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We examine the phase structure of the two-flavor Schwinger model as a function of the θ angle and the
two masses, m1 and m2. In particular, we find interesting effects at θ ¼ π: along the SU(2)-invariant line
m1 ¼ m2 ¼ m, in the regime wherem is much smaller than the charge g, the theory undergoes logarithmic
renormalization group flow of the Berezinskii-Kosterlitz-Thouless type. As a result, dimensional

transmutation takes place, leading to a nonperturbatively small mass gap ∼e−Ag2=m2

. The SU(2)-invariant
line lies within a region of the phase diagram where the charge conjugation symmetry is spontaneously
broken and whose boundaries we determine numerically. Our numerical results are obtained using the
Hamiltonian lattice gauge formulation that includes the mass shift mlat ¼ m − g2a=4 dictated by the
discrete chiral symmetry.
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Introduction.—Quantum electrodynamics in 1þ 1
dimensions, also known as the Schwinger model [1], is
a famous model of quantum field theory that has played an
important role for over 60 years [2–4]. It is a useful
theoretical laboratory for various important phenomena,
including quantum field theory anomalies and confinement
of charge. Its lattice Hamiltonian implementations [5,6]
have connections with condensed matter and atomic
physics, and, in recent years, there have been efforts to
construct experimental setups for its quantum simulations
(for a review, see Ref. [7]).
The model with one massless Dirac fermion of charge

g is exactly solvable, reducing to the noninteracting
Schwinger boson of mass MS ¼ g=

ffiffiffi
π

p
; this can be con-

cisely demonstrated via the bosonization of the fermion [4].
The U(1) chiral symmetry of the massless action is broken
by the Schwinger anomaly. The massive model, in addition
to containing the obvious dimensionless parameter m=g,
depends on the θ angle related to the introduction of a
background electric field [4]. This parameter, which has
periodicity 2π, is somewhat analogous to the θ angle of the
3þ 1 dimensional gauge theory.
Generalizations of the Schwinger model to Nf > 1

flavors of fermions of charge g exhibit a richer set of
phenomena [8]. When the fermions are massless, the
Schwinger model has SUðNfÞ × SUðNfÞ chiral symmetry.
Its low-energy limit is described [9,10] by the SUðNfÞ1

Wess-Zumino-Witten model, which is a conformal field
theory (CFT) of central charge Nf − 1. The Nf > 1

Schwingermodel also contains amassive sector that includes
the Schwinger boson. Therefore, it was hoped that the
multiflavor Schwinger models may provide simple realiza-
tions of the “unparticle physics” idea [11], and thismotivated
the papers [12–14]. As in these papers, we will focus on
Nf ¼ 2, where for m ¼ 0 the IR CFT is described by a
compact scalar at the self-dual radius. While investigations
of this model have a long history, including [8,15–23], we
will present a number of new results: (1) even in the limit of
small masses, we can have spontaneous symmetry breaking
of the charge conjugation symmetry, or critical behavior, or
an IR trivial phase. (2) For θ ¼ π and m=g ≪ 1, there is an
effective field theory description in terms of the sine-Gordon
model with β ≈

ffiffiffiffiffiffi
8π

p
[8,18].We describe the SU(2)-invariant

renormalization group (RG) trajectory, which flows from
asymptotic freedom in the UV, and in the IR it produces an
exponentially small mass gap ∼e−Ag2=m2

, with A ≈ 0.111 as
we show below. Therefore, the Nf ¼ 2 Schwinger model
with θ ¼ π has some qualitative similarities with QCD
because it can exhibit dimensional transmutation.
We discuss the zero-temperature phase diagram as a

function of θ and the masses m1 and m2 of the two fermion
flavors, which we can restrict to be positive (some aspects
of the phase structure were discussed in the past [8,14,18]).
Our proposal is that, while for all θ ≠ π this model has a
nondegenerate vacuum, for θ ¼ π the phase diagram is as
in Fig. 1. It contains two critical curves that pass through
the origin, along which the low-energy physics is governed
by the 2D Ising CFT of central charge c ¼ 1=2. In the
shaded region of Fig. 1, the charge conjugation symmetry
C, defined below, is spontaneously broken, leading to
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two degenerate vacua. This phenomenon, which was
recently studied in [23], is reminiscent of the spontaneous
breaking of CP symmetry in 4D Yang-Mills theory at
θ ¼ π [18,24–28], and there are analogous phenomena in
2D scalar quantum electrodynamics [29,30]. We present
both analytical and numerical evidence for the phase
diagram in Fig. 1. On the numerical side, our calculations
using the Hamiltonian lattice approach are in excellent
agreement with the continuum analysis. The convergence
of the numerical calculations is significantly improved by
including the mass shift (4) derived in [31].
The setup.—Let us consider the Schwinger model with

Nf fermion flavors of masses mα, with α ¼ 1;…; Nf.
While the mα are, in general, complex parameters, the
Uð1ÞNf axial transformations can be used to set all mα real
with mα ≥ 0. Then, the Lagrangian density is

L ¼ −
1

4g2
F2
μν −

θ

4π
ϵμνFμν þ

XNf

α¼1

Ψ̄αði=D −mαÞΨα: ð1Þ

Here, ϵ01 ¼ 1, =D ¼ γμð∂μ þ iAμÞ, and ðγ0; γ1Þ ¼ ðσ3; iσ2Þ
obey fγμ; γνg ¼ 2ημν ¼ 2diagf1;−1g.
To study this model numerically, we use the Hamiltonian

lattice formulation of [5,6], where the spatial direction is
discretized into N sites, with N even, while the time
direction remains continuous. The two-component Dirac
fermions of each flavor are staggered, with the γ0 eigen-
states of eigenvalue þ1 and −1 being placed on even and
odd sites, respectively. The lattice Hamiltonian is

H ¼ g2a
2

XN−1

n¼0

�
Ln þ

θ

2π

�
2

þ
XNf

α¼1

mlat;α

XN−1

n¼0

ð−1Þnc†n;αcn;α

−
i
2a

XN−1

n¼0

XNf

α¼1

�
c†n;αUncnþ1;α − c†nþ1;αU

†
ncn;α

�
: ð2Þ

Here, a is the lattice spacing, cn;α and c†n;α are the
annihilation and creation operators for a fermion of flavor
α on site n, andUn ¼ eiϕn is a unitary operator living on the
link between sites n and nþ 1. The electric field strengths
Ln ¼ −ið∂=∂ϕnÞ are integer-valued, while θ∈ ½0; 2πÞ
comes from the θ term in the action, and ðθ=2πÞ acts as
a fractional background electric field. The Hamiltonian
should be supplemented by the Gauss law constraint

Ln − Ln−1 ¼
X
α

�
c†n;αcn;α −

1 − ð−1Þn
2

�
: ð3Þ

The parameters g and θ of the lattice model should be
identified with the analogous parameters of the continuum
model (1). As argued in [31], one should take

mlat;α ¼ mα −
Nfg2a

8
: ð4Þ

In [31], it was also shown that when Nf is even and
mα ¼ 0, the lattice theory is invariant under translation by
one site, which corresponds to a discrete chiral symmetry in
the continuum. In the leading strong coupling limit, where
the hopping term is ignored, the ground state can be highly
degenerate. For Nf ¼ 2 and m1 ¼ m2 ¼ 0, we find that the
strong coupling degeneracy is 3N þ 1 for θ ¼ 0, while it is
2N for θ ¼ π. The latter fact provides a starting point for the
correspondence between the Nf ¼ 2 Schwinger model at
θ ¼ π and the Heisenberg antiferromagnet [19,20].
The integrated fermion bilinear operator

R
dx Ψ̄Ψ trans-

lates into the lattice operator
P

N−1
n¼0 ð−1Þnc†n;αcn;α, which is

odd under the unit shift. The uniqueness of the ground state
away from the strong coupling limit for mα ¼ 0, and the
symmetry under the unit translation, imply that the vacuum
expectation value of the mass operator vanishes on a
periodic lattice with an even number of sites.
When θ ¼ 0 or π, for any mα, the models (1) and (2) are

invariant under a charge conjugation symmetry C. In the
continuum, C acts as

C∶ Aμ →−Aμ; Ψα → γ5Ψ�
α; ð5Þ

where γ5 ¼ γ0γ1 ¼ σ1, and on the lattice it acts as [20]

C∶ Ln →−Lnþ1−
θ

π
; Un →U†

nþ1;

cn;α → c†nþ1;α; c†n;α → cnþ1;α: ð6Þ

FIG. 1. The schematic phase diagram for the two-flavor
Schwinger model at θ ¼ π (it is similar to the phase diagram
of the two-flavor QCD, exhibited in [26,27]). In the shaded
region, charge conjugation symmetry is broken, and there are
two degenerate vacua. This region is bounded by two critical
curves of Ising CFTs. These two curves meet at the origin, where
the low-energy description is provided by the SUð2Þ1 Wess-
Zumino-Witten model. For m1 ¼ m2 ≪ g, the model exhibits
an exponentially large correlation length due to dimensional
transmutation.
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It is this symmetry C that is broken whenever there are two
degenerate vacua in the phase diagram in Fig. 1.
For any θ and mα ¼ m for all α, the models (1) and (2)

are invariant under an SUðNfÞ symmetry under which the
fermions transform in the fundamental representation.
When m ¼ 0, in the continuum model (1), this SUðNfÞ
symmetry is enhanced to SUðNfÞ × SUðNfÞ.
Continuum treatment of the two-flavor Schwinger

model.—Let us now take Nf ¼ 2 and present continuum
field theory arguments in support of the phase diagram of
the two-flavor Schwinger model in Fig. 1.
One very massive fermion: When one of the fermions

is very massive, it can be integrated out, leaving us with
the Nf ¼ 1 model. For a fermion mass m, the phase
diagram of the Nf ¼ 1 model exhibits a line of first order
phase transitions at θ ¼ π that extends over the interval
ðmcr;∞Þ [8], with mcr ≈ 0.33g. At m ¼ mcr, there is
evidence [32,33] that the second order phase transition is
in the 2D Ising universality class. For m > mcr and θ ¼ π,
there are two degenerate vacua, each of which breaks C
spontaneously. Everywhere else on the phase diagram there
is a nondegenerate vacuum and a nonzero gap.
Without loss of generality, suppose we take m2=g ≫ 1.

Integrating out Ψ2 in (1) yields the effective Lagrangian

LNf¼1 þ 1

2

Z
d2y AμðxÞAνðyÞΠμν

2 ðx − yÞ þOðA4Þ; ð7Þ

where Πμν
2 ¼ ð−∂2ημν þ ∂

μ
∂
νÞΠ2ðxÞ is the one-loop vac-

uum polarization. The Fourier transform Π2ðqÞ ¼R
d2xΠ2ðxÞeiq·x is [see (7.90) of [34] ] [35]

Π2ðqÞ ¼ −
1

π

Z
1

0

dξ
ξð1 − ξÞ

m2
2 − ξð1 − ξÞq2 ≈ −

1

6πm2
2

ð8Þ

at large m2. Thus, Π2ðxÞ ≈ −ð1=6πm2
2Þδð2ÞðxÞ, and the

effective Lagrangian (7) becomes, approximately, that of
the one-flavor model with an effective gauge coupling:

g−2eff ¼ g−2
�
1þ 1

6π

g2

m2
2

�
: ð9Þ

Since the one-flavor Schwinger model exhibits an Ising
second order phase transition at mcr ≈ 0.33g at θ ¼ π, it
follows that the two-flavor Schwinger model with m2=g ≫
1 also exhibits an Ising phase transition at θ ¼ π for
mcr ≈ 0.33geff . Expanding this we get

m1;crðm2Þ ≈ 0.33g

�
1 −

1

12π

g2

m2
2

þO

�
g4

m4
2

��
: ð10Þ

The phase diagram should of course be invariant under
interchanging m1 ↔ m2 so, at θ ¼ π, there should also be
an Ising transition atm2;crðm1Þ given by the rhs of (10) with

m2 → m1. The expression (10) and the one obtained after
interchanging m1 ↔ m2 represent the asymptotic behav-
iors of the blue curves in Fig. 1. The large mass analysis
also shows that in the wedge between the two curves we
expect two degenerate ground states, while outside of this
wedge we expect a nondegenerate ground state, just as in
the Nf ¼ 1 model at θ ¼ π.
This argument also shows that when θ ≠ π and one of the

fermions is very massive, the ground state is nondegenerate
because this is also the case in the one-flavor model. In fact,
for θ ≠ 0; π we must have a nondegenerate ground state
because there is no charge conjugation symmetry that can
be spontaneously broken.
Small mass regime: Near m1 ¼ m2 ¼ 0, a useful

equivalent description is obtained using Abelian bosoniza-
tion [8]. (One can also use non-Abelian bosonization, as
in [9].) Following [8], we bosonize the fermions Ψ1;2 to
scalar fields ϕ1;2, and reparametrize them via ϕþ ¼
2−1=2ðϕ1 þ ϕ2 þ 1

2
π−1=2θÞ and ϕ− ¼ 2−1=2ðϕ1 − ϕ2Þ.

Let us restrict our attention to m1 ¼ m2 ¼ m. The
bosonized Lagrangian is

Lbos¼−
1

4g2
F2
μν−

ϕþffiffiffiffiffiffi
2π

p ϵμνFμνþ
1

2
ð∂μϕþÞ2þ

1

2
ð∂μϕ−Þ2

þeγ

π
m

ffiffiffiffiffiffiffiffiffiffiffi
μþμ−

p
Nμþcos

� ffiffiffiffiffiffi
2π

p
ϕþ−

θ

2

�
Nμ− cos

	 ffiffiffiffiffiffi
2π

p
ϕ−



;

ð11Þ

where NM means that the expression that follows is normal
ordered by subtracting the two-point functions of a scalar
field of massM. A convenient choice is μþ ¼ μ, where μ is
defined below, and μ−=g → 0.
For m ¼ 0, integrating out the gauge field shows that ϕþ

has mass μ ¼ ffiffiffiffiffiffiffiffiffiffiffiffið2=πÞp
g, while ϕ− remains massless. The

field ϕ− obeys the identification ϕ− ∼ ϕ− þ ffiffiffiffiffiffi
2π

p
, which

corresponds to the self-dual radius of the compact scalar.
Thus, form ¼ 0 we have a massive sector described by ϕþ,
and a sector consisting of the c ¼ 1 self-dual scalar CFT,
which has SUð2Þ × SUð2Þ symmetry. At low energies, the
massive sector can also be integrated out, and we are left
with the self-dual scalar CFT.
After integrating out the gauge field, we can integrate out

ϕþ order by order in m:

Lbos ¼
1

2
ð∂μϕ−Þ2 þm

ffiffiffiffiffiffiffiffi
μμ−

p eγ

π
hOþðxÞiO−ðxÞ

þ i
e2γ

2π2
m2μμ−

Z
d2yhOþðxÞOþðyÞiO−ðxÞO−ðyÞ

þOðm3Þ; ð12Þ

withOþ≡Nμcos½
ffiffiffiffiffiffi
2π

p
ϕþ−ðθ=2Þ�,O−≡Nμ− cos½

ffiffiffiffiffiffi
2π

p
ϕ−�,

and the expectation values taken in the theory of a
free massive scalar field ϕþ of mass μ. For θ ≠ π,
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hOþi ¼ cosðθ=2Þ gives the effective theory

Lbos ¼
1

2
ð∂μϕ−Þ2 þm

ffiffiffiffiffiffiffiffi
μμ−

p eγ

π
cos

θ

2
Nμ− cos ½

ffiffiffiffiffiffi
2π

p
ϕ−�

þOðm2Þ: ð13Þ

This is the self-dual scalar CFT deformed by the operator
cos ½ ffiffiffiffiffiffi

2π
p

ϕ−� of dimension 1=2, which triggers a RG flow to
a gapped phase. One can then show using RG scaling
arguments or renormal ordering [8] that the mass gap is of
order ∼jm cosðθ=2Þj2=3g1=3.
When θ ¼ π, the coefficient of the relevant operator

in (13) vanishes. Nevertheless, the mass deformation is not
exactly marginal, because the only marginal deformation of
the self-dual compact scalar CFT is the change in radius of
the scalar, which breaks the symmetry to Uð1Þ × Uð1Þ.
This would be in contradiction with the SU(2) symmetry
of the equal-mass Schwinger model. We can evaluate
the Oðm2Þ term in (12) using the propagator GMðxÞ ¼
hϕðxÞϕð0Þi ¼ ð1=2πÞK0ðM

ffiffiffiffiffiffiffiffi
−x2

p
Þ of a free scalar field ϕ

of mass M, which implies that hOþðxÞOþðyÞi ¼
sinh ½2πGμðx − yÞ�. We also have

O−ðxÞO−ðyÞ

¼ e−2πGμ− ðx−yÞ

2
Nμ− cos

� ffiffiffiffiffiffi
2π

p
½ϕ−ðxÞ þ ϕ−ðyÞ�

�

þ e2πGμ− ðx−yÞ

2
Nμ− cos

� ffiffiffiffiffiffi
2π

p
½ϕ−ðxÞ − ϕ−ðyÞ�

�
: ð14Þ

Plugging these results into (12), changing variables to
z ¼ μðy − xÞ, and passing to Euclidean signature, we see
that the integral receives contributions only from small jzj.
Expanding in jzj and evaluating the integral gives

Lbos ¼
1

2
ð∂μϕ−Þ2 þ

e3γIsm2

8π2μ2


2πe−2γð∂μϕ−Þ2

þ μ2−Nμ− cosð
ffiffiffiffiffiffi
8π

p
ϕ−Þ

�þOðm4Þ; ð15Þ

where Is ¼ 2π
R
∞
0 dξ ξ2 sinhK0ðξÞ ≈ 10.08 (see also [18]).

The Lagrangian (15) is that of the sine-Gordon model, a
two-dimensional boson with interaction term ∼ cosðβϕÞ
with β > 0. By rescaling the boson to have canonical
normalization, we have β2 < 8π. For m ≪ g, β2 → 8π, and
the scaling dimension of the cosine operator approaches 2.
In this limit, the model is closely related to the continuum
description of the Heisenberg antiferromagnet [36].
The RG flow of the sine-Gordon model near β2 ¼ 8π

was computed in [37,38] and shown to describe the
Berezinskii-Kosterlitz-Thouless transition. Generically,
both the coefficient of the cosine and radius of the scalar
will flow. Up to first order in the bare parameters α and
δ ¼ ðβ2=8πÞ − 1, the sine-Gordon model is defined by [38]

L ¼ 1 − δ

2
ð∂μϕÞ2 þ

αe2γ

32π
μ2−Nμ− cosð

ffiffiffiffiffiffi
8π

p
ϕÞ: ð16Þ

The one-loop beta functions for the running couplings ᾱ
and δ̄ are [37,38]

βᾱ ¼ 2ᾱ δ̄; βδ̄ ¼
1

32
ᾱ2: ð17Þ

The effective theory (15) may be restricted to have the
SU(2) symmetry that arises from the SU(2) symmetry of
the Schwinger model with equal fermion masses. Then, in
the two-dimensional parameter space ðᾱ; δ̄Þ, only the SU
(2)-invariant RG trajectory can be accessed. This trajectory
is the line ᾱ ¼ −8δ̄ that passes through the origin, as can be
seen from the fact that (15) and (16) imply

α ¼ 8eγIs
4

m2

g2
¼ −8δ; ð18Þ

or from analyzing the SU(2)-invariant operators in the
model (16). On this locus with SU(2)symmetry, the sine-
Gordon model (16) is related via bosonization to the SU(2)
Thirring model [38,39], which contains two massless Dirac
fermions ψa. Their interaction is ∼

P
3
i¼1 J

iJi where the
SU(2) currents are Ji ¼ 1

2
ψ̄aσiabψ

b.
The β function for the running mass parameter m̄ can be

inferred from (18) and (17):

βm̄ ¼ M
dm̄
dM

¼ −
eγIs
4g2

m̄3; ð19Þ

where M is the RG scale. Thus, the interaction strength in
the effective sine-Gordon model, and equivalently in the
SU(2) Thirring model, is asymptotically free. The inter-
action strength formally diverges far in the IR, at the scale
comparable to the mass gap (this scale is analogous to
ΛQCD):

Egap∼e−A
g2

m2 ; A¼ 2e−γ

Is
≈0.111: ð20Þ

This exponentially small mass gap implies that, for small
m, the correlation length diverges as ξ ∼ ð1=EgapÞ∼
eAðg2=m2Þ. Similarly, at small m all observables can be
expressed in terms of the energy scale Egap. For instance,
since Ψ̄αΨα flows to an operator of dimension Δþ ¼ 2 in
the c ¼ 1 theory at m ¼ 0, we must have hΨ̄αΨαi ∼ EΔþ

gap ∼
e−2Aðg2=m2Þ. Likewise, the operator Ψ1Ψ1 −Ψ2Ψ2 that takes
us away from the m1 ¼ m2 line in Fig. 1 flows to an
operator of dimension Δ− ¼ 1=2. This allows us to
estimate that the width of the symmetry breaking region
is Δm ∼ E2−Δ−

gap ¼ e−ð3A=2Þðg2=m2Þ.
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That charge conjugation symmetry is spontaneously
broken for any m > 0 can be seen from (15). Indeed, in
the bosonized description at θ ¼ π, the charge conjugation
symmetry C acts as

Aμ →−Aμ; ϕþ→−ϕþ; ϕ−→−ϕ−þ
ffiffiffi
π

2

r
: ð21Þ

This is clearly a symmetry of the Lagrangian (11) and also
of the effective Lagrangian (15). However, over the range
of one period ϕ− ∈ ½0; ffiffiffiffiffiffi

2π
p �, the potential ∼ − cosð ffiffiffiffiffiffi

8π
p

ϕ−Þ
in (15) has two minima, one at ϕ− ¼ 0 and one
ϕ− ¼ ffiffiffiffiffiffiffiffiffiffiffiffiðπ=2Þp

. These minima are exchanged by the sym-
metry C in (21). Semiclassically, we thus have two vacua in
which C is broken spontaneously.
The spontaneous breaking of C in the two-flavor

Schwinger model provides a nice analogy to the breaking
of CP and presence of two degenerate vacua in 4D QCD
with θ ¼ π and two light flavors [25]. The height of the
barrier separating the two symmetry breaking vacua is of
orderm2, just as in QCD [18,25]. TheCP violation [24] can
be seen using the chiral Lagrangian for QCD, and the zero-
temperature phase diagram as a function of light quark
masses mu and md has a similar structure [26,27] to our
Fig. 1. The boundaries of the region where CP is sponta-
neously broken can be found from the condition that
the mass of the neutral pion vanishes there. The width
of the symmetry broken region is found to behave as
ðmu þmdÞ2=fπ, which is parametrically much bigger than
the exponentially small width that we find in the
Schwinger model.
Numerical results.—We study the Nf ¼ 2 Schwinger

model numerically using the lattice Hamiltonian (2) (see
also [23]). While the one-flavor model can be studied
efficiently via exact diagonalization [31,40], with two
flavors the number of states grows so quickly with the
number N of lattice sites that this becomes impractical.
Instead, we employ tensor network methods, using a
matrix product state (MPS) ansatz to approximate the
ground state [23,41]. To optimize the MPS ansatz, we
use ITensors.jl [42,43]. We use open boundary conditions,
since this allows us to study the behavior of much larger
lattices.
The MPS form of the ground state makes it especially

simple to calculate the entanglement entropy for a left-right
bipartition of the open chain. Let SxðN; aÞ denote the
entanglement entropy for a subsystem of the leftmost xN
sites in a chain of N sites with lattice spacing a. Then, at a
critical point with central charge c, the entropy is expected
to grow like [44]

SxðN; aÞ ¼ c
6
log

�
2N
π

sin πx

�
þ const: ð22Þ

At any other point, this logarithmic growth of the entropy
will plateau when N ∼ ðξ=aÞ, where ξ is the correlation

length. By combining this result with a finite-size scaling
analysis, one can derive very precise estimates for the
locations of critical points in the continuum theory from
values of the entanglement entropy on a finite lattice [45].
In Fig. 2, we show the behavior of the entanglement

entropy for a fixed lattice, along with the precise estimate of
the critical curve obtained via the intersection method
outlined in [45]. The finite-size scaling analysis confirms
that this curve has c ¼ 1

2
. By fitting the leading large-mass

behavior of this curve, we find

m2;crðm1Þ ¼ 0.335ð4Þ − 0.0097ð17Þ
�

g
m1

�
2

; ð23Þ

and the coefficient of g2=m2
1 is in good agreement with the

value ð0.33=12πÞ ≈ 0.0088 predicted from (10).
We can also use lattice calculations of the entanglement

entropy to estimate the growth of the correlation length for
small m1 ¼ m2 ¼ m. For a fixed lattice, we can compare
the dependence of the entanglement entropy on the sub-
system size with (22) to obtain an estimate cest for the
central charge. Anywhere away from a critical point, this
estimate will tend to zero around N ∼ ðξ=aÞ. We can thus
take a fiducial cutoff for cest, and define ðβξ=aÞ as the lattice
size when cest crosses below this cutoff, where β is an
unknown constant.
Figure 3 shows this estimate of the logarithm of the

correlation length along the SU(2)-invariant line as a
function of m−2. The linear behavior suggests a scaling

FIG. 2. The heat map depicts the entanglement entropy
S1=2ðN ¼ 216; a ¼ 0.3Þ with open boundary conditions as a
function of the fermion masses at θ ¼ π. The black points are
estimates of the location of the c ¼ 1

2
critical curve in the

continuum limit a → 0. The asymptotic shape of the curves
agrees with (10). Form ≪ g, the two c ¼ 1

2
critical curves become

exponentially close to each other.
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of the form ξ ∼ eAðg2=m2Þ at small m=g, as explained
after (20). Furthermore, extrapolating the slope as m→ 0
to the continuum limit a → 0 gives A ¼ 0.11ð1Þ, in good
agreement with the theoretical value in (20).
Discussion.—In this Letter, we presented analytical and

numerical evidence for the phase diagram of the Nf ¼ 2
Schwinger model at θ ¼ π shown in Fig. 1. The behavior
we find is quite different from that at θ ≠ π: along the SU
(2)-invariant line the theory contains a nearly marginal
operator that leads to logarithmic RG flow of Berezinskii-
Kosterlitz-Thouless type. As a result, for m ≪ g the mass
gap is exponentially small, ∼e−Ag2=m2

. Along this SU(2)-
symmetric line, Georgi [14] calculated the anomalous
dimensions of operators perturbatively in powers of
ðm=gÞ2. The fact that the mass gap is exponentially small
makes the theory for m ≪ g “nearly conformal” in a large
range of energies, so that perturbative anomalous dimen-
sion calculations should be parametrically reliable. We thus
hope that the calculations of [14] can be checked numeri-
cally using the lattice Hamiltonian setup, but we leave this
question for future work.
We find that the Z2 charge conjugation symmetry is

spontaneously broken in the entire shaded region of the
phase diagram in Fig. 1. This region becomes exponentially
narrow near m ¼ 0 and is bounded by 2D Ising CFTs. It
is interesting to ask how the addition to the action of
4-fermion operators may change this phase diagram. We
also leave this question for future work.
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