nfÞðkfabÞ

p
≪1.

This is indeed the case for the 133Cs-6Li mixture in Ref. [38]
due to the very small Fermi-Bose mass ratio.
We therefore use the compressibility formula to calculate

the sound velocity and compare the results with the recent
experiment. In order to do so, we first note an important
difference between the physical scenario addressed by the
thermal equilibrium phase diagram and that by the exper-
imental situation. As mentioned earlier, the phase diagram
corresponds to assuming an adiabatic ramping from weak
Bose-Fermi interactions to the relevant abf. In contrast, the
mixture in Ref. [38] is prepared at a small abf and is then
ramped to any target value of abf within a fixed duration of

time. Thus, the experimental process is approximately
adiabatic only for small target values abf, but highly
nonadiabatic for target values in the resonant regime.
Consequently, a significant fraction of the fermions will
not remain on the same quasiparticle branch under such
nonadiabatic ramps due to Landau-Zener transitions
[56,57]. Furthermore, heavy losses of atoms are also
observed in experiments near resonance [38]. For these
reasons, one must expect that near resonance the exper-
imental values for the fermion densities inside the mixture
will deviate significantly from those predicted by our
thermal equilibrium theory described above. In particular,
if the ramping is from the repulsive to the attractive side,
then a portion of fermions will transition from the repulsive
to the attractive branch in the resonant regime and thus
remain in the mixture to affect the sound propagation of the
Bose gas; if the ramping is along the opposite direction, on
the other hand, a portion of fermions will transition from
the attractive to the repulsive branch in the resonant regime
and are thus repelled from mixture, leading to a smaller
fermion density. Indeed, using the experimental parameters
nb≈1.87×1019m−3, nf;res≈3×1017m−3, and ab¼270a0,
where a0 is the Bohr radius, the adiabatic phase diagram
corresponding to nb=nf;res ≈ 60 predicts collapse and phase
separation at 1=kf;resabf ≃ −11.5 and 1=kf;resabf ≃ 13,
respectively. However, a well-defined sound mode is
observed in the resonant region, which we attribute to
the nonequilibrium effects described above. To make
comparisons with experiments conducted near resonant
abf, we therefore treat nf as a fitting parameter using
nf=nf;res¼0.006þ0.05ðkf;resabfÞ−1=2 for 0<1=kf;resabf≲
8 and nf=nf;res ¼ 0.006 − 0.0002ðkf;resabfÞ−3 for −3≲
1=kf;resabf < 0 as suggested by the observed loss in the
experiments [38]. First, we see from Fig. 5 that, in the
regime where thermal equilibrium theory can be applied,
both perturbative and strong-coupling theories with no
fitting of nf agree well with experiment. Our strong-
coupling theory has a slightly better agreement, particularly
on the attractive side close to collapse where the sound

FIG. 4. The effective scattering lengths from the mediated
interaction, calculated by the perturbation theory and the strong-
coupling theory. The blue dotted line shows the behavior of aeff
assuming the fermions stay on the attractive branch beyond the
resonance. The results are for the 133Cs-6Li mixture of Fig. 1.

FIG. 5. Comparison of our strong-coupling theory for the BEC
sound velocity to the experimental results (dots) in Ref. [38]. The
dots in magenta (red) are data obtained from a ramping procedure
that begins at the attractive (repulsive) side and ends at the
repulsive (attractive) side.
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velocity goes to zero, as also seen experimentally. The kink
in the theoretical curve at 1=kf;resabf ≃ 13 is due to phase
separation, causing the sound velocity to return to that of a
pure BEC. Second, for resonant abf perturbative theory
predicts no sound propagation, while the strong-coupling
theory with fitted nf reproduces the experimental mea-
surements well.
Retardation and induced fermionic zero sound.—The

Fermi-Bose mass ratio is much larger for a 23Na-40K
mixture [58–61] compared to a 133Cs-6Li mixture, and it
follows from the arguments given above that retardation
effects can be significant for the former. A remarkable
consequence of this is the possibility of exciting an induced
fermionic zero sound mode through a bosonic density
perturbation. It is known that in a Bose-Fermi mixture the
noninteracting fermions can also experience a mediated
interaction due to the Bose gas, which can lead to a
fermionic zero sound mode with a speed ∼vf [62–64].
When the Bose-Fermi interaction is strong and the zero
sound velocity is comparable to that in the pure BEC, we
anticipate a strong coupling of these two modes.
In order to demonstrate this, we turn to the calculation of

the dynamic structure factor of the BEC, which also gives
the sound spectrum [39] and can be directly probed by
Bragg spectroscopy [65,66]. It is defined as

Sbðω; pÞ≡ 1

π
Imχbðiωp → ωþ i0þ; pÞ: ð12Þ

Here χbðpÞ is the density-density response function of the
BEC and is given by χbðpÞ ¼ −2Nb½G11ðpÞ þ G11ð−pÞ þ
2G12ðpÞ� within the Bogoliubov framework, where Nb is
the total number of bosons. We now calculate Sbðω; pÞ for a
strongly interacting 23Na-40K mixture with nb=nf ¼ 10,

kfab ¼ 0.067, and 1=ðkfabfÞ ¼ −3, which yields cð0Þb =vf∼
0.65. As shown in Fig. 6(a), Sbðω; pÞ exhibits a double peak
structure, indicating the presence of two modes, in stark
contrast with the single peak structure at small abf or for

cð0Þb =vf ≪ 1 (Supplemental Material [47]). Figure 6(b)
plots the dispersion of these two modes, which are

compared to the single mode in a pure BEC. This explicitly
demonstrates that a fermionic zero sound mode indeed can
hybridize with the Bogoliubov sound mode and manifest
itself in the excitation spectrum of the BEC.
Concluding remarks.—We have developed a strong-

coupling theory for the ground state and collective exci-
tations of strongly interacting Bose-Fermi mixtures,
emphasizing the role of a generalized mediated interaction.
Our theory agrees well with recent experimental results for
a resonant 133Cs-6Li mixture, for which the much used
perturbation theory fails to account. Furthermore, we show
that new, interesting physics caused by retardation of the
generalized mediated interaction can be revealed by the
bosonic dynamic structure factor and observed in future
experiments. Finally, in light of many different mixtures
being studied experimentally, our approach may be used to
systematically explore effects of mass and density ratio on
properties of strongly interacting Bose-Fermi mixtures.
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