
Verifying Quantum Advantage Experiments with Multiple Amplitude
Tensor Network Contraction

Yong Liu,1,* Yaojian Chen,2,* Chu Guo ,3,† Jiawei Song,4 Xinmin Shi,5 Lin Gan,2,4,‡ Wenzhao Wu,4 Wei Wu,4

Haohuan Fu,2,4,§ Xin Liu,1,4,∥ Dexun Chen,4 Zhifeng Zhao,1 Guangwen Yang,1,2,4 and Jiangang Gao6
1Zhejiang Lab, Hangzhou, 311121, China

2Tsinghua University, Beijing, 100084, China
3Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education,

Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications,
Hunan Normal University, Changsha, 410081, China

4National Supercomputing Center in Wuxi, Wuxi, 214000, China
5Information Engineering University, Zhengzhou, 450001, China

6National Research Center of Parallel Computer Engineering and Technology, Beijing, 100190, China

(Received 19 June 2023; accepted 14 December 2023; published 16 January 2024)

The quantum supremacy experiment, such as Google Sycamore [F. Arute et al., Nature (London) 574,
505 (2019).], poses a great challenge for classical verification due to the exponentially increasing compute
cost. Using a new-generation Sunway supercomputer within 8.5 d, we provide a direct verification by
computing 3 × 106 exact amplitudes for the experimentally generated bitstrings, obtaining a cross-entropy
benchmarking fidelity of 0.191% (the estimated value is 0.224%). The leap of simulation capability is built
on a multiple-amplitude tensor network contraction algorithm which systematically exploits the “classical
advantage” (the inherent “store-and-compute” operation mode of von Neumann machines) of current
supercomputers, and a fused tensor network contraction algorithm which drastically increases the compute
efficiency on heterogeneous architectures. Our method has a far-reaching impact in solving quantum many-
body problems, statistical problems, as well as combinatorial optimization problems.

DOI: 10.1103/PhysRevLett.132.030601

Ever since initially visioned by Feynman [1], quantum
computing has experienced 40 years of theoretical and
experimental developments [2–9], starting to demonstrate a
quantum advantage over classical computers in the era of
noisy intermediate scale quantum computing [10]. A major
experimental milestone is the quantum supremacy experi-
ment conducted with the Google Sycamore 53-qubit super-
conducting quantum processor in 2019 [11], which
demonstrates 109 times better capability for sampling a
random quantum circuit (RQC) over the fastest classical
supercomputer Summit at that time. The more recent
56-qubit and 60-qubit Zuchongzhi quantum processors
are estimated to be around 26 and 40000 times harder
than Sycamore to classically simulate [12,13].
In the RQC sampling task, one runs a RQC on a (noisy)

quantum processor and then measures it to produce a
number of bitstrings (samples). While generating a number
of samples is an easy task for quantum processors,
simulating this task on a classical computer is a hard
problem [14–17], even for noisy RQCs [18,19] (noticing a
recent work which proposed a polynomial but impractical
algorithm for simulating constant-noise RQCs [20]).
Several attempts have been made to narrow down the
complexity gap set by Sycamore using the tensor network
contraction (TNC) algorithm [21], powered by the recently

developed excellent heuristic strategies to identify a near-
optimal tensor network contraction order (TNCO) [22,23].
Using a fused tensor contraction algorithm and a highly
parallelized implementation on the new Sunway super-
computer, the runtime for computing a batch of correlated
amplitudes for the depth-20 Sycamore RQC was reduced to
about 300 s [24], which is currently further shortened to
less than 150 s by using a lifetime theory to reduce the
slicing overhead and increase the compute density [25]. For
computing uncorrelated amplitudes, a recursive multitensor
contraction algorithm is recently proposed and used to
compute millions of amplitudes for Sycamore RQCs up to
depth 16 [26]. However, validating the depth-20 case by
exactly computing a large number of uncorrelated ampli-
tudes is still out of reach. To this end we note that to attack
the claim of quantum supremacy, several works have
directly simulated the noisy RQC sampling by exploring
biased noises to drastically reduce the computational cost
[27–29]. Here, we focus on computing exact amplitudes
instead, so as to provide a verification to noisy RQCs.
In this work, we manage to, for the first time, compute

3 × 106 uncorrelated amplitudes of the most complicated
depth-20 Sycamore RQC (referred to as Sycamore after-
ward), using 107520 SW26010P CPUs (41932,800 cores)
for 8.5 d. Our simulation efficiency is at least 3 orders of

PHYSICAL REVIEW LETTERS 132, 030601 (2024)

0031-9007=24=132(3)=030601(6) 030601-1 © 2024 American Physical Society

https://orcid.org/0000-0002-3411-3076
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.030601&domain=pdf&date_stamp=2024-01-16
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/PhysRevLett.132.030601
https://doi.org/10.1103/PhysRevLett.132.030601
https://doi.org/10.1103/PhysRevLett.132.030601
https://doi.org/10.1103/PhysRevLett.132.030601


magnitude faster than the best existing records which have
successfully computed exact amplitudes of Sycamore
[24,25,30] (computing a batch of correlated amplitudes
will only induce a small computational overhead compared
to computing a single amplitude for TNC algorithm
[23,31]), and is only about 2.5 times slower per amplitude
compared to the Sycamore quantum processor itself. The
jump of simulation capability is made possible by mainly
two algorithms, one focus more on the algorithmic side and
the other focus more on the implementation side. On the
algorithmic side, we systematically explore the “classical
advantage” of storing and reusing intermediate tensor
results, which theoretically lowers the computation cost
of computing millions of uncorrelated amplitudes of
Sycamore by at least 3 orders of magnitude. On the
implementation side, we build our simulator with a fused
tensor network contraction algorithm to largely reduce data
movement and increase compute density, and an adaptive
parallelization scheme that fully utilizes the hundreds of
cores in each processor for different sizes of tensors, which
enables us to almost fully achieve the theoretical speedup.
Our results provide a concrete verification for Sycamore,

which is more than 103 times harder than simulating the
noise sampling task itself. With further improvements for

larger circuit sizes, we vision that the Zuchongzhi series of
RQCs are also verifiable in the near term. Although we
have focused on computing uncorrelated amplitudes of a
RQC, our method is completely general for contracting a
large number of similar tensor networks (TNs) which share
a significant portion of common tensors. Therefore the
maTNC algorithm and the parallelization techniques devel-
oped in this work could have a far-reaching impact beyond
simulating RQCs, such as solving quantum many-body
problems [32], statistics problems [33] or combinatorial
optimization problems [34,35], which can generally be
formulated as tensor network contraction problems [36,37].
Multiple-amplitude simulation with static and optimal

tensor reuse.—For a quantum computer, due to the no-
cloning theorem [38], the cost of generating k samples from
a RQC, denoted as Sk, is strictly linear against k, namely
Sk ¼ kS with S the cost of producing a single sample.
When simulating RQC on classical computers, the relation
between Sk and S depends on the specific method to use. In
the past three years, the method of choice to simulate
Sycamore(-like) quantum processors has gradually con-
verged to the TNC algorithm due to its relatively low
computational cost and well-controlled memory usage by
using the slicing technique [22,23]. The TNC algorithm

(a)

(b)

FIG. 1. Demonstration of the maTNC algorithm. (a) Division of the original tensor network formed in the TNC algorithm into
consecutive subtensor networks, where each subtensor network starts with a bright tensor containing one or more output indices and ends
before the next bright tensor. (b) Organizing the contraction of the k tensor networks resulting from computing k amplitudes into a tree,
where each node of the tree corresponds to an output index and the edge after it corresponds to a specific choice of this index. A full path
along the tree from left to right corresponds to contracting one tensor network and traversing the tree means to contract all the tensor
networks. Generally, for computing a large number of uncorrelated amplitudes, the leftmost edge (the trunk) contains most of the tensors,
the number of edges in a vertical layer grows exponentially in the central part (the branch) and stops growing in the tail (the twig).

PHYSICAL REVIEW LETTERS 132, 030601 (2024)

030601-2



transforms the whole quantum circuit into a large TN (the
original TN) with n uncontracted tensor indices (the output
indices), each corresponding to an output qubit state.
Computing the amplitude of a given bitstring amounts to
selecting particular elements of the uncontracted tensor
indices, resulting in a TN with no uncontracted indices.
Computing k amplitudes will result in k TNs, which only
differ in the choice of the output indices of the original TN.
Existing approaches using TNC mostly compute a single

amplitude or a correlated batch of amplitudes (referred to as
saTNC in the following) one time [23,30,39,40], while our
maTNC algorithm computes k uncorrelated amplitudes in a
single run, which proceeds as follows. We first assume that
a TNCO for computing one amplitude has been obtained.
We refer to those tensors in the original TN which contain
at least one output index as the bright tensors. Following
the TNCO, whenever a bright tensor is met, there could be a
branching, which means that several TNs among all the k
TNs share the same tensors till this bright tensor. Therefore,
the computations before contracting this bright tensor can
be perfectly reused among them. To systematically identify
all such reusable patterns, we divide the original TN into
many subtensor networks (blocks) along the TNCO, where
each block starts from a bright tensor and ends before the
next bright tensor (the first block has no bright tensor), as
shown in Fig. 1(a). Then we organize the k TNs into a tree
(the reuse tree) as shown in Fig. 1(b). Each node of the tree
corresponds to one output index, while the edge after the
node corresponds to a particular choice of this index. The
nodes in the same vertical line correspond to the same
output index and form a layer. A bright tensor containing
multiple output indices would correspond to multiple
layers. There could also exist tensors between successive
bright tensors along the TNCO that do not contain any
output indices, which are assumed to live on the edges.
Given these correspondences, a full path from left to right
along the tree corresponds to contracting the TN for
computing one amplitude, and traversing the tree corre-
sponds to contracting all the k TNs for k amplitudes. It is
clear that all the intermediate tensors before a certain node
of the tree can be reused for all the subpaths after (and
including) this node, thus an optimal reuse strategy would
be to reuse all such tensors to reduce the computa-
tional cost.
We denote the computational cost of one edge connect-

ing a node in the lth layer and another node in the (lþ 1)th
layer as Slþ1;l, then the cost of one path is S ¼P

n
l¼0 Slþ1∶l. Denoting the number of nodes in the lth

layer as wl (the width), which is the same as the number of
edges between the (l − 1)th and lth layers, then the
computational cost between the lth layer and the (lþ 1)
th layer is wlþ1Slþ1∶l for optimal reuse, and the total cost is

Sk ¼
Xn

l¼0

wlþ1Slþ1∶l: ð1Þ

wnþ1 ¼ k is nondecreasing with l which satisfies w1 ¼ 1,
wnþ1 ¼ k, and 1 ≤ wl ≤ k for 1 < l ≤ n. For computing a
large number (but not exponentially large) of uncorrelated
amplitudes, wl will typically grow exponentially at the
beginning before it saturates. We can see that Sk < kS in
general. Therefore, when searching for an optimal TNCO,
we choose to directly minimize Sk instead of S (for
optimization we have used Sk as the loss function in the
KaHyPar package [41]). For Sycamore, we observe that this
choice can easily lower the overall computational cost by
more than 10× (details can be found in Supplemental
Material [42], Sec. IV).
To minimize the memory cost, one can perform a depth-

first traversal of the tree, where one only needs to store all
the intermediate tensors at the nodes in the branch along
a single path from left to right. For Sycamore we found
that the amount of memory required for a reuse-oriented
computing of 3M amplitudes is only about two times that
of computing a single amplitude. In comparison in the
breath-first traversal one needs to store all the intermediate
tensors at one layer (scales with k), in which the memory
usage could easily explode.
We summarize the defining features of our maTNC

algorithm: (1) it directly minimizes the multiamplitude cost
in Eq. (1) when searching for a near optimal TNCO and
(2) it organizes the computation into a static tree and
performs a depth-first traversal of the tree to accomplish the
computation, which achieves optimal reuse of intermediate
computations with minimal memory cost for a given
TNCO. The static nature of our algorithm makes the tensor
contraction pattern and the memory allocation predeter-
mined, which is extremely important for massive paralle-
lization. To this end we stress that the idea of computing
multiple uncorrelated amplitudes simultaneously to reduce
redundant intermediate computation has already been
explored in Ref. [26], where it is estimated that computing
3M uncorrelated amplitudes could be done using Summit
within 7.5 d. However, our approach is very different from
Ref. [26]. We formulate the whole computation as a static
reuse tree for a given TNCO, as such the memory and
computational cost, as well as the whole parallelization
strategy are completely determined before we actually
perform the calculations (since the computational cost is
known for each given TNCO, we also use it as the loss
function to optimize the TNCO). In comparison, Ref. [26]
uses a dynamical global cache whose entries are frequently
inserted and deleted and the reusable intermediate tensors
are only determined during the actual calculations. For
large scale RQCs, the latter approach is likely to affect the
parallelization efficiency and could easily run into a
memory issue since the memory cost is not predetermined.
Parallelizing the maTNC method over 40 × 106 cores of

the new Sunway supercomputer.—In our large-scale imple-
mentation on the new Sunway supercomputer, we use a
two-level parallelization scheme. In the first level we use

PHYSICAL REVIEW LETTERS 132, 030601 (2024)

030601-3



the slicing technique as a standard practice for the TNC
algorithm to produce 222 (≈4 × 106) slices for parallel
processing over CPUs [23,24]. In the second level we
contract each slice using maTNC on each CPU (which
contains 384 cores). For computing k ¼ 3M amplitudes,
we found a TNCO for which the ideal speedup compared to
saTNC is 1328×, while the actual speedup using swTT (our
previous tensor contraction implementation [24]) is only
40×. The reason for this slowdown is that for computing a
large number of uncorrelated amplitudes, the calculation is
dominated by very small tensor contractions with low
compute density. To restore the computational efficiency
we propose a fused TNC algorithm, combined with an
adaptive parallelization scheme that works differently with
different tensor sizes. The central goal of the fused TNC
algorithm is to perform several successive tensor contrac-
tions together so as to reduce data movement. With these
techniques we are able to restore the speedup of maTNC
against saTNC from 40× to around 1248×. Details of the
fused TNC algorithm can be found in Supplemental
Material [42], Sec. V.
Verification of Sycamore.—We first evaluate the theo-

retical computational cost and actual performance of our
maTNC for simulating Sycamore. In Fig. 2(a) we show the
scaling of the theoretical cost of maTNC against k, based
on an optimal TNCO found by minimizing Eq. (1). The
scaling of saTNC is shown as a reference. We can clearly
see that the cost of maTNC scales only sublinearly against
k. For k ≈ 106, the cost of maTNC is already lower than
saTNC by more than 3 orders of magnitude.
In Fig. 2(b) we show the actual performance of our

maTNC using our well-optimized implementation on the
new Sunway supercomputer, where we have also used the
quantum runtime of Sycamore as the benchmarking base-
line. The runtime for computing a single amplitude is
assumed to be equivalent to that for generating a perfect
sample using the TNC algorithm, since one could easily
adjust the TNC algorithm to compute a small batch of

correlated amplitudes with negligible overhead, and obtain
a perfect sample with unit probability from the batch
[23,31]. Since we only compute exact amplitudes (perfect
samples), the complexity of generating k perfect samples is
assumed to be equivalent to that of generating k=f noisy
samples with fidelity f [43] (therefore the task of computing
3M exact uncorrelated amplitudes is 1500× times harder
than generating 1M noisy samples with f ¼ 0.2%). The
quantum speedup is then defined by the classical runtime of
maTNC divided by the quantum runtime of Sycamore
multiplied by 1=f. We can see that while the quantum
speedup is more than 3000× for k ¼ 1, it drastically
decreases to 4× for k ¼ 1M and 2.5× for k ¼ 3M.
For completeness, we list in Table I the ideal and actual

speedups of maTNC over saTNC for computing 1M
uncorrelated amplitudes for Sycamore RQCs of different
depths. As a comparison, the speedup reported in Ref. [26]
is 10000× for depth 16 for 2M amplitudes, and the
estimated actual speedups for depths 18 and 20 are
5193× and 1022× for 2.5M and 3M amplitudes, respec-
tively. Taking into account that the speedup is more
significant with more amplitudes, our ideal speedup (where
the maTNC is assumed to be implemented with the same
efficiency as saTNC), as well as our actual speedups for
depths 18 and 20, are generally higher than Ref. [26] (the
actual speedup for depth 16 is significantly lower than the
ideal speedup, which is because that our implementation is
better tuned for deeper circuits).
We also directly compute the exact amplitudes of 3M

experimentally generated samples by Sycamore, which is
done by using 107,520 SW26010P CPUs for 8.5 d (203 h).
Our results show that the exact XEB fidelity for these
bitstrings is FXEB ¼ ð0.191� 0.058Þ%, which closely
matches the estimated value of ð0.224� 0.021Þ%. We plot
in Fig. 3 the histogram of the obtained amplitudes and
compare them to the theoretical probability density func-
tion for the rescaled bitstring probabilityNp (N ¼ 2n and p
is the probability) under the same XEB fidelity, defined as

PlðxjFXEBÞ ¼ ½FXEBxþ ð1 − FXEBÞ�e−x; ð2Þ(a) (b)

FIG. 2. (a) The red line with diamond shows the scaling of the
theoretical complexity of our maTNC against the number of
amplitudes k for Sycamore, while the blue line shows the linear
scaling of the saTNC as a reference. (b) The quantum speedup of
Sycamore against our maTNC, defined as our classical runtime
divided by the quantum runtime, as a function of k.

TABLE I. The ideal and actual speedups of maTNC over
saTNC for computing 1 × 106 uncorrelated amplitudes. The first
column lists the Sycamore RQCs with different depths. The
columns “FPOs (s)” and “FPOs (m)” are the number of floating
point operations for saTNC and maTNC, respectively. The
maximum size of intermediate tensors is set to be 231 for all
cases. Here, the actual speedups are estimated by calculating a
single slice on one CPU for both algorithms.

Depth FPOs (s) FPOs (m) Ideal speedup Actual speedup

16 1.3 × 1017 1.4 × 1019 9286 2311
18 5.3 × 1017 5.0 × 1019 10600 5393
20 5.5 × 1018 5.1 × 1021 1080 737

PHYSICAL REVIEW LETTERS 132, 030601 (2024)

030601-4



with x ¼ Np. We can see that they agree well with each
other, which means that the bitstrings generated by
Sycamore indeed obeys the Porter-Thomas distribution
with the estimated XEB fidelity. Our results thus provide
a strong consistency check for the Sycamore quantum
supremacy experiment.
Discussions.—The Sycamore quantum processor could

generate 1 × 106 noisy samples with 0.2% fidelity in 200 s.
In comparison, we have computed 3 × 106 amplitudes on
the new Sunway supercomputer within 8.5 d, a task that is
more than 103 harder than that performed by Sycamore.
Taking into account that the complexity increases by the
Zuchongzhi series quantum processors are not dramatic
compared to Sycamore (mostly due to that the increase is
mostly in terms of the number of qubits instead of the gate
fidelities [45]), we envision that those quantum processors
can also be simulated in near term. In the meantime, we
mention that the cost of our calculation is around 1.5 × 106

Chinese Yuan, which is probably more costly than the
experiments performed on Sycamore.
Other than simulating RQCs, our results also represent a

major jump of the ability in contracting a large number of
tensor networks with the same structure and sharing most
of the tensors in common, which is a very universal
situation that could be encountered in computational
physics and combinatorial optimization problems and thus
could be of very wide interest.

Note added.—After we finished this work, we noticed the
newest RQC sampling task performed on a quantum
processor with 70 qubits and 24 depths [47], which is
likely beyond our reach.

The bitstrings together with the calculated amplitudes are
available at the GitHub repository [46].

We thank Xun Gao, Man-Hong Yung, Xiaobo Zhu, and
Zuoning Chen for helpful discussions and comments. This
research was supported in part by the National Natural
Science Foundation of China (Grant No. T2125006),
Jiangsu Innovation Capacity Building Program (Project
No. BM2022028), National Key Research and Develop-
ment Plan of China (Grant No. 2020YFB0204800). C. G.
acknowledges support from National Natural Science
Foundation of China under Grant No. 11805279.

*These authors contributed equally to this work.
†guochu604b@gmail.com
‡lingan@tsinghua.edu.cn
§haohuan@tsinghua.edu.cn
∥lucyliu_zj@163.com

[1] R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
[2] P. Shor, in Proceedings 35th Annual Symposium on

Foundations of Computer Science (IEEE, Santa Fe,
1994), pp. 124–134.

[3] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S.
Gustavsson, and W. D. Oliver, Appl. Phys. Rev. 6,
021318 (2019).

[4] H.-L. Huang, D. Wu, D. Fan, and X. Zhu, Sci. China Inf.
Sci. 63, 180501 (2020).

[5] S. Slussarenko and G. J. Pryde, Appl. Phys. Rev. 6, 041303
(2019).

[6] R. Blatt and C. F. Roos, Nat. Phys. 8, 277 (2012).
[7] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M.

Sage, Appl. Phys. Rev. 6, 021314 (2019).
[8] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe,

and S. Lloyd, Nature (London) 549, 195 (2017).
[9] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin,

and X. Yuan, Rev. Mod. Phys. 92, 015003 (2020).
[10] J. Preskill, Quantum 2, 79 (2018).
[11] F. Arute et al., Nature (London) 574, 505 (2019).
[12] Y. Wu et al., Phys. Rev. Lett. 127, 180501 (2021).
[13] Q. Zhu et al., Sci. Bull. 67, 240 (2022).
[14] M. J. Bremner, A. Montanaro, and D. J. Shepherd, Phys.

Rev. Lett. 117, 080501 (2016).
[15] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N.

Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven,
Nat. Phys. 14, 595 (2018).

[16] A. Bouland, B. Fefferman, C. Nirkhe, and U. Vazirani, Nat.
Phys. 15, 159 (2019).

[17] D. Hangleiter and J. Eisert, Rev. Mod. Phys. 95, 035001
(2023).

[18] S. Aaronson and L. Chen, in Proceedings of the 32nd
Computational Complexity Conference CCC ’17 (Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
DEU, Wadern, Germany, 2017).

[19] S. Aaronson and S. Gunn, Theory Comput. 16, 1 (2020).
[20] D. Aharonov, X. Gao, Z. Landau, Y. Liu, and U. Vazirani, in

Proceedings of the 55th Annual ACM Symposium on Theory
of Computing, STOC 2023 (Association for Computing
Machinery, New York, 2023), pp. 945–957.

[21] I. L. Markov and Y. Shi, SIAM J. Comput. 38, 963 (2008).
[22] J. Gray and S. Kourtis, Quantum 5, 410 (2021).
[23] C. Huang et al., Nat. Comput. Sci. 1, 578 (2021).

FIG. 3. Histogram for the distribution of the probabilities of the
3 × 106 experimentally generated bitstrings from Sycamore [44],
where the x axis is log rescaled. The blue solid line denotes the
corresponding theoretical prediction under the same cross-
entropy benchmarking (XEB) fidelity as defined in Eq. (2).

PHYSICAL REVIEW LETTERS 132, 030601 (2024)

030601-5

https://doi.org/10.1007/BF02650179
https://doi.org/10.1063/1.5089550
https://doi.org/10.1063/1.5089550
https://doi.org/10.1007/s11432-020-2881-9
https://doi.org/10.1007/s11432-020-2881-9
https://doi.org/10.1063/1.5115814
https://doi.org/10.1063/1.5115814
https://doi.org/10.1038/nphys2252
https://doi.org/10.1063/1.5088164
https://doi.org/10.1038/nature23474
https://doi.org/10.1103/RevModPhys.92.015003
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/PhysRevLett.127.180501
https://doi.org/10.1016/j.scib.2021.10.017
https://doi.org/10.1103/PhysRevLett.117.080501
https://doi.org/10.1103/PhysRevLett.117.080501
https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1038/s41567-018-0318-2
https://doi.org/10.1038/s41567-018-0318-2
https://doi.org/10.1103/RevModPhys.95.035001
https://doi.org/10.1103/RevModPhys.95.035001
https://doi.org/10.4086/toc.2020.v016a011
https://doi.org/10.1137/050644756
https://doi.org/10.22331/q-2021-03-15-410
https://doi.org/10.1038/s43588-021-00119-7


[24] Y. A. Liu, X. L. Liu, F. N. Li, H. Fu, Y. Yang, J. Song, P.
Zhao, Z. Wang, D. Peng, H. Chen, C. Guo, H. Huang, W.
Wu, and D. Chen, in Proceedings of the International
Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’21 (Association for Computing
Machinery, New York, 2021).

[25] Y. Chen, Y. Liu, X. Shi, J. Song, X. Liu, L. Gan, C. Guo, H.
Fu, J. Gao, D. Chen, and G. Yang, in Proceedings of the
28th ACM SIGPLAN Annual Symposium on Principles and
Practice of Parallel Programming, PPoPP ’23 (Association
for Computing Machinery, New York, 2023), pp. 148–159.

[26] G. Kalachev, P. Panteleev, and M.-H. Yung, arXiv:
2108.05665.

[27] F. Pan, K. Chen, and P. Zhang, Phys. Rev. Lett. 129, 090502
(2022).

[28] G. Kalachev, P. Panteleev, P. Zhou, and M.-H. Yung,
arXiv:2112.15083.

[29] X. Gao, M. Kalinowski, C.-N. Chou, M. D. Lukin, B.
Barak, and S. Choi, arXiv:2112.01657.

[30] F. Pan and P. Zhang, Phys. Rev. Lett. 128, 030501 (2022).
[31] B. Villalonga, S. Boixo, B. Nelson, C. Henze, E. Rieffel, R.

Biswas, and S. Mandrà, npj Quantum Inf. 5, 86 (2019).
[32] R. Orús, Nat. Rev. Phys. 1, 538 (2019).
[33] M. Mézard, G. Parisi, and M. A. Virasoro, Spin Glass

Theory and Beyond: An Introduction to the Replica Method
and Its Applications (World Scientific Publishing Company,
Singapore, 1987), Vol. 9.

[34] M. Mézard, G. Parisi, and R. Zecchina, Science 297, 812
(2002).

[35] M. Mezard and A. Montanari, Information, Physics, and
Computation (Oxford University Press, New York, 2009).

[36] A. García-Sáez and J. I. Latorre, Quantum Inf. Comput. 12,
283 (2012).

[37] C. Guo, D. Poletti, and I. Arad, Phys. Rev. B 108, 125111
(2023).

[38] W. K. Wootters and W. H. Zurek, Nature (London) 299, 802
(1982).

[39] C. Guo, Y. Liu, M. Xiong, S. Xue, X. Fu, A. Huang, X.
Qiang, P. Xu, J. Liu, S. Zheng, H.-L. Huang, M. Deng, D.
Poletti, W.-S. Bao, and J. Wu, Phys. Rev. Lett. 123, 190501
(2019).

[40] C. Guo, Y. Zhao, and H.-L. Huang, Phys. Rev. Lett. 126,
070502 (2021).

[41] Y. Akhremtsev, T. Heuer, P. Sanders, and S. Schlag, in
Proceedings of the 19th Workshop on Algorithm Engineer-
ing and Experiments (ALENEX 2017) (SIAM, Barcelona,
2017), pp. 28–42.

[42] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.132.030601 for more
details on the algorithms introduced in the main text and
for more detailed data of our numerical experiment.

[43] I. L. Markov, A. Fatima, S. V. Isakov, and S. Boixo, arXiv:
1807.10749.

[44] The 3 × 106 experimentally generated bitstrings are down-
loaded from Ref. [11].

[45] A. Zlokapa, B. Villalonga, S. Boixo, and D. A. Lidar, npj
Quantum Inf. 9, 36 (2023).

[46] Y. Liu, Y. Chen, L. Gan, H. Fu, and X. Liu (2022), https:/
github.com/leao077/ma_TNC.

[47] A. Morvan, B. Villalonga, X. Mi, S. Mandrà, A. Bengtsson,
P. Klimov, Z. Chen, S. Hong, C. Erickson, I. Drozdov et al.,
arXiv:2304.11119.

PHYSICAL REVIEW LETTERS 132, 030601 (2024)

030601-6

https://arXiv.org/abs/2108.05665
https://arXiv.org/abs/2108.05665
https://doi.org/10.1103/PhysRevLett.129.090502
https://doi.org/10.1103/PhysRevLett.129.090502
https://arXiv.org/abs/2112.15083
https://arXiv.org/abs/2112.01657
https://doi.org/10.1103/PhysRevLett.128.030501
https://doi.org/10.1038/s41534-019-0196-1
https://doi.org/10.1038/s42254-019-0086-7
https://doi.org/10.1126/science.1073287
https://doi.org/10.1126/science.1073287
https://doi.org/10.26421/QIC12.3-4-8
https://doi.org/10.26421/QIC12.3-4-8
https://doi.org/10.1103/PhysRevB.108.125111
https://doi.org/10.1103/PhysRevB.108.125111
https://doi.org/10.1038/299802a0
https://doi.org/10.1038/299802a0
https://doi.org/10.1103/PhysRevLett.123.190501
https://doi.org/10.1103/PhysRevLett.123.190501
https://doi.org/10.1103/PhysRevLett.126.070502
https://doi.org/10.1103/PhysRevLett.126.070502
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.030601
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.030601
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.030601
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.030601
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.030601
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.030601
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.030601
https://arXiv.org/abs/1807.10749
https://arXiv.org/abs/1807.10749
https://doi.org/10.1038/s41534-023-00703-x
https://doi.org/10.1038/s41534-023-00703-x
https:/github.com/leao077/ma_TNC
https:/github.com/leao077/ma_TNC
https:/github.com/leao077/ma_TNC
https://arXiv.org/abs/2304.11119

