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Regular black hole spacetimes are obtained from an effective Lagrangian for quantum Einstein gravity.
The interior matter is modeled as a dust fluid, which interacts with the geometry through a multiplicative
coupling function denoted as χ. The specific functional form of χ is deduced from asymptotically safe
gravity, under the key assumption that the Reuter fixed point remains minimally affected by the presence of
matter. As a consequence the gravitational coupling vanishes at high energies. The static exterior geometry
of the black hole is entirely determined by the junction conditions at the boundary surface. Consequently,
the resulting global spacetime geometry remains devoid of singularities at all times. This outcome offers a
new perspective on how regular black holes are formed through gravitational collapse.
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In the realm of general relativity, black holes (BHs) are
fascinating objects characterized by spacetime singularities
concealed within an event horizon [1]. The occurrence of
singularities makes a compelling case for the study of
models beyond general relativity, where spacetime remains
geodesically complete. One prominent approach to achieve
this involves replacing the singularity with a regular patch
of de Sitter space [2], an old concept that has garnered
renewed attention in recent times. Much of the existing
research in the literature derives regular black hole geom-
etries through modifications of the static Misner-Sharp
mass with the aim of rapid convergence to zero at small
distances. This is the case for static regular BH metrics like
the Poisson-Israel model [3], the asymptotically safe (AS)
model [4], the Dymnikova regular black hole model [5,6],
or the Hayward metric [7], to name a few (see Ref. [8] for
an extended review).
Yet, attempts to derive these solutions from a physically

plausible Lagrangian, such as in the instance of regular
black holes in nonlinear electrodynamics [9], have faced
numerous challenges [10]. It is reasonable to acknowledge
that a unanimous consensus on incorporating regular black
hole solutions within a broader gravitational theory remains
elusive [11,12].
An alternative route to obtaining modifications of the

classical BH solutions is by matching a nonsingular
homogeneous interior model, describing collapsing matter,

to a static exterior black hole solution. This method has
received considerable attention in recent years. The min-
isuperspace approximation in loop quantum cosmology
leads to an effective Friedman equation with repulsive (i.e.,
negative) gravity at high densities, resulting in a bouncing
interior model [13–16]. Conversely, assuming a renormal-
ization group (RG) improved regular exterior allows for
obtaining a singularity-free collapsing dust model as the
interior solution [17]. Other methods obtain similar results
relying on different approaches to quantization (see for
example [18–20]). However, similar to the above men-
tioned static solutions, deducing these models from an
effective Lagrangian remains challenging. On the other
hand numerical simulations of the formation of regular BH
are often limited to a 2D dilaton gravity model [21,22] and
the generalization to a 4D model is problematic unless a
physically motivated Lagrangian formulation is found.
Within this Letter, we present a resolution to this

quandary by extending an initial idea by Markov and
Mukhanov [23]. Our approach involves formulating grav-
ity’s antiscreening behavior in ultra-Planckian energy
domains [24] through the inclusion of a multiplicative
coupling with the matter Lagrangian. The structure of this
coupling is guided by the Reuter fixed point of AS gravity
[25]. Remarkably both the energy-momentum and the
effective energy-momentum tensors are conserved in this
theory, in contrast to what happens in most approaches
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mentioned above. Notably, under conditions of low energy,
our model seamlessly recovers the equations of standard
general relativity. Also, over extensive distances, the
solution for black holes bears resemblance to the
Schwarzschild solution.
To be more specific, let us consider a matter fluid with a

proper density ϵ, characterized by a four-velocity uμ such
that uμuμ ¼ −1, and a rest-mass density ρ. The mass
continuity equation is expressed as ðρuμÞ;μ ¼ 0, and for
a nondissipative fluid, the relative variations of density are
related as δρ=ρ ¼ δϵ=½pðϵÞ þ ϵ�.
Following the approach in [23], we introduce the action

for our system as follows:

S ¼ 1

16πGN

Z
d4x

ffiffiffiffiffiffi
−g

p ½Rþ 2χðϵÞL�: ð1Þ

Here, L ¼ −ϵ represents the matter Lagrangian, and the
function χ ¼ χðϵÞ serves as a multiplicative gravity-matter
coupling with the important property χðϵ ¼ 0Þ ¼ 8πGN.
The metric variation of the matter part of the Lagrangian
yields

1ffiffiffiffiffiffi−gp δð2 ffiffiffiffiffiffi
−g

p
χϵÞ ¼ 2

∂ðχϵÞ
∂ϵ

δϵ − χϵgμνδgμν: ð2Þ

Note that the variation of ρ under a change of the metric is
given by [26]

δρ ¼ ρ

2
ðgμν þ uμuνÞδgμν: ð3Þ

As a result, the total variation of the action (1) leads to the
following field equations:

Rμν −
1

2
gμνR ¼ ∂ðχϵÞ

∂ϵ
Tμν þ

∂χ

∂ϵ
ϵ2gμν ≡ Teff

μν ; ð4Þ

where

8πGðϵÞ ¼ ∂ðχϵÞ
∂ϵ

; ΛðϵÞ ¼ −
∂χ

∂ϵ
ϵ2; ð5Þ

represent the effective Newton constant and cosmological
constant, respectively. Here, Tμν ¼ ðϵþ pðϵÞÞuμuν þ pgμν
is conserved. For spherically homogeneous collapse the
metric functions in the diagonal line element in comoving
coordinates ft; r; θ;ϕg are g00 ¼ −e2νðr;tÞ, g11 ¼ e2ψðr;tÞ,
and g22 ¼ C2ðr; tÞ. Then we can express the field equa-
tions (4) as follows:

F0
eff

C2C0 ¼ 8πGðϵÞϵþ ΛðϵÞ ¼ χðϵÞϵ≡ ϵeff ; ð6Þ

−
Ḟeff

C2Ċ
¼ 8πGðϵÞp − ΛðϵÞ≡ peff ; ð7Þ

and

Ċ0 ¼ Ċν0 þ C0ψ̇ : ð8Þ

Note that ϵeff > 0 always, while peff can become negative.
Dotted quantities represent derivatives with respect to the
comoving time (t), while prime denotes derivatives with
respect to the comoving radial coordinate (r). The function
Feff represents the effective Misner-Sharp mass of the
system, which can be defined in analogy with the
Schwarzschild mass M from 1 − Feff=C ¼ gμν∇μC∇νC
[27], and it is given by

Feff ¼ Cð1 − C02e−2ψ þ Ċ2e−2νÞ: ð9Þ

Additionally, the Bianchi identity takes the form

ν0 ¼ −
p0
eff

ϵeff þ peff
: ð10Þ

In the case of a homogeneous perfect fluid, we have ϵðtÞ
and pðtÞ, which in turn imply ϵeffðtÞ and peffðtÞ. As a
consequence of the Bianchi identity, we can set ν ¼ 0 and
integrate Eq. (8) to obtain e2ψ ¼ C02=ð1 − Kr2Þ, whereK is
the integration constant related to the curvature of the three
space. The line element can then be written as

ds2 ¼ −dt2 þ C02

1 − Kr2
dr2 þ C2dΩ2; ð11Þ

where dΩ2 represents the metric on the unit two-sphere. By
rescaling the area-radius function C using the adimensional
scale factor a according to C ¼ ra, the energy-momentum
conservation equation gives

dϵþ 3½pðϵÞ þ ϵ�d ln a ¼ 0: ð12Þ

Following [28] we also rescale the effective Misner-Sharp
mass as Feff ¼ r3meff . We can then rewrite Eqs. (6) and (7)
as follows:

ϵeff ¼
3meff

a3
; peff ¼ −

meff;a

a2
; ð13Þ

where by Xa we indicate derivatives of X with respect to a,
and Eq. (9) becomes

meff ¼ aðȧ2 þ KÞ: ð14Þ

Here,meffðaÞ ¼ −aVðaÞ, where the potential VðaÞ reads as

VðaÞ ¼ −
8π

3
a2

Z
ϵðaÞ

0

GðsÞds: ð15Þ

In principle, if we know GðϵÞ from a fundamental theory,
from (5) is possible to determine χ and close the system.
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In this Letter, we assume that the behavior of G as a
function of the energy scale is governed by a renormaliza-
tion group trajectory close to the ultraviolet (UV) fixed
point of the AS program [25,29–35], and we neglect higher
order operators in R in the effective Lagrangian.
As demonstrated in [36] and [37], they are all irrelevant

in the language of the renormalization group; therefore
their impact on the renormalized trjaectories around the
Reuter fixed point can be neglected. The R2 operator is
instead classically marginal; however given its consider-
ably less prominent UV scaling compared to the running of
the R operator [36] we will not consider this term. On the
contrary, the cosmological constant emerges as a relevant
operator, but its scaling behavior is inherently encompassed
in the Markov-Mukhanov approach through the emergence
of an effective cosmological constant in Eq. (4).
We thus adopt the approximate running ofG as proposed

in [38] in the limit of quantum Einstein gravity,

GðkÞ ¼ GN

1þ GNk2=g�
; ð16Þ

where k represents the IR regulator scale, and g� ¼
570π=833 is the UV fixed point. To connect k to ϵ, we
require a prescription. The analysis in [38] demonstrates
that the UV scaling of the physical Newton constantGNðqÞ,
where q is the external momentum, is in essence the same
as predicted by the renormalized coupling GðkÞ. The only
distinction lies in the crossover scale, a nonuniversal feature
of the flow (see particularly Fig. 4 in [38]). Hence the
identification k2 ∼ q2 ∼ 1=d2 where d is a distance scale
should capture the qualitative features of the physical
flow [39].
However, it is essential to acknowledge that the key

assumption underlying Eq. (16) is that the presence of
matter does not significantly deform the flow and com-
promise the fixed point [40]. This assumption is crucial in
maintaining the integrity of the renormalization group
trajectory and ensuring its consistency in the presence of
matter.
We now consider the scenario of dust collapse, therefore

taking p ¼ 0, ϵ ∝ a−3, and ρ ¼ ϵ. In accordance with the
above discussion we interpret the variable d as the proper
distance as in [4] so that

d ∼
r3=2ffiffiffiffi
m

p ∼
1ffiffiffi
ϵ

p ; ð17Þ

where r is the radial distance. At last we thus obtain the
following expression for the behavior of GðϵÞ:

GðϵÞ ¼ GN

1þ ξϵ
; ð18Þ

where we introduce the dimensionful scale ξ, and we
include the pure number g� in the definition of ξ. It is

important to note that, in general, we would expect
ξ ∼ 1=m4

pl, but currently, there is no clear method to
determine ξ from first principles, and this parameter should
be constrained from observations. Setting 8πGN ¼ 1, we
obtain

χðϵÞ¼ logð1þξϵÞ
ξϵ

; ΛðϵÞ¼ logð1þξϵÞ
ξ

−
ϵ

1þ ξϵ
: ð19Þ

Importantly, in the classical limit, achieved for ξ → 0, we
recover χ ¼ 1 and Λ ¼ 0, as expected. Figure 1 illustrates
the potential VðaÞ for the running coupling defined in
Eq. (18), as compared to the Oppenheimer-Snyder-Datt
(OSD) case. Reducing our formalism to the OSD model
[41,42], which describes noninteracting dust particles with
p ¼ 0, we have Tμν ¼ ϵuμuν, ϵ ¼ 3m0=a3, andmeff → m0.
Equation (15) yields VðaÞ ¼ −m0=a recovering the usual
equation for the scale factor of homogeneous dust:

ȧ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0

a
− K

r
: ð20Þ

It is worth noting that bound collapse is obtained forK > 0,
while the marginally bound case has K ¼ 0. Interestingly,
to achieve singularity resolution at the end of the collapse,
the usual energy conditions must be violated. In many
models available in the literature, the growth of negative
effective pressures leads to repulsive effects that halt the
collapse. However, in our case, such a term is due to the
running cosmological constant, which generates repulsive
effects, allowing the collapse to come to a halt. For ξ ≠ 0
and (18), we obtain

ȧ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1þ 3m0ξ=a3Þ

3ξ
a2 − K

s
: ð21Þ

FIG. 1. The thick line shows the potential VðaÞ for dust
collapse in the AS model with running G given by Eq. (18).
For comparison the OSD model with 8πGN ¼ 1 is shown as the
dotted line. The parameters are fixed for illustrative purposes to
m0 ¼ 1 and ξ ¼ 0.001.
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The solution to this equation for marginally bound collapse
(K ¼ 0) is shown in Fig. 2 and compared with the OSD
model and the semiclassical collapse model developed in
[43]. At large times, the scale factor behaves as

aðtÞ ∼ e−t
2=4ξ; t → ∞; ð22Þ

indicating that a ¼ 0 is never reached at any finite time, and
the spacetime is geodesically complete. As t approaches
infinity, the scale factor tends to diminish exponentially,
ensuring the avoidance of singularities within any finite
time frame.
To implement the matching of the collapsing matter

cloud described above with a suitable exterior, we employ
the formalism developed by Israel in [44], which was
further refined by Senovilla and others in [45,46]. We
consider the matching across a comoving boundary r ¼ rb
in the interior, which corresponds to a collapsing boundary
CbðtÞ ¼ Cðt; rbÞ ¼ rbaðtÞ. The induced metric on the
matching surface Σ in comoving coordinates can be
expressed as

ds2Σ ¼ −dt2 þ r2ba
2dΩ2: ð23Þ

For the exterior, we consider a generic static and spheri-
cally symmetric line element in fT; R; θ;ϕg coordinates
written as

ds2 ¼ −fðRÞdT2 þ 1

fðRÞ dR
2 þ R2dΩ2; ð24Þ

where f ¼ 1–2MðRÞ=R, and we assume a continuous
matching between the two geometries. The continuity
condition uniquely determines the form of MðRÞ in the

exterior. Specifically, if the collapsing boundary is para-
metrized by R ¼ RbðTÞ, the induced metric on the boun-
dary becomes

ds2Σ ¼ −
�
fðRbÞ − fðRbÞ−1

�
dRb

dT

�
2
�
dT2 þ R2

bdΩ2: ð25Þ

The matching conditions for the metric functions on the
boundary surface Σ immediately provide the relation be-
tween t and T on Σ and the condition Rb½TðtÞ� ¼ rbaðtÞ.
The second fundamental form for the interior metric in
comoving coordinates is

K−
tt ¼ 0; K−

θθ ¼ rba
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2b

q
: ð26Þ

From the extrinsic curvature on the exterior we obtain

Kþ
tt ¼ −

1

2

2R̈b þ f;RðRbÞ
ΔðRbÞ

; Kþ
θθ ¼ RbΔðRbÞ; ð27Þ

with ΔðRbÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2MðRbÞ=Rbþ Ṙ2

b

q
, so that on imposing

½Ktt� ¼ Kþ
tt − K−

tt ¼ 0; ½Kθθ� ¼ Kþ
θθ − K−

θθ ¼ 0; ð28Þ

the functional form of MðRÞ can be obtained. Finally, we
arrive at the most important result of our investigation:

MðRÞ ¼ R3

6ξ
log

�
1þ 6M0ξ

R3

�
; ð29Þ

where the matching implies m0r3b ¼ 2M0. This expression
describes the Misner-Sharp mass pertaining to the static
exterior, originating from an interior undergoing gravita-
tional collapse. The dynamics of this interior are guided by
an effective Lagrangian that incorporates the AS nature of
gravitational interaction at Planckian energy scales.
Importantly, the classical limit is recovered for ξ → 0 (or

equivalently for R → ∞), leading to

MðRÞ ¼ M0 −
3M2

0ξ

R3
þ 12M3

0ξ
2

R6
þOðξ3Þ; ð30Þ

as expected. In the low-energy limit, the Schwarzschild
solution is regained. Notably, in the small R regime, MðRÞ
behaves like

MðRÞ ¼ 1

6ξ
R3 log

�
6M0ξ

R3

�
þ R6

36M0ξ
2
þOðR7Þ; ð31Þ

moreover, as R ≥ Rb ¼ rbaðtÞ and aðtÞ > 0 always, our
solution remains everywhere regular, avoiding any singu-
larities. This result is of significant importance as it
demonstrates the compatibility of the collapsing matter

FIG. 2. The thick line shows the scale factor aðtÞ for marginally
bound (K ¼ 0) dust collapse in the AS model with the running
gravitation and cosmological constant solution of Eq. (21). For
comparison the OSD collapse model is shown as the dotted line,
and the semiclassical collapse leading to a regular black hole
developed in [43] is shown as the dashed line. The parameters are
fixed for illustrative purposes to m0 ¼ 1 and ξ ¼ 0.01.
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interior with our AS effective Lagrangian model in pro-
ducing a regular black hole exterior.
The horizon’s position is determined by solving the

transcendental equation fðRÞ ¼ 0, which can yield in-
triguing results. Notably, for any specified value of M0,
a critical threshold ξcr exists. When ξ < ξcr, an event
horizon becomes evident, accompanied by an inner horizon
at smaller values of the radial coordinate. However, for
ξ > ξcr, a scalar remnant emerges, as illustrated in Fig. 3
for M0 ¼ 1.
We expect for the global solution, that the evolution of

the causal structure in the interior matches the formation of
the causal structure for the exterior geometry. The condition
for the formation of trapped surfaces in the interior may be
obtained from

1 −
Feff

C
¼ 1 − r2ðȧ2 þ KÞ ¼ 0; ð32Þ

which implicitly gives the curve rahðtÞ describing the
comoving time t at which the shell r becomes trapped:

rahðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ȧ2 þ K
p : ð33Þ

It is clear that in the OSD case as ȧ diverges the apparent
horizon curve tends to zero. On the other hand in the AS
case we have that ȧ goes to zero asymptotically, and
therefore rah → 1=

ffiffiffiffi
K

p
. In the marginally bound case, for

any given ξ we have that rah reaches a minimum value rmin
and then grows to infinity. Then there are values of the
boundary rb > rmin that lead to rah crossing the boundary
twice, thus creating two horizons in the exterior.
Accordingly there is a critical value rb ¼ rmin for which
only one horizon exists, and for values smaller than rmin no

horizon forms throughout collapse. The apparent horizon
curve is shown in Fig. 4.
Our solution represents a significant alternative to

present models of regular black holes. It is built upon
the assumption that black hole solutions observed in nature
are sourced by a matter interior whose evolution is non-
singular due to the antiscreening of the gravitational
constant at small distances [24], according to a specific
renormalization group trajectory terminating at the Reuter
fixed point of AS gravity. This mechanism is implemented
using an effective Lagrangian that incorporates a multipli-
cative coupling with the matter component. Although in
this Letter, we considered an idealized model of matter
consisting of a pressureless fluid, our framework can be
generalized to incorporate more realistic equations of state
and more accurate RG trajectories, providing a consistent
description of the matter component. We intend to address
these issues in future investigations.
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