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We discuss the dynamics of integrable and nonintegrable chains of coupled oscillators under continuous
weak position measurements in the semiclassical limit. We show that, in this limit, the dynamics is
described by a standard stochastic Langevin equation, and a measurement-induced transition appears as a
noise- and dissipation-induced chaotic-to-nonchaotic transition akin to stochastic synchronization. In the
nonintegrable chain of anharmonically coupled oscillators, we show that the temporal growth and the
ballistic light-cone spread of a classical out-of-time correlator characterized by the Lyapunov exponent and
the butterfly velocity are halted above a noise or below an interaction strength. The Lyapunov exponent and
the butterfly velocity both act like order parameter, vanishing in the nonchaotic phase. In addition, the
butterfly velocity exhibits a critical finite-size scaling. For the integrable model, we consider the classical
Toda chain and show that the Lyapunov exponent changes nonmonotonically with the noise strength,
vanishing at the zero noise limit and above a critical noise, with a maximum at an intermediate noise
strength. The butterfly velocity in the Toda chain shows a singular behavior approaching the integrable
limit of zero noise strength.
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Chaotic-to-nonchaotic transitions play a prominent role
in our understanding of the dynamical phase diagram of
both quantum and classical systems, appearing in many
different contexts such as nonlinear dynamics, thermal-
ization, and quantum information theory. In quantum
many-body systems, a certain kind of chaotic-nonchaotic
transitions, dubbed “measurement-induced phase transi-
tions” (MIPT) [1–12], have led to a new paradigm for
dynamical phase transitions in recent years. These tran-
sitions are characterized by entanglement and chaotic
properties of the many-body states and time evolution.
On the other hand, a prominent example of transition in
chaos in classical dynamical systems [13–25] are the so-
called synchronization transitions (STs) [26]. In this case,
classical trajectories starting from different initial condi-
tions synchronize, i.e., the difference between the tra-
jectories approaches zero with time, when subjected to
sufficiently strong common drive, bias, or even random
stochastic noise. Can there be some connection between the
measurement-induced phase transition in quantum systems
and ST in classical systems?
In this Letter, we establish a possible link between MIPT

and ST by considering models of interacting particles,
whose positions are measured continuously, albeit weakly.
We show that, in the semiclassical limit, the dynamics of
the system is described by a stochastic Langevin equation
where the noise and the dissipation terms are both con-
trolled by the small quantum parameter ℏ and measurement
strength. Specifically, we study a nonintegrable oscillator

chain and the classical integrable Toda chain [27–30]. In
both cases, we find a surprising dynamical transition in
many-body chaos in the Langevin evolution. The chaotic-
to-nonchaotic transition occurs as a function of either
interaction or noise (measurement) strength as two classical
trajectories starting with slightly different initial conditions
synchronize when subjected to identical noise. The tran-
sition is similar to the stochastic STs. The latter has been
previously studied [19–25,31,32], however, only for latti-
ces of coupled nonlinear maps, as opposed to interacting
Hamiltonian systems employed in our Letter.
A few recent works have looked into classical analogs of

MIPT in cellular automaton [33], kinetically constrained
spin systems [34,35], and semiclassical circuit model [36].
In contrast to these works, we derive a direct connec-
tion between a quantum measurement dynamics of a
Hamiltonian system with the Langevin evolution by ana-
lytically taking the semiclassical limit. For interacting
quantum systems, MIPTs have been primarily studied in
quantum circuits evolving under discrete-time projective
and weak measurements [1–12] as well as continuous weak
measurements [37,38]. The MIPTs in these models are
typically characterized by scaling of entanglement entropy
with subsystem size, i.e., transition from a volume-law to
area-law scaling, in the longtime steady state. These MIPTs
can often be mapped to phase transitions in some classical
statistical mechanics models [1,2,6,8,10,12]. However, it is
hard to directly take the classical limit of the dynamics in
these quantum circuit models. Effects of measurements and
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MIPTs have also been studied for noninteracting fermions
[7,39,40], interacting bosons [41–43], and Luttinger liquid
ground state [44].
We characterize the chaos transition in the Langevin

dynamics of the oscillator chains by a classical out-of-time-
order correlator (cOTOC) [45–51]. The latter is defined by
comparing two trajectories that differ by a small amount
initially and are subjected to identical noise. In the chaotic
phase, we extract a Lyapunov exponent λL and a butterfly
velocity vB, respectively, from the cOTOC. We show the
following. (i) λL; vB → 0 at a critical noise strength or
below an interaction strength for both integrable and
nonintegrable chains. (ii) vB exhibits a critical scaling with
system size, whereas λL shows almost no system-size
dependence. The critical exponents extracted from the
finite-size scaling of vB differs from those in the univer-
sality classes typically found in stochastic STs in coupled-
map lattices (CMLs) [19,20,23,25,31,32]. (iii) For the
stochastic dynamics of the integrable Toda chain, λL
changes nonmonotonically with the noise strength, vanish-
ing for zero noise, as well as at a critical noise; vB, on the
other hand, shows a singular behavior approaching the
integrable limit of zero noise strength.
Quantum measurement model and the semiclassical

limit.—We generalize the well-known model of continuous
weak position measurement of a single particle by Caves
and Milburn [52] to the interacting oscillator chains. The
oscillator chain (system) with i ¼ 1;…; L oscillators and
the measurement apparatus (meters) [see Fig. 1(a)] are
described by the following time-dependent Hamiltonian:

HðtÞ ¼ Hs þ
X

i;n

δðt − tnÞx̂ip̂in: ð1Þ

The Hamiltonian of the system is Hs ¼
P

iðp̂2
i =2mÞþ

Vðfx̂igÞ, where x̂i, p̂i are the operators for displacement of
the ith oscillator from the equilibrium position and its
momentum. We apply periodic boundary conditions. The
potential is VðfxigÞ ¼

P
i vðriÞ, with ri ¼ xiþ1 − xi. We

take (i) vðrÞ ¼ ½ðκ=2Þr2 þ ðu=4Þr4� for the nonintegrable
chain with κ spring constant and u the strength of the
anharmonicity, and (ii) vðrÞ ¼ ½ða=bÞ exp ð−brÞ þ ar−
ða=bÞ� for the integrable Toda chain [27–30,53] with
parameters a and b. The displacement xi of the ith
oscillator is weakly measured by the inth meter at time
t ¼ tn ¼ nτ at regular intervals of τ. p̂in is the momentum
operator of the inth meter, which is in a Gaussian state
ψðξinÞ ¼ ðπσÞ−1=4 exp ð−ξ2in=2σÞ at t−n . At tn, the position
ξin of the meter is projectively measured and its state
collapses to a position state jξini. The effect of this
measurement on the system is described by an operator
ΨiðξinÞ ¼ ðπσÞ−1=4 exp ½−ðξin − x̂iÞ2=2σ� acting on the sys-
tem, as described in detail in the Supplemental Material
(SM), Sec. S1 [54]. In the continuous measurement limit
τ → 0, σ → ∞ such that Δ ¼ στ is kept fixed [52].

The mean momentum and position of the particle jump
by an amount ∝ ξin after each measurement [52], and they
can wander far away from the initial values at long times.
Thus, to incorporate a feedback mechanism present in any
realistic measurement setup [52] a displacement operator,
DiðξinÞ ¼ exp ½ði=ℏÞγτξinp̂i�, is applied on the system after
the inth measurement, where γ ¼ cγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏ=mΔ

p
, with

dimensionless coefficient cγ. We do not need to apply a
displacement operator for the position due to the periodic
boundary condition. The feedback mechanism on the
momentum leads to dissipation [52], as discussed below.
The density matrix of the system at tþn is given by

ρðfξgn; tþn Þ ¼ MðξnÞρðfξgn−1; tþn−1ÞM†ðξnÞ, which de-
pends on the outcomes of all the measurements fξgn till
tþn . HereMðξnÞ ¼

Q
i½DiðξinÞΨiðξinÞ� exp ð−iHsτ=ℏÞ. For

the evolution of an initial pure state, the above time
evolution can be written as a quantum state diffusion
[55,56]. Here we write the longtime evolution as a
Schwinger-Keldysh (SK) path integral [57] for τ → 0,
i.e., Tr½ρðfξðtÞgÞ� ¼ R

Dx exp ðiS½fξðtÞg; xðtÞ�=ℏÞ with the
action

S½fξg; x� ¼
Z

∞

−∞
dt
X

s¼�
s

��X

i

m
2
ðẋsi Þ2 þmγẋsiξi

þ ðisℏ=2ΔÞðxsi − ξiÞ2
�
− VðfxsigÞ

�
; ð2Þ

where s ¼ � denotes two branches of the SK contour [57],
ẋi ¼ ðdxsi =dtÞ. To take the semiclassical limit of small ℏ,
we rewrite the above path integral in terms of classical (xci )
and quantum components (xqi ), i.e., x�i ¼ xci � xqi . To
capture nontrivial effects of the quantum (xqi ) fluctuations,
which act as noise in the semiclassical limit, we need to
scale Δ ∼ ℏ2 (see SM, Sec. S1 [54]). Taking the semi-
classical limit in this manner and keeping Oð1= ffiffiffi

ℏ
p Þ and

Oð1Þ terms, we find that a Langevin equation describes the
dynamics of the system,

ẍci þ γẋci ¼
1

m

�
−
∂Vðfxci gÞ

∂xci
þ ηi

�
; ð3Þ

for the classical component xci , denoted by xi henceforth.
Here the ηiðtÞ is Gaussian random noise that originates
from xqi and is controlled by the measurement strength
Δ−1 such that hηiðtÞηjðt0Þi ¼ 2mγTeffδijδðt − t0Þ. Teff ¼
ðℏ=4cγÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mΔ

p
, which we denote as T in the rest of the

Letter for brevity, is an effective temperature ∼
ffiffiffi
ℏ

p
that

determines the noise strength along with γ. The latter is the
effective dissipation strength ∼1=

ffiffiffi
ℏ

p
. In the strict classical

limit ℏ → 0, T → 0, and γ → ∞. As a result, the dissipative
term completely dominates and the system becomes static.
The nontrivial semiclassical dynamics results from keeping
ℏ small but nonzero. In this limit the system reaches a
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longtime steady state described by classical Boltzmann-
Gibbs distribution ∼ exp ½−Hsðfxi; pigÞ=T� determined by
the effective temperature. However, the temperature here
does not arise from any external baths, but solely from the
measurement and feedback process.
Classical dynamics and cOTOC.—We study the dynam-

ics [Eq. (3)] of the nonintegrable chain as a function of both
γ and u for a fixed T. The Hamiltonian is trivially integrable
and nonchaotic for the harmonic chain (u ¼ 0). Any
nonzero u makes the model nonintegrable and chaotic.
On the contrary, the classical Toda chain is integrable,
albeit interacting [27–30]. We can tune the model from a
harmonic limit to a hard sphere limit by changing a and b
[53]. We take the parameters in the intermediate regime for
the convenience of the numerical simulations.
We numerically simulate Eq. (3) and generate classical

trajectories for the nonintegrable and integrable chains
using the Gunsteren-Berendsen method [58]; see SM,
Sec. S2 for details [54]. We characterize many-body chaos
by the following cOTOC:

Dði; tÞ ¼ h½pA
i ðtÞ − pB

i ðtÞ�2i: ð4Þ

HereA andB are two trajectories of the systemgenerated from
initial thermal equilibrium configurations fxAi ð0Þ; pA

i ð0Þg for
T ¼ 1 with pB

i ð0Þ ¼ pA
i ð0Þ þ δi;0ε (ε ¼ 10−4); h� � �i de-

notes average over thermal initial configurations (see SM,
Sec. S3 for details). We use 105 initial configurations for all
our results. We use identical noise realization for the two
copies at each instant of time, i.e., ηAi ðtÞ ¼ ηBi ðtÞ, as in the
earlier studies of stochastic STs and CMLs [19–25,31,32].
Results.—For γ ¼ 0, the nonintegrable chain is chaotic,

i.e., the cOTOC grows exponentially for any value of u,
except the harmonic limit u ¼ 0 (Fig. S2 of SM [54]).
However, for γ ≠ 0, the system is chaotic only above a
critical value uc of the interaction, as shown in Fig. 1(c).
The cOTOC decays exponentially (λL < 0) for u < uc,
instead of growing. This is the stochastic ST. Similar
transition is seen as a function of noise strength γ for a
fixed u ≠ 0 (Fig. S1 of SM). The exponential growth is
concomitant with a ballistic light cone in cOTOC, whereas
the light cone is destroyed in the nonchaotic phase, as
shown in Figs. 2(a) and 2(b).
We extract the Lyapunov exponent λL from Dð0; tÞ∼

exp ð2λLtÞ. The results for λL as a function of u for a few γ,
and as a function of γ for u ¼ 1, are shown in Figs. 2(c) and
2(d), for different system sizes L ¼ 256, 512, 800, 1024. It
is evident that λL approaches zero at a critical value uc or γc,
becoming negative for u < uc (γ > γc), and λL has little L

(a)

(c)

A

B

(b)

FIG. 1. Measurement model and cOTOC. (a) Schematic of the
measurement model, where the positions of the coupled oscil-
lators (i ¼ 1;…; L) on a chain are weakly measured at time tn by
meters prepared in Gaussian states just before the measurements.
(b) Schematic of two initially nearby classical trajectories, A and
B, subjected to identical noise realizations. (c) The classical
OTOC Dði ¼ 0; tÞ as a function of u across the chaos transition
for γ ¼ 0.10 with u values 0.80 (darkest), 0.60, 0.50, 0.40, 0.35,
0.32, and 0.30 (lightest). As shown by dashed magenta lines, the
cOTOC grows exponentially (∼e2λLt) for u > uc ≃ 0.32, whereas
it decays exponentially for u < uc in the synchronized phase.

(a)

(b)
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800 (c)

(d)

FIG. 2. Ballistic light-cone spreading and Lyapunov exponent
across the chaos transition. (a) Light cone for u ¼ 0.80 > uc and
γ ¼ 0.10. The color represents the value of the cOTOC Dði; tÞ as
function of lattice site i and time t, as indicated in the color bar
from small Dði; tÞ or fully correlated (FC) to large Dði; tÞ or
uncorrelated (UC). (b) The light-cone spreading ceases in the
nonchaotic phase for u ¼ 0.30 < uc and γ ¼ 0.10. (c) λL as a
function of u for different γ’s and system sizes L. λL approaches
zero at the critical interactions uc ¼ 0.14, 0.25, and 0.32 (dashed
lines) for γ ¼ 0.05, 0.08, and 0.10, respectively, for the chaos
transition. The shaded region marks λL < 0. (d) Similar transition
is observed as a function of noise strength γ at γc ≃ 0.20 for
u ¼ 1, as shown for different L’s.
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dependence. Hence the semiclassical limit [Eq. (3)] of the
quantum measurement dynamics described by the action in
Eq. (2) indeed yields an ST as a function of the interaction
and γ. Since γ ∼ 1=

ffiffiffiffi
Δ

p
, ST is controlled by the measure-

ment strength Δ−1, which determines how precisely the
oscillator positions are measured. As a result, based on its
microscopic origin from a quantum measurement model
[Eq. (1)], the ST in this case can be termed as an MIPT,
albeit in the semiclassical limit. The transition appears to be
continuous, though it is hard to extract λL accurately close
to the transition.
The ballistic spreading of cOTOC is quantified by

extracting butterfly velocity vB, e.g., from the light cones
of Fig. 2(a) (see SM, Sec. S4 for details [54]). vB decreases
approaching the transition from the chaotic phase, as shown
in Figs. 3(a) and 3(c), as a function of u and γ, respectively.
However, close to the transition, the light cone becomes
progressively ill defined and we could not extract vB all the
way up to the transition. Unlike λL, vB shows perceptible
and systematic L dependence [Fig. 3(b) (inset)], especially
for the transition as a function of u. Thus we perform a
finite-size scaling analysis of the data for γ ¼ 0.08, where
we collapse the data for different L and δu ¼ ðu − ucÞ > 0

using vBðu; LÞ ¼ L−ΔvF(ðδuÞL1=ν). Here F ðxÞ is a
scaling function (SM, Sec. S5). Reasonably, good
scaling collapse is obtained with Δv ≃ 1.03� 0.03 and
ν ≃ 0.30� 0.05, for the range uc ¼ 0.21–0.25, which is
close to the uc ≃ 0.25 obtained from λL in Fig. 2(c). The
scaling form implies that for L → ∞, vB ∼ ðδuÞβ with
β ¼ νΔv ≃ 0.28, and a correlation length ξ diverges as

ðδuÞ−ν in the chaotic phase. The correlation length expo-
nent ν ≃ 0.3 is different from that for the usual univer-
sality classes of STs, such as multiplicative noise or
directed percolation, found in earlier studies in CMLs
[19,20,23,25,31,32], cellular automaton [33], and kineti-
cally constrained model [34,35]. We note that exponents
different from the known universality classes have been
found for some cases in previous works on CMLs as
well [20].
The dynamical transition in the stochastic evolution of a

nonintegrable oscillator chain is not seen in the usual
dynamical properties of a single trajectory. It can only be
detected through many-body chaos by comparing two
trajectories. To confirm this, we compute the average
mean-square displacement (MSD) for the trajectories,
i.e., hΔq2ðtÞi ¼ ð1=NÞPih½xiðtÞ − xið0Þ�2i (SM, Sec. S6
[54]). For γ ¼ 0, in the harmonic chain (u ¼ 0) with
periodic boundary condition, hΔq2ðtÞi ∼ t exhibits a dif-
fusive behavior as shown in Ref. [59]. The diffusive
behavior persists for u ≠ 0 and γ ¼ 0. However, turning
on γ ≠ 0, dynamics becomes subdiffusive with hΔq2ðtÞi ∼ffiffi
t

p
even for u ¼ 0. This is well understood in the context of

monomer subdiffusion in polymers [60]. Again, for u ≠ 0
this subdiffusive behavior remains without any change
across the ST seen via many-body chaos. We expect the
quantum model [Eq. (1)] to exhibit diffusion in the absence
of measurements. It will be interesting to explore the
subdiffusive behavior in the presence of measurements
in the quantum limit and the connection between diffusion
or subdiffusion with entanglement growth [61–63].
We now characterize the many-body chaos in the

integrable classical Toda chain. The results for λL and
vB as a function of γ for the Toda chain with a ¼ 0.07 and
b ¼ 15.0 are shown in Figs. 4(a) and 4(b) (see SM, Sec. S4
for more details [54]). As expected, the integrable limit
with γ ¼ 0 does not show any exponential growth, imply-
ing λL ¼ 0. However, the cOTOC still exhibits ballistic
spreading in this limit (Fig. S7 of SM), yielding a nonzero
vB as shown in Fig. 4(b).

(a)

(b)

(c)

FIG. 3. Butterfly velocity and finite-size scaling in the non-
integrable chain. (a) vB as a function of u for different noise
strength γ. (b) The system size (L) dependence of vBðuÞ is shown
for γ ¼ 0.08 in the inset, and the finite-size scaling collapse is
shown in the main panel with exponents Δv ¼ 1.04 and ν ¼ 0.27
for uc ¼ 0.24. (c) vB as a function of γ for u ¼ 1.0 for differentL’s.

(a) (b)

FIG. 4. Transitions in many-body chaos in Toda model.
(a) Lyapunov exponent λL and (b) butterfly velocity vB as
function of noise strength γ for different system sizes. For
γ → 0, λL ∼ γ0.26 as shown by the dashed line in (a). The shaded
region in (a) corresponds to λL < 0. The chaos transition occurs
around γc ≃ 3.30 (dashed line) for both λL and vB.
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As soon as γ becomes nonzero, the dynamics becomes
chaotic with both exponential growth and ballistic spread-
ing of cOTOC. As shown in Figs. 4(a) and 4(b), the
extracted λL increases [64,65] rapidly as γ0.3 and vB
exhibits a jump near the integrable limit with increasing
γ. Thus, the integrable limit appears singular with respect to
vB for γ → 0þ. Further increasing γ, vB monotonically
decreases and approaches zero at a critical γ ¼ γc, indicat-
ing a transition to a nonchaotic phase. In contrast, λL shows
a nonmonotonic dependence on γ, with a maximum at an
intermediate γ. Nevertheless, λL eventually vanishes at γc,
becoming negative for γ > γc, as in the nonintegrable
model. Thus, the noise or dissipation, though initially
making the integrable model chaotic, eventually destroys
chaos due to the stochastic synchronization. The fact that
λL ¼ 0 for γ ¼ 0 and γ > γc, and λL > 0 for small γ due to
the breaking of intigribility [64,65], dictates that λLðγÞ is
nonmonotonic.
Discussions.—In summary, we show that effective

dynamics of the position and momentum of the quantum
oscillators under continuous weak position measurements
maps to standard stochastic Langevin evolution in the
semiclassical limit of small but nonzero ℏ. The Langevin
dynamics for interacting chains, remarkably, exhibit ST in
many-body chaos as a function of noise strength. The latter
is controlled by the measurement strength in the parent
quantum measurement model implying that the ST is an
MIPT in the semiclassical limit.
The use of stochastic Langevin dynamics might suggest

the absence of entanglement in the semicalssical limit.
However, this naive inference is not correct. The semi-
classical limit of entanglement needs to be taken carefully
[66–68], where one first obtains an SK path integral for
entanglement entropy, e.g., second Rényi entropy [69], in
the quantum model and then takes the semiclassical limit.
This results in effective dynamical equations for entangle-
ment [70] different from Eq. (3). The latter only describes
the effective dynamics of positions and momenta, as
typically done in semiclassical approximations [71], and
is useful for capturing OTOC (4) in the semiclassical limit.
However, the connection between the growth of OTOC and
entanglement has been shown in various situations [72–74].
Hence the ST transition in OTOC suggests an entanglement
transition in the semiclassical limit.
The study of the MIPT in the fully quantum limit of our

model will be an interesting future direction since systems
of interacting oscillators under continuous measurements
mimic many realistic open quantum systems. MIPTs have
already been shown to exist for continuous weak measure-
ments within more tractable quantum dynamics, like for
quantum circuits [37,38], and noninteracting fermionic
systems [7]. Moreover, there are several works [41–43]
on the Bose-Hubbard model that show MIPT in the
presence of measurements. The oscillator model in our
Letter can be easily mapped to an interacting boson model.

Thus, quite generally, MIPT as a function of measurement
strength is expected to occur in our models even in the fully
quantum limit.

We acknowledge useful suggestions and comments by
Sriram Ramaswamy and Sitabhra Sinha, and discussions
with Subhro Bhattacharjee, Sthitadhi Roy, and Sriram
Ganeshan. S. B. acknowledges support from SERB
(Grant No. CRG/2022/001062), DST, India and QuST,
DST, India.

*sibaramr@iisc.ac.in
†sumilan@iisc.ac.in

[1] Brian Skinner, Jonathan Ruhman, and Adam Nahum,
Measurement-induced phase transitions in the dynamics
of entanglement, Phys. Rev. X 9, 031009 (2019).

[2] Chao-Ming Jian, Yi-Zhuang You, Romain Vasseur, and
Andreas W.W. Ludwig, Measurement-induced criticality in
random quantum circuits, Phys. Rev. B 101, 104302 (2020).

[3] Soonwon Choi, Yimu Bao, Xiao-Liang Qi, and Ehud
Altman, Quantum error correction in scrambling dynamics
and measurement-induced phase transition, Phys. Rev. Lett.
125, 030505 (2020).

[4] Yaodong Li, Xiao Chen, and Matthew P. A. Fisher,
Measurement-driven entanglement transition in hybrid
quantum circuits, Phys. Rev. B 100, 134306 (2019).

[5] Michael J. Gullans and David A. Huse, Dynamical purifi-
cation phase transition induced by quantum measurements,
Phys. Rev. X 10, 041020 (2020).

[6] Adam Nahum, Sthitadhi Roy, Brian Skinner, and Jonathan
Ruhman, Measurement and entanglement phase transitions
in all-to-all quantum circuits, on quantum trees, and in
Landau-Ginsburg theory, PRX Quantum 2, 010352 (2021).

[7] O. Alberton, M. Buchhold, and S. Diehl, Entanglement
transition in a monitored free-fermion chain: From extended
criticality to area law, Phys. Rev. Lett. 126, 170602 (2021).

[8] Shengqi Sang, Yaodong Li, Tianci Zhou, Xiao Chen,
Timothy H. Hsieh, and Matthew P. A. Fisher, Entanglement
negativity at measurement-induced criticality, PRX
Quantum 2, 030313 (2021).

[9] Shao-Kai Jian, Chunxiao Liu, Xiao Chen, Brian Swingle,
and Pengfei Zhang, Measurement-induced phase transition
in the monitored Sachdev-Ye-Kitaev model, Phys. Rev. Lett.
127, 140601 (2021).

[10] Maxwell Block, Yimu Bao, Soonwon Choi, Ehud Altman,
and Norman Y. Yao, Measurement-induced transition in
long-range interacting quantum circuits, Phys. Rev. Lett.
128, 010604 (2022).

[11] A. Zabalo, M. J. Gullans, J. H. Wilson, R. Vasseur, A.W.W.
Ludwig, S. Gopalakrishnan, David A. Huse, and J. H.
Pixley, Operator scaling dimensions and multifractality at
measurement-induced transitions, Phys. Rev. Lett. 128,
050602 (2022).

[12] Fergus Barratt, Utkarsh Agrawal, Sarang Gopalakrishnan,
David A. Huse, Romain Vasseur, and Andrew C. Potter,
Field theory of charge sharpening in symmetric monitored
quantum circuits, Phys. Rev. Lett. 129, 120604 (2022).

PHYSICAL REVIEW LETTERS 132, 030402 (2024)

030402-5

https://doi.org/10.1103/PhysRevX.9.031009
https://doi.org/10.1103/PhysRevB.101.104302
https://doi.org/10.1103/PhysRevLett.125.030505
https://doi.org/10.1103/PhysRevLett.125.030505
https://doi.org/10.1103/PhysRevB.100.134306
https://doi.org/10.1103/PhysRevX.10.041020
https://doi.org/10.1103/PRXQuantum.2.010352
https://doi.org/10.1103/PhysRevLett.126.170602
https://doi.org/10.1103/PRXQuantum.2.030313
https://doi.org/10.1103/PRXQuantum.2.030313
https://doi.org/10.1103/PhysRevLett.127.140601
https://doi.org/10.1103/PhysRevLett.127.140601
https://doi.org/10.1103/PhysRevLett.128.010604
https://doi.org/10.1103/PhysRevLett.128.010604
https://doi.org/10.1103/PhysRevLett.128.050602
https://doi.org/10.1103/PhysRevLett.128.050602
https://doi.org/10.1103/PhysRevLett.129.120604


[13] K. Matsumoto and I. Tsuda, Noise-induced order, J. Stat.
Phys. 31, 87 (1983).

[14] S. Fahy and D. R. Hamann, Transition from chaotic to
nonchaotic behavior in randomly driven systems, Phys. Rev.
Lett. 69, 761 (1992).

[15] Amos Maritan and Jayanth R. Banavar, Chaos, noise, and
synchronization, Phys. Rev. Lett. 72, 1451 (1994).

[16] Sunghwan Rim, Dong-Uk Hwang, Inbo Kim, and Chil-Min
Kim, Chaotic transition of random dynamical systems and
chaos synchronization by common noises, Phys. Rev. Lett.
85, 2304 (2000).

[17] Changsong Zhou and Jürgen Kurths, Noise-induced phase
synchronization and synchronization transitions in chaotic
oscillators, Phys. Rev. Lett. 88, 230602 (2002).

[18] Peter Grassberger, Synchronization of coupled systems with
spatiotemporal chaos, Phys. Rev. E 59, R2520 (1999).

[19] Franco Bagnoli, Lucia Baroni, and Paolo Palmerini,
Synchronization and directed percolation in coupled map
lattices, Phys. Rev. E 59, 409 (1999).

[20] Lucia Baroni, Roberto Livi, and Alessandro Torcini, Tran-
sition to stochastic synchronization in spatially extended
systems, Phys. Rev. E 63, 036226 (2001).

[21] Massimo Cencini and Alessandro Torcini, Linear and non-
linear information flow in spatially extended systems, Phys.
Rev. E 63, 056201 (2001).

[22] Volker Ahlers and Arkady Pikovsky, Critical properties of
the synchronization transition in space-time chaos, Phys.
Rev. Lett. 88, 254101 (2002).

[23] F. Ginelli, R. Livi, A. Politi, and A. Torcini, Relationship
between directed percolation and the synchronization tran-
sition in spatially extended systems, Phys. Rev. E 67,
046217 (2003).

[24] Miguel A. Muñoz and Romualdo Pastor-Satorras, Stochas-
tic theory of synchronization transitions in extended sys-
tems, Phys. Rev. Lett. 90, 204101 (2003).

[25] Franco Bagnoli and Raúl Rechtman, Synchronization uni-
versality classes and stability of smooth coupled map
lattices, Phys. Rev. E 73, 026202 (2006).

[26] A. Pikovsky, M. G. Rosenblum, and J. Kurths, Synchroni-
zation, A Universal Concept in Nonlinear Sciences
(Cambridge University Press, Cambridge, England, 2001).

[27] Morikazu Toda, Wave propagation in anharmonic lattices,
J. Phys. Soc. Jpn. 23, 501 (1967).
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