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In quantum field theory above two spacetime dimensions, one is usually only able to construct exact
operator maps from UV to IR of strongly coupled renormalization group flows for the most symmetry-
protected observables. Famous examples include maps of chiral rings in 4DN ¼ 2 supersymmetry. In this
Letter, we construct the first nonperturbative UV-IR map for less protected operators: starting from a
particularly “simple” UV strongly coupled non-Lagrangian 4DN ¼ 2 quantum field theory, we show that
a universal nonchiral quarter–Bogomol’nyi-Prasad-Sommerfield ring can be mapped exactly and
bijectively to the IR. In particular, strongly coupled UV dynamics governing infinitely many null states
manifest in the IR via Fermi statistics of free gauginos. Using the concept of arc space, this bijection allows
us to compute the exact UV Macdonald index in the IR.
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Introduction.—In order to gain insight into strongly
coupled quantum field theory (QFT), it is useful to
construct universal and calculable observables. However,
there is often tension: the less calculable an observable is,
the more interesting the dynamics it can probe.
In the case of 4D N ¼ 2 QFTs, the half-Bogomol’nyi-

Prasad-Sommerfield (BPS) chiral ring is a calculable space
of operators maximally protected by supersymmetry.
Through the celebrated machinery of Seiberg-Witten
(SW) theory [1,2], it can be followed exactly along strongly
coupled renormalization group (RG) flows to the IR, where
it gives the two-derivative effective theory on a moduli
space of vacua called the “Coulomb branch.”
One long-standing open question in strongly coupled

QFT in d > 2 is to give an exact UV-IR map of nonchiral
observables less protected by supersymmetry. In this Letter,
we solve this problem for a ring arising from normal-
ordered products of superpartners of the energy-momentum
tensor. Unlike the SW ring, this ring is nonchiral, quarter-
BPS, and hence “half” as protected by supersymmetry.
Geometrically, these results give an infinite-dimensional
generalized tangent space of the Coulomb branch.
Our approach is to first focus on the closest and simplest

strongly coupled 4D analog of an exactly solvable 2D QFT:
the original or “minimal” Argyres-Douglas (MAD) super-
conformal field theory (SCFT) [3]. Indeed, from the point

of view of the Coulomb branch effective theory, this SCFT
is maximally simple. It also has the simplest symmetry
structure of any 4DN ¼ 2 SCFT. Finally, parts of the local
operator algebra are maximally simple for a unitary theory
with a vacuum moduli space [4–8].
This “closeness” of the MAD theory to the Coulomb

branch effective theory and certain exact spectroscopic
results [7] prompted us to conjecture the local operator
algebra is generated as follows [7]:

O∈ Ē×m
6=5 × E×n

−6=5; ∀ O∈HL: ð1Þ

Here, O is any local operator of the SCFT (HL is the
corresponding Hilbert space), and the right-hand side of the
inclusion represents the ðm; nÞ-fold operator product
expansion (OPE) of Ē6=5 and E−6=5. In the language of [10],

Ē6=5 is the multiplet housing the dimension 6=5 chiral
primary whose vev parametrizes the Coulomb branch
(E−6=5 houses the conjugate antichiral primary). Turning
on a vev for the corresponding primary initiates an RG flow
to the Coulomb branch and, in the deep IR, to free super-
Maxwell theory. Since the multiplets generating the MAD
operator algebra are, in this sense, “Coulombic,”we refer to
the above conjecture as the “Coulombic generation” of the
spectrum.
Given (1), it is natural to try relating all nondecoupling

parts of the MAD spectrum to super-Maxwell operators. A
first step is to consider the generating multiplets (1). As
described above, the RG map in this case follows from the
SW construction [3]

Ē6=5 → D̄Free
0ð0;0Þ; ð2Þ
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where the right-hand side is the free vector multiplet
housing the chiral ϕ primary [11].
Another natural representation to consider is the stress

tensor multiplet, which appears in the m ¼ n ¼ 1 OPE
in (1). Since the RG flow preserves N ¼ 2, we have

Ĉ0ð0;0Þ → ĈFree0ð0;0Þ; ð3Þ

where the multiplet on the right-hand side is the stress
tensor multiplet of free super-Maxwell theory [12].
Both multiplets appearing on the right-hand side of (2)

and (3) are “Schur” multiplets [13]. The corresponding
highest-SUð2ÞR weight states (with highest Lorentz
weight) are “Schur” operators. These operators, along with
∂þ ≔ ∂þþ̇, form an interesting ring of operators in 4D we
will refer to as the “Schur” ring and constitute the quarter-
BPS observables we mentioned above. In the case of (3),
the Schur operator map is

Ĉ0ð0;0Þ ∋ J ≔ J11þþ̇ → λ1þλ̄1þ̇ ∈ ĈFree0ð0;0Þ; ð4Þ

where J11þþ̇ is the highest-weight UV SUð2ÞR current, and
λ1þ ∈ D̄Free

0ð0;0Þ, λ̄
1
þ̇ ∈DFree

0ð0;0Þ are IR gauginos.
The MAD Schur ring only has ĈRðj;jÞ multiplets [5].

Moreover, it has an “extremal” subsector. These are Schur
operators and multiplets that, for a given SUð2ÞR weight, R,
have lowest spin, j. The stress tensor multiplet is the case
R ¼ j ¼ 0. More generally, extremal Schur operators,
OR;Ext ∈ ĈRð1

2
RðRþ2Þ;1

2
RðRþ2ÞÞ, map as follows [5]:

OR;Ext →
�
λ1þ∂þλ1þ � � � ∂Rþλ1þ

��
λ̄1þ̇∂þλ̄

1
þ̇ � � � ∂Rþλ̄1þ̇

�

∼ λ1þλ̄1þ∂2
�
λ1þλ̄1þ̇

�
� � � ∂2R

�
λ1þλ̄1þ̇

�
; ð5Þ

where we have used Fermi statistics to rearrange the
gauginos in a fashion of use below.
Given this discussion, it is natural to expect a general

relation between the UV and IR Schur rings. However,
there are potential obstacles: (a) all IR Schur operators need
not come from UV Schur operators, and (b) in general
SCFTs, UV Schur operators can decouple along flows to
the Coulomb branch.
Regarding (a), (2) implies the UVorigin of the gauginos

is in the MAD chiral sector, not the Schur sector [14].
Moreover, because the IR is free, it has higher spin
symmetries that are absent in the UV [15,16]. The breaking
of these symmetries in the flow back to the UV is encoded
as follows [6]:

C̄0;7=5ðk;k−1Þ → ĈFree0ðk;k−1Þ; k ¼ 1; 2;…: ð6Þ

On the right-hand side, we have emergent complex
higher spin current multiplets, while, on the left-hand
side, we have “longer” protected multiplets that include

nonvanishing divergences of would-be MAD higher-spin
currents. For real higher-spin currents [17],

AΔ
0;rðk;kÞ → ĈFree0ðk;kÞ; k ¼ 1=2; 1;…: ð7Þ

On the left-hand side, we have certain UV long multiplets.
Therefore, a main task is to carve out the subsector of IR
Schur operators corresponding to UV Schur operators. This
discussion is summarized in Fig. 1.
Regarding (b), note it is common for Schur operators to

decouple in Coulomb branch flows. For example, on a
genuine Coulomb branch consisting of free vectors at
generic points, flavor symmetries decouple. Since flavor
symmetry Noether currents lie in Schur multiplets, Schur
operators can decouple. More generally, decoupling is
unrelated to flavor.
Given the “closeness” of the MAD SCFT to the

Coulomb branch, it is reasonable to expect both obstacles
are irrelevant. We will soon see this is the case.
A useful feature of the UV Schur ring is its simplicity.

Indeed, as explained in the Supplemental Material [18], it is
generated by the ∂

iþJ subject to

Ĉ1ð1=2;1=2Þ ∋ J2 ≔ ∶JJ ≔ 0; ð8Þ

where “∶ � � � ∶” denotes the normal-ordered product [22].
Consistency with (3) suggests looking for an IR null state

related to (8). Indeed, using (3), the nontrivial UV dynam-
ics leading to (8) maps to an IR constraint enforced by
Fermi statistics [23]

FIG. 1. RG maps to the IR Schur sector, SFree Vector. We
describe the flow between the UV MAD Schur sector, SMAD,
and a closed subsector of the IR Schur operators, S̃Free Vector
(yellow shading). IR Schur operators in the complement of
S̃Free Vector (blue shading) come from non-Schur UV operators.
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Ĉ1ð1=2;1=2Þ ∋ J2 → ðλ1þλ̄1þ̇Þ2 ¼ 0∈ ĈFree1ð1=2;1=2Þ: ð9Þ

Given this discussion, we propose the following map:
Main statement: An arbitrary monomial in the MAD

Schur ring is mapped as follows to the IR:

SMAD ∋ ∂
i1þJ � � � ∂inþJ ↔ ∂

i1þðλ1þλ̄1þ̇Þ � � � ∂inþðλ1þλ̄1þ̇Þ
∈ S̃Free Vector ⊂ SFree Vector: ð10Þ

Here, SFree Vector is the set of all IR Schur operators [25]. An
important feature of (10) is that individual gauginos and
higher-spin currents are not in the map’s target [i.e., (10) is
consistent with (2), (6), and (7)].
On the other hand, Fermi statistics naively looks

more constraining than (9). Indeed, ðλ1þÞ2 ¼ ðλ̄1þ̇Þ2 ¼ 0

implies (9), not vice versa. Therefore, we should make sure
there are as many null states on one side of (10) as on
the other.
Using results on “leading ideals” [26,27], we will show

that, for operators in (10), Fermi statistics is equivalent
to (9). Combined with the fact that the ∂

iþJ subject to (8)
generate the UV Schur ring, we establish (10). As a
byproduct, we show that the Macdonald index, an observ-
able that counts Schur operators, is exactly computable in
the IR.
We have avoided discussing the relation of 4D Schur

rings to 2D vertex operator algebras (VOAs) [28]. The main
reason is our discussion is inherently 4D, and the twisting
in [28] somewhat obscures this (we will return to the 2D
free field construction of [29,30] below). However, as we
discuss, the 4D-2D map is useful in deriving (8). Moreover,
results on arc spaces [31] imply the UV Schur ring is
characterized as claimed around (8) [32].
The plan of this Letter is as follows: next we briefly

review the MAD theory and its Schur sector. Then we show
Fermi statistics does not lead to additional constraints
spoiling (10). We conclude with a general discussion.
The MAD theory’s Schur sector.—We briefly review the

construction of the Schur ring, describe its counting by the
Macdonald index, and discuss the example of the MAD
theory. Finally, we explain how the map in [28] can be used
to derive (8) and explain how the UV Schur ring is
generated (details appear in the Supplemental Material).
A Schur operator, O, satisfies

fQ1
−;O� ¼ �

Q̃2−̇;O
� ¼ fS−

1 ;O� ¼ �
S̃2−̇;O

� ¼ 0: ð11Þ

Numerical indices are SUð2ÞR weights, and signs indicate
spin weights. These relations imply

EO ¼ 2RO þ jO þ j̄O; ð12Þ

where the left-hand side is the scaling dimension, R is the
SUð2ÞR weight, r is the Uð1Þr charge, and j, j̄ denote spin

weights. Operators carrying these quantum numbers are
counted by the Macdonald index

IMðq; TÞ ≔ Trð−1ÞFqE−RTRþr; ð13Þ

where the trace is over the space of Schur operators, q and
T are fugacities, and ð−1ÞF is fermion number.
The MAD Macdonald index was computed via topo-

logical QFT in [33], but the elegant expression in [24] is
particularly useful

IMAD
M ðq;TÞ¼

X∞
n¼0

qn
2þn

ðqÞn
Tn; ðqÞn≔

Yn
i¼1

ð1−qiÞ: ð14Þ

Here, ∂iþJ contributes qiþ2T, and products of operators give
products of contributions.
To interpret the physical states contributing to (14), we

briefly recall the Schur ring to VOA map [28] (see [28] for
further details). The idea is to perform an SUð2ÞR twist of
right-moving slð2;RÞ transformations on a plane insideR4.
Then, the algebraic constraints in (11) imply that Schur
operators are nontrivial cohomology elements

fQi;Oð0Þ� ¼ 0; Oð0Þ ≠ fQi;O0ð0Þ�;
Q1 ≔ Q1

− þ S̃2−̇; Q2 ≔ S−1 − Q̃2−̇: ð15Þ

Moreover, twisting guarantees that planar translations by
∂−þ̇ are cohomologically trivial while those generated by
∂þ are not. As a result, we can map twisted-translated Qi
cohomology classes in (15) to operators that only depend
on a holomorphic planar coordinate, z. These latter oper-
ators are members of a VOA. Particularly relevant for us are
the maps

χð½J�QÞ ¼ T2D; χð∂þÞ ¼ ∂z ≔ ∂; c2D ¼ −12c4D;

h ¼ E − R; ð16Þ

where ½J�Q is the cohomology class of the SUð2ÞR
current [34], T2D is the VOA stress tensor, c2D is the
corresponding central charge (twisting leads to 2D non-
unitarity), h is the holomorphic scaling dimension, and χ is
the 4D-2D map.
Using this construction [specifically the T → 1 limit

of (14), which becomes the VOA vacuum character] and
some orthogonal arguments we will return to in the
discussion section below, the authors of [35] argued that
the VOA corresponding to the MAD theory is the Lee-Yang
vacuum module [36]

χðMADÞ ¼ Virc2D¼−22=5: ð17Þ

This VOA is built from normal-ordered products of ∂iT2D
for arbitrary i.
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Famously, Lee-Yang has an h ¼ 4 null state

T2
2D −

3

10
∂
2T2D ¼ 0; T2

2D ≔ ∶T2
2D∶: ð18Þ

This null relation is the 2D incarnation of (8) (e.g., see [4]).
Indeed, from the general construction in [28], we can work
out the terms that do not vanish in the z → 0 limit of the
T2DðzÞT2Dð0Þ OPE by considering all SUð2ÞR components
of the 4D Ji1i2þþ̇ðzÞJj1j2þþ̇ ð0Þ OPE (recall J ≔ J11þþ̇) and
looking for Schur operators with h ≤ 4.
In particular, the null state in (18) corresponds to a 4D

null state with h ¼ 4, and multiplet selection rules imply
this operator has R ¼ 2 [37]. It therefore corresponds to the
vanishing normal-ordered product

JðzÞJð0Þ ⊃ J2ð0Þ ¼ 0: ð19Þ

This equation is a nontrivial UV dynamical constraint.
Given that the VOA in (17) is strongly generated by T2D,

it is natural to conjecture that the 4D Schur ring is generated
by normal-ordered products of ∂iJ subject to (19) [39]. Let
us call this ring RMAD

∞ and define

RMAD
∞ ≔ C½J; ∂þJ; ∂2þJ; � � ��=hJ2; ∂þðJ2Þ; � � �i: ð20Þ

Indeed, as explained in the Supplemental Material,
recent results on arc spaces imply the counting of operators
in RMAD

∞ matches (14). More precisely,

HSRMAD
∞

ðq; TÞ ¼ IMAD
M ðq; TÞ; ð21Þ

where the left-hand side is the Hilbert series of RMAD
∞ . Since

all operators involved are bosonic, this result is a highly
nontrivial check of the claim that the 4D Schur ring is
generated by products of ∂iJ subject to (19).
Next we apply the RG map (4) and reproduce the

Macdonald index in terms of the IR degrees of freedom
and Fermi statistics.
IR Fermi statistics.—When flowing to the IR, J → λ1þλ̄1þ̇,

and, as explained around (9), the UV dynamics that lead to
(19) manifest as IR Fermi statistics. Therefore, our goal is
to apply the map in (10) and reproduce (21) in the IR.
Therefore, we must show Fermi statistics does not imply

additional constraints. Intuitively, we expect this not to be
an issue since the IR operators we consider do not probe the
full emergent Schur ring. For example, they are blind to
accidental higher-spin symmetries.
To make our discussion precise, we first write a UV basis

of operators and make contact with the extremal Schur
operators (5). As explained in the Supplemental Material,
we can use results in algebraic geometry to show that a
suitable basis consists of

∂
n1þ J∂n2þ J � � � ∂nkþ J; 0 ≤ n1 < n2 < � � � < nk;

niþ1 − ni ≥ 2;
Xk
i¼1

ni ¼ n; n∈Z≥0: ð22Þ

The extremal case (5) has niþ1 − ni ¼ 2 and n1 ¼ 0.
Applying the RG map (4) to (22), we get a composite

operator made of fermions. Because of Fermi statistics,
which is generally stronger than (19), one may worry
the operator vanishes. To show it does not, we pick a
representative nonvanishing term. In general, there are
multiple nonvanishing terms after distributing derivatives.
We simply should make a consistent choice. To that end,
we choose

∂
m1þ λ1þ∂

m0
1þ λ̄1þ̇∂

m2þ λ1þ∂
m0

2þ λ̄1þ̇ � � � ∂mkþ λ1þ∂
m0

kþ λ̄1þ̇;

m0
i −mi ¼ 0; 1; 0 ≤ m1 < m2 < � � � < mk;

0 ≤ m0
1 < � � � < m0

k: ð23Þ

Clearly there is a one-to-one correspondence (not equality)
between (23) and (22) after setting mi þm0

i ¼ ni,
mi ¼ bni=2c, and m0

i ¼ bðni þ 1Þ=2c. At the level of
operators,

∂
n1þ J � � � ∂nkþ J ð24Þ

↔
�
∂
bn1
2
c

þ λ1þ∂
bn1þ1

2
c

þ λ̄1þ̇
��

∂
bn2
2
c

þ λ1þ∂
bn2þ1

2
c

þ λ̄1þ̇
�

� � �
�
∂
bnk
2
c

þ λ1þ∂
bnkþ1

2
c

þ λ̄1þ̇
�
: ð25Þ

In particular, since niþ1 − ni ≥ 2, we see bni=2c ≠ bnj=2c
as long as i ≠ j. Therefore, the fermions do not annihilate.
It is also obvious that operators in (23) are linearly
independent for different sets of mi;m0

i.
As a result, (22) gives an IR basis. We see that Fermi

statistics does not overconstrain our subring of observables,
and we reproduce (21) in the IR.
Discussion.—As far as we are aware, (10) is the first

exact map of nonchiral quarter-BPS observables along a
strongly coupled RG flow. UV dynamics giving rise to null
relations are reduced to IR Fermi statistics (it would be
interesting to derive these relations via UV defect endpoint
operators). Noting that the IR gauginos are related by
supersymmetry to the coordinates on the Coulomb branch,
and thinking of an arc space as an infinite-dimensional
generalization of a tangent space, we see that our results
constitute a certain geometrical completion of Seiberg-
Witten theory for the MAD SCFT.
It is surprising that a Coulomb branch flow knows so

much about the Schur sector (this sector is typically
associated with the Higgs branch). At the same time, this
fact strengthens our conjecture (1) and shows that Coulomb
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branch and Schur sector physics unify into a deeper
structure (see also [41,42]).
The above phenomena are indirectly related to those

in [35]. There the authors computed a less refined limit of
the superconformal index by summing over massless and
massive Coulomb branch BPS states. We instead keep track
of the Schur operators along the RG flow. In so doing, we
recover additional 4D quantum numbers [SUð2ÞR charges].
When does the above construction generalize to other

Coulomb branch flows? A reasonable conjecture is that it
generalizes whenever the UV “hidden” symmetries of the
Schur ring (Virasoro here) are all related to symmetries of
the full 4D theory that are not explicitly broken along the
RG flow and do not decouple [SUð2ÞR in the present case].
Indeed, as we show in the Supplemental Material, ðA1; A2rÞ
SCFTs have similar IR embeddings of their Schur sectors.
These theories have purely Virasoro hidden symmetry
related to unbroken SUð2ÞR.
On the other hand, consider Coulomb branch flows for

theories with WN>2 symmetry. For example, the ðA2; A3Þ
SCFT has (hidden) W3 symmetry [35]. Using the
Macdonald index [24,33], it is easy to argue that the W3

current sits in a Ĉ1ð0;0Þ multiplet. It is simple to check that
the corresponding Schur operator cannot be built from
gauginos and derivatives. In this case, we expect the W3

symmetry to decouple along flows to generic points on the
Coulomb branch [43].
Let us also discuss how our work is related to known free

field constructions [29,30]. There the authors studied Higgs
branch RG flows and focused on massless degrees of
freedom (in N > 2 supersymmetry, such moduli spaces
embed in larger structures that include Coulomb branches).
In these cases, some of the symmetries are spontaneously
broken, but one can construct UV 2D VOA operators in
terms of IR 2D VOA degrees of freedom (see also related
work in [44]) [45].
We have instead followed 4D operators along Coulomb

branch RG flows. Understanding such flows from the
Schur sector perspective is crucial, since the Coulomb
branch is the most universal moduli space of an interacting
4D N ¼ 2 SCFT [46]. A more closely related 2D version
of our discussion in the spirit of [29,30] is to fermionize the
Coulomb gas construction of the Lee-Yang theory (along
the lines of [47,48]). However, this would require us to
express the IR version of the UV stress tensor as a
composite not built purely out of 2D avatars of IR gauginos
[see (2.1) of [48] ] [49].
As emphasized in (2), (6), (7), and Fig. 1, the full IR

Schur sector is connected via RG flow to various UV
sectors. It will be interesting to use these maps to further
constrain the UV (from our Coulombic generation con-
jecture, we expect the corresponding UVoperators generate
the MAD theory). For example, we can consider products
of operators in (10) with other operators and infer aspects of
the C̄ spectrum [17].

Finally, it is tempting to take our results and search for a
geometrical completion of Seiberg-Witten theory in more
general 4D N ¼ 2 QFTs.
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2 .
[12] As in the footnote below (2), we should subtract lower-

dimensional multiplets to make the map precise (in par-
ticular, a real linear combination of Ē6=5 and E−6=5). This
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