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Quantum states least affected by interactions with environment play a pivotal role in both foundations
and applications of quantum mechanics. Known as pointer states, they surprisingly lacked a systematic
description.Workingwithin theBorn-Markovapproximation,we combinemethods of group theory and open
quantum systems and derive general conditions describing pointer states. Contrary to common expectations,
they are in general different from coherent states. Thus the two notions of being “closest to the classical”—one
defined by the uncertainty relations and the other by the interaction with the environment—are in general
different. As an example, we study spin-spin and spin-boson models with an arbitrary central spin J.
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A comprehensive understanding of how the classical
reality emerges from the underlying quantum theory is one
of the most fascinating challenges of modern physics.
Decoherence program [1–5] has been highly successful in
explaining the loss of quantum properties through the inte-
raction with uncontrolled degrees of freedom (environment);
see, e.g., Refs. [6–12]. The inevitable, in realistic situations,
interactions with the environment lead to delocalization and
destruction of phase relations,making certain quantumsuper-
positions unobservable. On the other hand, the same process
distinguishes some preferred states [13,14], which are least
affected, and thus the system is most likely to be found in one
of them. In this sense, perceived classicality can be explained
through properties of certain robust quantum states [2].
Determining the preferred states, known as pointer states,

in the general case has been a difficult open task since their
introduction in Ref. [13]. Several formal definitions were
given with themost fruitful being the predictability sieve idea
[15], defining pointer states as states producing least entropy
(for others see, e.g., Ref. [16]). Various examples
of pointer states have been found so far, with the best
known [17] in the quantum Brownian motion (QBM)
model [2,5,18,19], where they happen to be the Glauber-
Sudarshan coherent states [20,21]. Minimum uncertainty
states were also proven to be universal pointer states for a
general, linearly coupled free open evolution and that
decoherence to them is generic [22], which is an extension
of an earlier result [16], obtained in a simpler Markovian
model. A general question when generalized coherent states
[23] are the preferred states was analyzed in [24], using the
Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) [25–28]
master equation and group-theoretical methods, showing that
it is not generically the case unless specific conditions are
met. Other results include Ref. [29], where similar findings
to Ref. [17] were derived in the GKLS formalism [30],

where the problem of how to engineer the coupling to turn a
given pure state into a pointer state was studied in a non-
Markovian setup, and Ref. [31], where pointer states for
antiferromagnetic systems were numerically analyzed.
In this Letter, we derive a general framework for finding

pointer states in the Born-Markov regime. To our knowl-
edge, it is the first systematic analysis of pointer states in the
Born-Markov regime. We work under a broad assumption
of an existence of some Lie group structure behind the
dynamics, which covers, among others, the canonical
models of decoherence [5]. We analyze in detail the case
of a compact, semisimple group, but our method applies to
other groups too as we show on the QBM example of [17].
The equations that we derive define a new class of
optimization problems, different from the minimum uncer-
tainty problem, confirming that open dynamics selects its
own robust states, different from the generalized coherent
states (cf. [24]). We exemplify our methods with arbitrary
spins coupled to bosonic or spin environments. Pointer
states in these models were unknown before.
General method.—We consider an open system model,

where a system of interest S, governed by the free
Hamiltonian H0, is coupled to the environment E via a
bilinear interaction term HI ¼ A ⊗ E. The most general
coupling is a sum of such terms [5], and a generalization of
our method to such couplings is straightforward. We will
assume the weak-coupling limit and that the conditions of
the Born-Markov approximation hold. Then system’s
reduced density matrix ρðtÞ satisfies then the Born-Markov
master equation [5,32,33]:

ρ̇ðtÞ ¼ −i½H0; ρðtÞ� −
Z

∞

0

dτνðτÞ½A; ½Að−τÞ; ρðtÞ��

þ i
Z

∞

0

dτηðτÞ½A; fAð−τÞ; ρðtÞg�; ð1Þ

PHYSICAL REVIEW LETTERS 132, 030203 (2024)

0031-9007=24=132(3)=030203(7) 030203-1 © 2024 American Physical Society

https://orcid.org/0000-0003-2084-7906
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.030203&domain=pdf&date_stamp=2024-01-19
https://doi.org/10.1103/PhysRevLett.132.030203
https://doi.org/10.1103/PhysRevLett.132.030203
https://doi.org/10.1103/PhysRevLett.132.030203
https://doi.org/10.1103/PhysRevLett.132.030203


where fA;Bg ¼ ABþ BA,

Að−τÞ ¼ e−iH0τAeiH0τ; ð2Þ

and νðτÞ, ηðτÞ are, respectively, the noise and dissipation
kernels defined via the environment correlation function:

TrE½ρEð0ÞEðτÞE�≡ νðτÞ − iηðτÞ; ð3Þ

where EðτÞ ¼ eiHEτEe−iHEτ. The environment state ρE is
arbitrary here as long as it is stationary ½HE; ρE� ¼ 0, which
is a standard assumption [2,4,5].
The predictability sieve looks for those states, which

generate the least entropy during the evolution (1). A
convenient measure is the linear entropy (cf. [3,16]):

sðρÞ ¼ 1 − Tr½ρ2�; ð4Þ

related to purity. We assume a pure initial state,

ρð0Þ ¼ jψihψ j; ð5Þ

and ask how much purity is lost during the evolution [17].
Let us assume that there exists a Lie group G of dimension
N, such that H0 and A are from its Lie algebra and can be
represented using the generators fXigNi¼1:

H0 ≡ XN; A≡XN
j¼1

ajXj ð6Þ

(we chooseH0 as one of the generators and leave A arbitrary
only for the sake of definiteness). This is somewhat similar
to the approach of [24]; however, instead of imposing the
secular approximation and studying the algebra generated
by the GKLS jump operators and the associated generalized
coherent states, we assume the existence of a dynamical
group already at the microscopic level. BothH0 and A must
be Hermitian for physical reasons, which motivates the
assumption that the whole Lie algebra is real and spanned
by Hermitian operators, X†

j ¼ Xj. Further assuming they
can be represented in finite dimension, G becomes a
subgroup of sufficiently large unitary group and thus
compact. In light of these identifications, the free evolution
(2) is the adjoint action of G in its Lie algebra:

Xjð−τÞ ¼ e−iXNτXjeiXNτ ¼
X
k

RN
jkð−τÞXk; ð7Þ

where RN
jkð0Þ ¼ δjk. The indices i; j; k; l…∈ 1…N are the

Lie algebra indices of G. Matrix RN is nothing but the
exponent of the structure constants fijk of G, arranged into
N × N matrix (the matrix of the adXN

action) and is given by

RN
jkðtÞ ¼

h
eitadXN

i
jk
; ½adXN

�jk ¼ ifNjk; ð8Þ

where fijk are defined via ½Xi; Xj� ¼ i
P

k fijkXk. In
what follows we will omit the index N for simplicity,
writing RjkðτÞ. Using this we can express the change of the
entropy (4) as

1

2
ṡ ¼

X
jkl

ajalDjkðTr½ρ2fXl; Xkg� − 2Tr½ρXlρXk�Þ

þ
X
jklm

ajalγjkflkmTr½ρ2Xm�; ð9Þ

where we have introduced constants [assuming the func-
tion (3) is regular enough for the integrals to exist]:

Djk ¼
Z

∞

0

dτνðτÞRjkð−τÞ; γjk ¼
Z

∞

0

dτηðτÞRjkð−τÞ:

ð10Þ

To make further analysis feasible, we assume as a first
approximation [17] that the state ρðtÞ on the right-hand
side above is approximately pure and evolves according to
the free evolution; i.e.,

ρðtÞ ≈ e−iXNtjψihψ jeiXNt: ð11Þ

Using Eq. (7) we obtain

1

2
ṡ ≈

X
jklmn

ajalDjkRlmðtÞRknðtÞCmn ð12Þ

þ
X
jklmn

ajalγjkflkmRmnðtÞhXni; ð13Þ

where

Cmn ¼ hfXm; Xngi − 2hXmihXni ð14Þ

is the covariance matrix calculated in the initial state and
hXmi ¼ hψ jXmjψi is the average in the initial state.
Next we analyze matrices RjkðtÞ. For a compact G, there

exists a Killing-Cartan form, hjk ¼ Tr½adXj
adXk

� on the Lie
algebra, invariant under (7) and serving as a metric (see,
e.g., Ref. [34]). For simplicity, we will also assume that this
metric is nondegenerate (so G is semisimple, which is not
crucial) so that hjk ∝ δjk and the adjoint matrices become
orthogonal. Then from (7), RjkðtÞ are rotations around the
XN axis and have a block form RðtÞ ¼ diag½SOðN − 1Þ; 1�.
The SOðN − 1Þ part can be further decomposed into a direct
sum of two-dimensional rotations:
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RðtÞ ¼OT ½⊕α RαðtÞ�O; RαðtÞ ¼
�
cos tΩα sin tΩα

− sin tΩα cos tΩα

�
;

ð15Þ

where O∈SOðNÞ, 1 ≤ α ≤ αN ¼ bðN − 1Þ=2c, the last
block RαN ðtÞ ¼ 1, and for even N the one before the last
block is also trivial; i.e.,

ORðtÞOT ¼

26666664

R1ðtÞ
·

·

·

1

37777775;
26666664

R1ðtÞ
·

·

1

1

37777775 ð16Þ

for odd and even N, respectively. The form of the time
dependence in (15) comes from the antisymmetry (the G
invariance of the Cartan-Killing form):

fijk ¼ −fikj; ð17Þ

making fijk totaly antisymmetric as fijk ¼ −fjik.
Thus for each particular model, the lhs of (12) is a linear

combination of trigonometric functions and their squares,
which, in principle, can be integrated (cf. [17]). However,
the instantaneous entropy production sðtÞ may not be the
most indicative quantity due to its time fluctuations. Here
we choose its longtime average as more representative:

s̄ ¼ lim
τ→∞

1

τ
½sðτÞ − sð0Þ� ¼ lim

τ→∞

1

τ

Z
τ

0

dtṡðtÞ; ð18Þ

meaning we average the entropy production over times
much longer than any other timescales. In what follows, we
apply the above time averaging to Eq. (12), using Eq. (15).
The first term contains quadratic factors:

RlmðtÞRknðtÞ ¼
X

k0l0m0n0
Ol0lOk0k

X
αβ

RðαÞ
l0m0 ðtÞRðβÞ

k0n0 ðtÞOm0mOn0n;

ð19Þ

where RðαÞ
jm are the matrices of Rα embedded naturally into

the whole space by adding rows and columns of zeros; i.e.,

RðαÞ
jm ¼ 0 when jm are outside of the α subspace. Let us

define rotated generators and coefficients from (6):

X̃m0 ≡X
m

Om0mXm; ãj0 ≡
X
j

Oj0jaj ð20Þ

[X̃N ¼ XN by the construction; cf. Eq. (16)], the corre-
sponding covariance matrix C̃mn. We show that [35]

X
jklmn

ajalDjkRlmðtÞRknðtÞCmn

¼
X
α≤αN

kãαk2Dα

h
ΔX̃2

α0 þ ΔX̃2
α1

i
þ a2ND0ΔX2

N; ð21Þ

and for even N there is an additional term ã2N−1D0ΔX̃2
N−1.

Here X̃α ¼ ðX̃α0; X̃α1Þ is the projection of X̃ on the α
subspace, similarly ãα, and ΔX̃2

αi ¼ hX̃2
αii − hX̃αii2 are

variances in the initial state jψi. We decomposed Djk by
inserting (15) into (10):

DðαÞ
jk ≡

Z
∞

0

dτνðτÞRðαÞ
jk ð−τÞ ¼

"
Dα fαΩα

−fαΩα Dα

#
jk

; ð22Þ

where Dα and fα are generalized normal and anomalous
diffusion coefficients, corresponding to Ωα:

Dα ¼
Z

∞

0

dτνðτÞcos τΩα; fα ¼
−1
Ωα

Z
∞

0

dτνðτÞ sin τΩα:

ð23Þ

Finally, we introduced D0 ¼
R
dτνðτÞ, provided it exists

(e.g., for Ohmic and super-Ohmic bosonic environments).
Similar analysis can be applied to the term linear in

RjkðtÞ in (13). We first assume the odd group dimension N.

From (15) and (16) the only nonzero term is RNNðtÞ ¼
RNNðtÞ ¼ 1, so thatX
jklmn

ajalγjkflkmRmnðtÞhXni¼−
X
jkl

ajalγjkfNklhXNi; ð24Þ

where we have used the total antisymmetry of fijk. We then
decompose γjk using (15):

γ ¼
X
α

OTγαO; γα ¼
�
−Ω̃2

α −γαΩα

γαΩα −Ω̃2
α

�
; ð25Þ

where

Ω̃2
α ¼−

Z
∞

0

dτηðτÞcosτΩα; γα ¼
1

Ωα

Z
∞

0

dτηðτÞ sinτΩα

ð26Þ

are generalized frequency shift and the momentum damping
coefficients. Similarly, (15) implies via differentiation of (8)
a block-diagonal form of adXN

:

adXN
¼

X
α≤αN

OTcαO; cα ¼
�

0 −iΩα

iΩα 0

�
; ð27Þ

where the last block is zero due to (16). Recalling that
½adXN

�jk ¼ ifNjk, we obtain [35]
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X
jkl

ajalγjkfNkl ¼ −
X
α<αN

kãαk2Ω2
αγα: ð28Þ

For even dimensionN, there is one more nonzero element in
RmnðtÞ, corresponding to the ðN − 1; N − 1Þ element of the
canonical form ofRðtÞ: ½ORðtÞOT �N−1;N−1 ¼ 1; cf. Eq. (16).
It leads to an additional term in Eq. (24):X

jklmn

ajalγjkflkmON−1;mON−1;nhXni

¼ i
X
α

hãjγα · eadX̃N−1
ãihX̃N−1i; ð29Þ

where hji is a scalar product, adX̃m
is the ad operator of the

transformed generator X̃m, and eadX̃N−1
¼ OadX̃N−1

OT is
the matrix of adX̃N−1

transformed to the new basis so

that ½X̃i; X̃j� ¼ i
P

k½ eadX̃i
�jkX̃k.

Main results.—We obtain the following expressions for
the asymptotic Born-Markov entropy production in the
studied framework:

1

2
s ≈

X
α≤αN

kãαk2Dα

�
ΔX̃2

α0 þ ΔX̃2
α1 þ

Ω2
αγα
Dα

hXNi
�

ð30Þ

þa2ND0ΔX2
N; ð31Þ

for odd N, and

1

2
s̄ ≈

X
α≤αN−1

kãαk2Dα

�
ΔX̃2

α0 þ ΔX̃2
α1 þ

Ω2
αγα
Dα

hXNi
�

þ ã2N−1D0ΔX̃2
N−1 þ a2ND0ΔX2

N ð32Þ

þ i
X
α

hãjγα · eadX̃N−1
ãihX̃N−1i; ð33Þ

for even N. The predictability sieve then defines the pointer
states as

argminψ s̄ðψÞ: ð34Þ

This is a complicated optimization problem. It can be
somewhat simplified in the low-damping limit γjk=Dα ≈ 0,
which holds, e.g., in high-temperature environments [4,5].
Dropping the nondynamical term aNXN from (6) as it is
usually the case, we obtain in this limit

1

2
s̄ ≈

X
jk

gjk

�
hX̃jX̃ki − hX̃jihX̃ki

�
; ð35Þ

where we introduced the environment-dependent metric

gjk ¼ ⨁
α≤αN

kãαk2Dα12; ð36Þ

where 12 is the 2D unit matrix and for even N the last
nonzero block is equal to ã2N−1D0. There is a similarity
between (35) and the generalized coherent states defined via
minimization of the G-invariant dispersion hΔCi ¼P

hjk½hX̃jX̃ki − hX̃jihX̃ki� [23]. However, the metric gjk
is in general different from the Killing-Cartan form hjk,
which here is ∝ 1. For example, in thermal models gjk can
nontrivially depend on the temperature via the diffusion
coefficients Dα. We thus obtain (cf. [24]) the following.
Corollary 1.—Pointer states are in general different from

coherent states for G unless s̄ ∝ hΔCi.
QBM example.—It is interesting to revisit the seminal

result of [17], which shows that for the QBM model the
pointer states are the coherent states. The model is described
by H0 ¼ P2=2M þMΩ2Q2=2 and A ¼ Q. The group G is
generated by the operators X ¼ fQ;P; 1; H0g and is known
as the oscillator group [36]. It is noncompact [it is a
projective representation of Spð2;RÞ], but after the rescal-
ing q ¼ ffiffiffiffiffi

M
p

ΩQ, p ¼ ð1= ffiffiffiffiffi
M

p ÞP, the matrix of the adjoint
action (7) generated by h0 ¼ ðq2 þ p2Þ=2 becomes
orthogonal (in the Lie algebra basis fq; p; 1; h0g and
½q; p� ¼ iΩ),

RðtÞ ¼

26664
cosΩt sinΩt
− sinΩt cosΩt

1

1

37775; ð37Þ

and is already in the canonical form (16). We can thus use
our procedure and obtain the high-temperature entropy
production equation (35):

s̄ ≈ 2D½Δq2 þ Δp2� ¼ 2DMΩ2

�
ΔQ2 þ ΔP2

M2Ω2

�
: ð38Þ

Modulo an unimportant prefactor, the above equation is
the same as obtained in [17] via a direct calculation; D is
given by (23) with Ωα ¼ Ω. It now so happens that the rhs
of Eq. (38) corresponds to an invariant dispersion for a
subgroup H of G, the Heisenberg-Weyl group generated
by fQ;P; 1g. The minimization of (38) leads to the
coherent states of H [23], which are the celebrated
Glauber-Sudarshan coherent states jαi [20,21] and which
are also coherent states for G [23]. This situation is rather
exceptional as, e.g., it is well known that higher order
polynomials in Q, P will not lead to any group structures,
which in turn is connected to the known problems of the
canonical quantization [37].
Spin-J systems.—As a further illustration, we consider a

class of models where a central spin J interacts with a
thermal environment. As our general method is quite
insensitive to the type of the environment, as long as the
autocorrelation function is sufficiently regular, it will not
matter below if the environment is bosonic,
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H ¼ ΩJz þ
X
i

ωia
†
i ai − Jx

X
i

ðgia†i þ g�i aiÞ; ð39Þ

or spin,

H ¼ ΩJz þ
X
i

ωi

2
σðiÞz − Jx

X
i

giσ
ðiÞ
x : ð40Þ

Above Ji are the spin operators of the central system, σðiÞk are
the Pauli matrices for the ith spin, ai; a

†
i are the annihilation

and creation operators, respectively, of the environment,
which is assumed to be thermal with the inverse temperature
β. Both spin-spin and spin-boson models have become of
significant importance recently due to their roles in such
fields as, e.g., matter-wave interferometry [9,12], quantum
dots [38], nitrogen-vacancy centers [39], and applied quan-
tum information [40].
The models fall within our framework with G ¼ SUð2Þ,

H0 ¼ ΩJz, A ¼ −Jx. The matrix (7) is already in the
canonical form and reads (after rescaling XN):

RðtÞ ¼

264 cosΩt − sinΩt
sinΩt cosΩt

1

375: ð41Þ

From Eqs. (30) and (31), we immediately obtain the
entropy production (with ax ¼ −1, the rest zero):

s̄ ≈ 2D

�
ΔJ2x þ ΔJ2y þ

γ

D
hJzi

�
; ð42Þ

where D, γ are from (23) and (26) and are given by the
well-known expressions [5] with γ=D ¼ tanhðβΩ=2Þ.
Equation (42) is the same, up to an irrelevant positive
prefactor, for both models, which can be seen, e.g., using
the standard spin-oscillator mapping [5]. It is then easy to
minimize (42) for spin-coherent states jni ¼ eiθmJjj;−ji,

where n is a unit vector, m ¼ ðsinϕ;− cosϕ; 0Þ,
and Jzjj;−ji ¼ −jjj;−ji. We obtain s̄=2D ≈ jð1 − 1=
2sin2θ − γ=D cos θÞ, with the minimum at cos θ ¼ γ=D
leading to

s̄min

2D
≈
j
2

�
1 −

γ2

D2

�
: ð43Þ

For β → 0, this implies s̄min=2D ¼ j=2, which is satisfied
for spin-1=2 systems (e.g., two-level atoms), since then all
pure states are coherent states by definition, but this is not so
already for spin-1. The minimum for high temperature is
achieved for the followingUð1Þ family of states [35], which
are the true pointer states:

jψi ¼
ffiffiffiffiffi
5

16

r
ðeiψ j1; 1i þ e−iψ j1;−1iÞ þ

ffiffiffi
3

8

r
j1; 0i; ð44Þ

and theminimum value is s̄min=2D¼ð7=16Þ≈0.4375<0.5.
Figure 1 is a numerical illustration of this fact. Although
the overlap of (44) with spin-coherent states reaches
1=2þ ffiffiffiffiffi

15
p

=8 ≈ 0.98, the states jψi are superpositions of
two orthogonal coherent states [35] showing their
“nonclassicality”.
Concluding remarks.—The use of the Born-Markov,

rather than the GKLS, approach can be criticized due to the
lack of complete positivity in some situations (see, how-
ever, Refs. [41,42]). This has been a matter of an ongoing
debate, see, e.g., Refs. [43,44], and the references therein,
despite the immense predictive power of the Born-Markov
approach [5]. Let us state clearly that it is not the goal of
our work to advocate for one approach or the other, but
rather to explore how pointer states appear in the Born-
Markov regime, which remains one of the most powerful
approximation schemes in the open quantum systems
theory.
Above, we studied compact, semisimple groups, but it is

clear that our method is more universal. It is enough that the
free evolution generates a group with some known canoni-
cal decomposition, like in the example of QBM and the
noncompact oscillator group.
The pointer defining equations present a difficult opti-

mization problem even in the low-damping regime and new
mathematical tools will most probably be needed to tackle
it. The physical characteristics of the states found here will
require further studies (we know they are not minimum
uncertainty states). So will the problem of how a general
initial state evolves toward their mixture (cf. [22]) and if
advanced decoherence forms such as quantum Darwinism
and spectrum broadcast structures [45–49] can be defined
around the pointer states found here; cf., e.g., [50] for an
alternative classicization mechanism. We hope our work
will stimulate further research into those and related topics
and contribute to the debate on the dynamical emergence of

Random pure states

0.5

1

s- /(2
D

)

0.4375

FIG. 1. Values of the rescaled entropy production s̄=2D for
random pure states in the high-temperature limit for spin-1
system. Each dot corresponds to a single random pure state.
The dashed horizontal line corresponds to the minimum value of
s̄=2D for spin-coherent states. The black horizontal line indicates
the true minimum value, 0.4375.
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classical properties, as well as have practical implications,
e.g., for quantum state engineering.
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