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The search for empirical schemes to evidence the nonclassicality of large masses is a central quest of
current research. However, practical schemes to witness the irreducible quantumness of an arbitrarily large
mass are still lacking. To this end, we incorporate crucial modifications to the standard tools for probing the
quantum violation of the pivotal classical notion of macrorealism (MR): while usual tests use the same
measurement arrangement at successive times, here we use two different measurement arrangements. This
yields a striking result: a mass-independent violation of MR is possible for harmonic oscillator systems. In
fact, our adaptation enables probing quantum violations for literally any mass, momentum, and frequency.
Moreover, coarse-grained position measurements at an accuracy much worse than the standard quantum
limit, as well as knowing the relevant parameters only to this precision, without requiring them to be tuned,
suffice for our proposal. These should drastically simplify the experimental effort in testing the
nonclassicality of massive objects ranging from atomic ions to macroscopic mirrors in LIGO.
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Introduction and motivation.—A cutting-edge research
enterprise in contemporary physics is to explore realizable
schemes for checking the validity of the quantum mecha-
nics (QM) in the macroscopic regime, together with
demonstrating its incompatibility with the world view
based on the classical notion of macrorealism (MR) [1].
The goal is to expand as much possible the domain of such
testability. This also has potentiality in providing useful
empirical constraints on suggested modifications of quan-
tum dynamical evolution in the macroscopic limit (such as
the models of spontaneous wave function collapse [2–4]).
Nonclassical massive matter states are also a resource for
nonclassical gravity [5–10]. Testing nonclassicality via
MR can be, in principle, much easier than creating highly
nonclassical states. However, in practice it imposes very
high demands on the initial control of parameters, as
well as precise measurements, with its scaling becoming
prohibitively difficult for large masses [11,12]. Here we
show that appropriately modifying the schemes for testing
MR in the context of massive objects provides a threefold
advantage: (i) We can obtain a mass-independent violation
of MR, so that the applicability domain becomes essen-
tially unlimited. (ii) It does not require any tuning of other
parameters—e.g., frequency, momentum—either. (iii) It

becomes highly robust to measurement imprecision (no
need to surpass the standard quantum limit, for example),
opening up the scope for practical realizations.
The key tools for probing MR are “temporal correla-

tors” from which one constructs the Leggett-Garg inequal-
ity (LGI) [13] and the no-signaling-in-time (NSIT)
conditions [14]. Such relations are derived from a con-
junction of the following assumptions, as formulated
by Leggett and Garg [13,15] for characterizing the notion
of MR: (i) At any instant, even if unobserved, a system
is definitely in one of its possible states with all its
observable properties having definite values (realism
per se). (ii) It is possible to determine which of the states
the system is in by ensuring that the measurement-induced
disturbance is arbitrarily small, and thus not affecting the
subsequent time evolution of the measured state of the
system (noninvasive measurability). (iii) The outcome of a
measurement is not affected by what will be measured
subsequently (induction). Since both the LGI and the NSIT
relations are consequences of MR, an experimental refu-
tation of either of them, in accordance with the quantum
mechanical predictions, would constitute a decisive evi-
dence of macroscopic nonclassicality, together with certi-
fying the validity of the QM principle of superposition of
states. While the logical connection between the LGI and
NSIT has been analyzed in various ways [16–18], for the
purpose of the present work it suffices to regard violation
of either of them as a sufficient condition for evidencing
nonclassicality or quantumness. From the operational point
of view, using the NSIT relations is, in general, more
advantageous compared to LGI because of the lower
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number of required outcome probabilities. Furthermore,
since the NSIT condition is violated by the presence of any
nonvanishing quantum interference term [14], it is usually
violated for a much wider parameter regime than the LGI.
With growing interest in this fundamentally significant

topic, particularly over the past two decades, a number of
experimental studies seeking to test MR in the macroscopic
regime have been reported (for a useful review of the earlier
experiments, see Ref. [19]). For characterizing “macro-
scopicity,” these studies have used different parameters,
ranging from the length scale of neutrino oscillation [20] to
the difference of themagneticmoments corresponding to the
two superposing superconducting-current states [16] and the
spatial separation between the two superposing single-
photon states (corresponding to the two arms of an inter-
ferometer) [21]. However, while “mass” seems to be a quite
relevant parameter for characterizing “macroscopicity,” no
experiment testing MR has yet been performed based on
systems having significantly large mass—a few earlier LGI-
based experiments employing atomic systems have been
confined to using, for example, a single cesium atom [22]
and spin-bearing phosphorus impurities in silicon [23]. On
the other hand, the tests of quantumness per se of macro-
molecules (without seeking to test MR) have so far reached
only up to masses of about 104 amu [24,25]. Our present
work is motivated toward filling this important gap in the
relevant literature by formulating a suitable scheme that can
enable scaling up the test of MR vis-à-vis QM to arbitrarily
large masses of harmonically oscillating objects. To this
end, we introduce a hitherto unexplored suitable variation
of the LGI and the NSIT relations such that a mass-
independent QM violation of MR is possible. In fact, for
literally any choice of parameters—mass, initial momen-
tum, frequency—our procedure can certify macroscopic
quantumness and show violation of MR. It is an added
advantage that the scheme, by working for highly imprecise
measurements, provides a great facilitation of practical
realization (in comparison to existing literature on large
masses [11,12]).
The basic ideas of our scheme.—Let us begin by noting

that the various versions of macrorealist inequalities/con-
ditions that have been applied in different contexts usually
consider the same observable to be successively measured
on a single particle evolving in time. In contrast here, for the
example considered, the successive measurements are
invoked in such a way that they pertain to different
observables. Let us now explain how this is realized. For
a one-dimensional system harmonically oscillating between
x ¼ −∞ and x ¼ ∞, dividing this domain of oscillation into
two subdomains, ranging from x ¼ −∞ to x ¼ βi and from
x ¼ βi to x ¼ ∞, where βi is any real number, we consider
coarse-grained spatial measurement at an instant t ¼ ti that
determines which one of these two regions the oscillating
system is in at the given instant.A key element of our scheme
is that the location x ¼ βi of the boundary between the two

regions for the type of measurement considered is chosen
according to the instant t ¼ ti at which the measurement is
made. For convenience, considering that the initial coherent-
state Gaussian wave function at t ¼ 0 is peaked at x ¼ 0, we
choose the instant of the first measurement to be the initial
instant, i.e., t1 ¼ 0, and we determine the boundary for this
measurement to be located at x ¼ β1 ¼ 0.
Next, for the subsequent measurement at the instant

t ¼ t2, the appropriate choice of the location x ¼ β2 of the
boundary between the two measurement regions is critical
in order to achieve the desired mass independence of the
quantum violation of MR. Toward attaining this goal, our
analysis reveals that by suitably fixing β2 for given values
of t2, it is possible to ensure the magnitudes of the quantum
violations of both the two-time LGI [26] and the two-time
NSIT relation [14,27] to be independent of mass, as well as
of the other relevant experimental parameters, such as the
initial peak momentum and the angular frequency. Here it
needs to be pointed out that if the observable quantity is
taken to be such that at any instant, it takes a valueþ1 (−1)
depending on whether the system is in one region or in the
other, it is then evident that in this example, such an
observable quantity changes according to the location of
the boundary demarcating the two measurement regions.
Hence, for the purpose of the following analysis, the two-
time LGI and the two-time NSIT relation invoked are,
crucially, in terms of different observable quantities being
measured at two different instants. Here, note that the
derivations of LGI and NSIT relations from MR do not
depend upon the measured quantity necessarily being the
same at the different instants of successive measurements.
An important point to note here is that the measurement

envisaged in our example can be designed such that an
outcome is inferred when the detector is not triggered
(negative result measurement). This ensures that there is
no classical interaction with the measured object during
measurement, thereby satisfying the assumption of noninva-
sive measurability, if the measured object is classical [15].
Such a measurement can be implemented in our setup by
using, say, a probe beam illuminating one of the two regions
(either from x ¼ βi to x ¼ ∞, or from x ¼ βi to x ¼ −∞). If
no scattered light is observed, an outcome is registered by
inferring the presence of the oscillating object within the
unilluminated region [11]. Other relevant specifics will be
discussed with respect to the analysis of our scheme
presented as follows.
The analysis.—We begin by explicitly writing the

modified forms of the two-time LGI and the two-time
NSIT relation involving sequential measurements of the
observables denoted by Q and R at two different instants,
t ¼ t1 and t ¼ t2, respectively, where t1 < t2. The NSIT
condition implies that the probability of obtaining a
particular outcome for the measurement of R at t ¼ t2
should be independent of whether any prior measurement
has been carried out. That is, it can be regarded as the
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statistical version of noninvasive measurability. In the
present context, the two-time NSIT condition can be
expressed as

N� ¼ pðR�Þ − ½pðQþ; R�Þ þ pðQ−; R�Þ� ¼ 0; ð1Þ

where pðQ�; R�Þ is the joint probability of getting the
outcomes �1 at instant t ¼ t1 and �1 at instant t ¼ t2.
pðR�Þ is the probability of getting the outcome �1 at
instant t ¼ t2, when no measurement is done at t ¼ t1. The
magnitude of the quantum violation of the two-time NSIT
condition will be denoted by the nonzero value of jN�j.
In this scenario, the two-time LGI can be expressed

as [28]

Ls1;s2 ¼ 1þ s1hQi þ s2hRi þ s1s2hQRi ≥ 0;

with s1; s2 ∈ fþ1;−1g; ð2Þ

where the correlation function is hQRi ¼ pðQþ; RþÞ−
pðQþ; R−Þ − pðQ−; RþÞ þ pðQ−; R−Þ, and the expect-
ation values are hQi ¼ pðQþÞ − pðQ−Þ, hRi ¼ pðRþÞ−
pðR−Þ. Here hRi is defined when no measurement at t ¼ t1
is performed. In this case, magnitude of quantum violation
of the two-time LGI will be denoted by the positive value
of maxs1¼�1;s2¼�1ð−Ls1;s2Þ.
Consider the following initial Gaussian wave function of

the coherent state peaked at x ¼ 0 at instant t ¼ 0:

ψðx; t ¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ffiffiffiffiffiffi

2π
p

σ0

s

exp

�

−
x2

4σ20
þ ip0x

ℏ

�

; ð3Þ

with the initial momentum expectation value p0 and the
width σ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ð2mωÞp

, where ω is the angular frequency
of oscillation and m is the mass. The time evolution of this
state is evaluated in this example using linear harmonic
oscillator potential.
We consider measurements of Q and R at the instants

t ¼ t1 and t ¼ t2, respectively, where Q and R correspond
to the earlier-mentioned coarse-grained measurements. To
put it specifically, Q is an observable quantity such that it
takes a value þ1 (−1) depending on whether the system is
in the region from x ¼ β1 to x ¼ ∞ (from x ¼ −∞ to
x ¼ β1). Similarly, R is another observable quantity such
that it takes a value þ1 (−1) if the particle is in the region
from x ¼ β2 to x ¼ ∞ (from x ¼ −∞ to x ¼ β2). Such
a coarse-grained position measurement at instant t ¼ ti
(i ¼ 1, 2) can be represented by the operator Ôi ¼
R

∞
βi

jxihxjdx − R

βi
−∞ jxihxjdx, which has two eigenvalues:

þ1 and −1.
As mentioned earlier, β1 ¼ 0. With this choice of β1, it

can be shown that the expressions for the joint probabilities
are the following functions of β2 and other relevant
parameters:

pðQ�; R−Þ ¼ 1

4
ffiffiffi

π
p

Z

γ

−∞
dx exp ½−x2�fðx;ωt2Þ;

pðQ�; RþÞ ¼ 1

4
ffiffiffi

π
p

Z

∞

γ
dx exp ½−x2�fðx;ωt2Þ; ð4Þ

with fðx;ωt2Þ ¼
�

�

�

�

�

1� erf

"

−ix
sinðωt2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2− 2i cotðωt2Þ
p

#
�

�

�

�

�

2

;

ð5Þ

and γ ¼ β2

ffiffiffiffiffiffiffi

mω

ℏ

r

−
p0 sinðωt2Þ

ffiffiffiffiffiffiffiffiffiffi

ℏmω
p ; ð6Þ

where the error function erfðzÞ ¼ ð2= ffiffiffi

π
p Þ R z

0 dt expð−t2Þ.
Similarly, we have the following form of probabilities:

pðQ�Þ¼ 1

2
; pðR�Þ¼ 1

2
½1∓ erfðγÞ�: ð7Þ

The details of these calculations are given in the
Supplemental Material [28].
Next, we have to choose β2 suitably for the measure-

ment at t ¼ t2. Our heuristic arguments based on physical
ground [28] suggest that the location of the peak at the

instant t ¼ t2, given by x
ðt2Þ
0 ¼ p0 sinðωt2Þ=ðmωÞ, together

with the standard deviation Δðt2Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ð2mωÞp

of the
probability density without any prior measurement at
t ¼ t1, would play a critical role in fixing β2 suitably
for our purpose. Guided by this consideration, our in-depth
investigation reveals that if the choice of β2 is made at

xðt2Þ0 � cΔðt2Þ with c being positive and of the order of 10−1

or 1, the possibility indeed arises for obtaining quantum
violations of both the two-time NSIT condition and
the two-time LGI. Here, a key point is that this choice

of β2 ¼ xðt2Þ0 � cΔðt2Þ leads to γ given by Eq. (6) becoming
independent of m, ω, and p0—i.e., γ is then determined
only by the chosen value of c, whence γ ¼ �c=

ffiffiffi

2
p

.
Consequently, the probability distributions (4) and (7)
become functions of ðωt2Þ only. This, therefore, enables
the quantum violations of the two-time NSIT condition
and the two-time LGI to become independent of mass.
That this is indeed the case is confirmed comprehensively
by evaluating numerically the integrations appearing
in (4). In Table I, some illustrative results are presented
by choosing, for example, c ¼ ffiffiffi

2
p

. To sum up, the upshot
of this entire study is that it is always, in principle, possible
to choose t2 suitably depending on the time period of the
oscillating particle to obtain quantum violation of the two-
time NSIT condition or the two-time LGI for any m, p0,
and ω.
Practical challenges with large mass and measurement

precision.—Ideally, in our scheme, one of the two regions
(either from x ¼ −∞ to x ¼ βi, or from x ¼ βi to x ¼ ∞)
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should be illuminated at an instant t ¼ ti. In practice,
however, it is almost impossible to keep the boundary
between the two regions (illuminated and unilluminated)
fixed in all experimental runs. Rather, we can expect that
the aforementioned boundary at t¼ ti will be at x ¼ βi þ ϵi
(with ϵi being a small positive/negative number depending
on the accuracy of the experimental setup), where ϵi will be
different in different runs. In effect, the observed violation
of the NSIT condition will be the statistical average
over different values of Nþ, N− corresponding to different
values of ϵ1 and ϵ2. Similar will be the case for the LGI. It
can be shown that the permissible ranges of ϵ1 and ϵ2 to get
significant violation of the NSIT or the LGI are pro-
portional to 1=

ffiffiffiffiffiffiffi

mω
p

[28]. Hence, the required precision
in fixing the boundary between the two measurement
regions at any instant is increased with increasing mass.
Nonetheless, the effect of increasing mass in this context
can be offset by decreasing the angular frequency ω. Here,
it is relevant to note that the lowest angular frequency of a
harmonic well achieved to date is ω ∼ 100 kHz in the case
of an optical trap [29], ω ∼ 100 Hz in an ion trap [30,31],
and 1–10 Hz in a diamagnetic trap [32–34]. For small ω,
the violations as mentioned in Table I are observed for large
t2. For any ω, damping has to be controlled so that the
decoherence rate due to all force noises can be given by
γ ¼ SFFðωÞðΔxÞ2=ℏ2 ≪ 1=t2, where SFFðωÞ is the noise
power density of force and Δx is the width of the wave
function at t2. Since both with and without measurement at
t1, Δx ∼ σ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ð2mωÞp

(see Figs. 1 and 2 in [28]), the
above condition reduces to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SFFðωÞ
p

≪ ω
ffiffiffiffiffiffiffi

ℏm
p

=
ffiffiffi

π
p

for
t2 ∼ T (for example, with m ∼ 10 kg and ω ∼ 100 Hz [35],
ffiffiffiffiffiffiffiffi

SFF
p

∼ 10−15 N=
ffiffiffiffiffiffi

Hz
p

is required). Interestingly, large
masses indeed help here, for the obvious reason that force
noise induces less random acceleration. The above con-
sideration of decoherence is quite generic: all recoil noises,

as well as all trapping noises, can be encompassed under
the above limit on force noise.
It is well known that the balance between unwanted

measurement backaction and the precision of optical
measurements imposes a standard quantum limit (SQL)
on the position measurement of a harmonically trapped
object [36]. For the system considered by us, this limit is
given by δx ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ð2mωÞp

, the minimum uncertainty in
position measurement [36,37]. Recently, it has been shown
that one can surpass SQL, but only with highly delicate
technologies [38,39]. In our proposed setup, probing the
quantum violation of MR for any m, ω, and p0 using the
NSIT condition is possible even when the accuracies of
the coarse-grained position measurements are much worse
than in the SQL [28]. However, this is not the case for the
LGI. Hence, the NSIT condition should be preferred for
implementing our proposal.
Possible experimental implementations.—We can envis-

age implementations with nano- and micro-objects (typi-
cally up to ∼10−14 kg) based on so-called levitated
mechanics [40] in various low-noise traps such as optical
dipole traps, ion traps, and magnetic and diamagnetic traps
in vacuum and at low temperature, as well as using much
larger masses (e.g., ∼mg [41,42] and ∼10 kg in the
gravitational wave detectors [35]). The mass independency
of this MR test can be judiciously made use of in choosing
the experimental setups optimized to reduce relevant
decoherence effects and noises, as well as for addressing
at the same time the need for high spatial detection
resolution of the center-of-mass motion of the trapped
particle. Specifically, one can observe the quantum viola-
tions of MR as described in Table I for any given mass
dependent only on t2 even if the values of ω and p0 are
different in different experimental runs—i.e., ω and p0

need not be tuned in each run. The only requirement is that
the values of ω and p0 in each run need to be known in
order to fix β2. In particular, for testing the NSIT condition,
it is sufficient to know these parameters to the precision of
the order of SQL. On the contrary, for LGI, these
parameters should be known with much more precision,
implying less difficulty with testing the NSIT condition.
The preparation of the initial state will be accomplished

by cooling—for instance, by feedback [43]—to a motional
state of low occupation number, for which the only
requirement is that the rate of acquiring information about
the object must be much faster than the rate of its heating
from environmental noise [44–46]. This technique has
already been used for cooling to the ground state for
ω ∼ 100 kHz traps [47,48], as well as for a large-mass and
low-frequency (ω∼100Hz) gravitationalwave detector [35].
The conditions are well within ultrahigh vacuum at
10−10 mbar and can be fulfilled in low-temperature environ-
ments even below 10 mK, and with vibration isolation.
While keeping the trapping a low-noise mechanism

(e.g., an ion trap, magnetic, or diamagnetic trap, etc.),

TABLE I. Quantum violations of the two-time NSIT condition
and the two-time LGI when the boundary between the two
regions in the case of the second measurement is chosen to
be located at x ¼ β2 ¼ p0 sinðωt2Þ=ðmωÞ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðmωÞp

. Here,
T ¼ 2π=ω denotes the time period.

Magnitude of
quantum violation
of two-time NSIT:

Magnitude of
quantum violation
of two-time LGI:

m p0 ω t2 jN�j maxs1¼�1;s2¼�1ð−Ls1;s2Þ
Any Any Any T=14 0.12 0.08

Any Any Any T=8 0.15 0.04

Any Any Any T=4 0.17 No violation

Any Any Any T=3 0.16 No violation

Any Any Any 3T=8 0.15 0.04

Any Any Any 2T=5 0.14 0.07

Any Any Any 3T=4 0.17 No violation
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a promising possibility for the realization of measurements
in this experiment is optical detection. If we are using the
detection of scattered light from the particle to detect its
motion, for an assumed near-unity efficiency of collection
of the scattered light, and for n photons, we obtain a
resolution of λ=

ffiffiffi

n
p

with λ ∼ μm. This implies the collection
of n ∼ 108 photons for reaching a spatial resolution of the
ground-state spread σ0 of a m ∼ 10−14 kg particle in a
ω ∼ 1 Hz trap. If the detected scattered power is 1 nW, this
information is acquired in ∼10−2 s, implying that all other
heating rates, such as undetected scattered photons from
interactions with blackbody photons and gas collisions,
have to be at Γ ≤ 102 Hz.
For increasing the critical detection efficiency in light-

scattering techniques, one could use collection optics with
a high numerical aperture—for example, parabolic mir-
rors [49]. The high spatial resolution could be achieved
by illuminating only either to the left or right of x ¼ βi at
instant t ¼ ti with a sharp drop of profile at the point
x ¼ βi. If no scattered light is obtained after 0.01 s with a
nW laser illuminating the left half, it immediately implies
a þ1 outcome, with the location x ¼ βi being at angstrom
resolution. Such spatial resolution has been achieved in
the optical imaging of single molecules [50] and in
optomechanical experiments [46,51] by using optical
interferometry.
Finally, we note that most of the magnitudes of viola-

tions of NSIT or LGI are ∼10−1. Since n number of runs
can determine outcome probabilities with uncertainty
∼1=

ffiffiffi

n
p

, we require 104 experimental runs to ensure that
the statistical error is 1 order of magnitude less than the
mean value of the violations.
Conclusions.—We have suitably modified the procedure

for testing LGI and NSIT in order to show the violation of
the classical notion of MR in a manner which is indepen-
dent of the parameters: mass, momentum, and frequency.
Moreover, this modification offers a quantum jump in
simplifying experimental efforts in terms of measurement
precision (even a more coarse-grained measurement than
the SQL is sufficient) and tuning of the parameters.
Naturally, this enormously broadens the scope for evidenc-
ing nonclassicality for large masses. No nonclassical state,
such as a quantum superposition of distinct states (e.g., a
Schrödinger cat state) or even a squeezed state, needs to be
prepared a priori. Moreover, this approach does not require
coupling with any ancillary quantum system or using
nonlinearity. Rather, the starting point of our scheme is
the most “classical-like” of all quantum states—namely, the
coherent state, which has been prepared by feedback
cooling in several systems [43], including 10 kg LIGO
masses [35], and is imminent in several other systems. In
fact, this can be regarded as a scale-invariant test of
nonclassicality: the experimental data curves of MR
violations with t2 at the same fractions of T with widely

different masses can be made to coincide with each other by
adjusting p0 and ω.

Note added.—A paper has appeared in parallel [52]
reporting QM violations of the different forms of LGI
for coherent states of a harmonic oscillator, focusing on
maximizing these violations. In particular, the observable
measured at different instants is taken to be the same while
testing LGI. Consequently, mass-independent quantum
violation has not been achieved in that paper.
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