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Sequential weak measurements allow for the direct extraction of individual density-matrix elements,
rather than relying on global reconstruction of the entire density matrix, which opens a new avenue for the
characterization of quantum systems. Nevertheless, extending the sequential scheme to multiqudit quantum
systems is challenging due to the requirement of multiple coupling processes for each qudit and the lack of
appropriate precision evaluation. To address these issues, we propose a resource-efficient scheme (RES)
that directly characterizes the density matrix of general multiqudit systems while optimizing measurements
and establishing a feasible estimation analysis. In the RES, an efficient observable of the quantum system is
constructed such that a single meter state coupled to each qudit is sufficient to extract the corresponding
density-matrix element. An appropriate model based on the statistical distribution of errors is utilized to
evaluate the precision and feasibility of the scheme. We have experimentally applied the RES to the direct
characterization of general single-photon qutrit states and two-photon entangled states. The results show
that the RES outperforms sequential schemes in terms of efficiency and precision in both weak- and strong-
coupling scenarios. This Letter sheds new light on the practical characterization of large-scale quantum
systems and the investigation of their nonclassical properties.

DOI: 10.1103/PhysRevLett.132.030201

Introduction.—The densitymatrix provides a comprehen-
sive description of a quantum system (QS), encompassing its
intrinsic properties and interactions with other systems.
Accurate characterization of the density matrix, particularly
its off-diagonal elements, is crucial for revealing the non-
classical properties of quantum systems [1–3] and under-
pinning advanced quantum technologies [4–7]. Quantum
state tomography (QST) is a standard approach to globally
reconstruct the whole density matrix based on the informa-
tionally complete measurement results. However, the exper-
imental challenges involved in implementing quantum
measurements and the computational complexity of the
reconstruction algorithm significantly increase with the size
of the QS, rendering QST impractical for characterizing
large-scale quantum states. Despite many efforts to improve
the feasibility of QST [8–12], characterizing the entire
density matrix would be inefficient when only a few specific

density-matrix elements are necessary to reveal certain
properties, such as entanglement [13] and coherence [14].
In recent years, weak measurement followed by post-

selection has enabled the direct measurement of quantum
wave functions for pure states [15–21], as well as quasi-
probability distributions of general mixed states [22–25],
which are equivalent to the density matrix through linear
transformations [26]. Particularly, the density-matrix ele-
ments can be directly characterized through sequential
measurements of complementary observables [22,27–29].
Given the substantial benefits of reducing the number of
measurement bases and avoiding the reconstruction algo-
rithm, the direct-characterization schemes have been
extended to quantum processes [30] and quantum detectors
[31,32]. However, the direct characterization of the density
matrix relies on sequential coupling processes for each
qudit of the QS, which limits its efficiency and scalability
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for multiparticle and high-dimensional quantum states [33].
Currently, the direct characterization of a high-dimensional
or two-photon density matrix typically requires introducing
certain assumptions or utilizing extra resources [34,35].
Moreover, extracting high-order correlation information
during sequential weak measurements results in large
statistical errors [36,37]. To improve the precision of the
direct characterization, a rigorous framework based on
strong measurements has been developed [38–41].
However, this approach may destroy the unique advantages
of weak measurement in slightly disturbing the quantum
systems.
In this Letter, we propose a resource-efficient scheme

(RES) to directly characterize the density-matrix elements
of general multiqudit quantum systems. In the RES, an
efficient observable is constructed through the Hadamard
transformation, which enables one to extract the density-
matrix element of interest with a single coupling process for
each qudit. We experimentally demonstrate the RES by
directly characterizing the density matrix of single-photon
qutrit states and two-photon entangled states during the
unitary evolution and dephasing processes. Our results
show that the RES achieves better precision than sequential
schemes with fewer quantum measurements, irrespective of
whether the coupling strength is weak or optimized in terms
of precision.
Theoretical framework.—We begin by considering a

general single-qudit state described by a d-dimensional
density matrix ρ ¼ P

a;a0 ρa;a0 jaiha0j. To directly charac-
terize the off-diagonal element ρa;a0 (a ≠ a0), we associate
it with the average value TrðM̂a0;aρÞ ¼ ρa;a0 of the operator
M̂a0;a ¼ dπ̂a0 π̂bπ̂a, where π̂b ¼ jbihbj and jbi ¼
ð1= ffiffiffi

d
p ÞPa jai. Typically, the observables π̂a and π̂b

are sequentially measured using two independent meter
states, followed by the postselection projector π̂a0
[22,27,29,40]. Joint measurements on the postselected
meter states lead to the average value TrðM̂a0;aρÞ.
Alternatively, we can decompose M̂a0;a ¼ π̂a0Ĉa;a0 into
the product of an efficient observable Ĉa;a0 ¼ jaiha0j þ
ja0ihaj þP

k≠a;k≠a0 jkihkj and the postselection projector
π̂a0 . Consequently, by measuring the efficient observable,
we can directly characterize the density-matrix element
with only one coupling process for each qudit.
Figure 1(a) depicts the RES for directly characterizing

the density matrix of a single-qudit QS. Within the red
dashed box, the efficient observable Ĉa;a0 is constructed
via the Hadamard transformation Ĥa;a0 on the ordinary
observable Ôa0 ¼ 1̂s − 2ja0iha0j of the QS, given by Ĉa;a0 ¼
Ĥa;a0Ôa0Ĥa;a0 . A single-qubit meter state (MS) j0im that can
be either another particle or another degree of freedom of the
same particle is coupled with the QS ρ via the Hamiltonian
Ĥ ¼ GðtÞĈa;a0 ⊗ σ̂y, where σ̂y is the Pauli operator of the
MS. We define the coupling strength as g ¼ R

GðtÞdt with

GðtÞ a compact support around the time of coupling. After
the coupling process Û ¼ expð−i R ĤdtÞ, the system-meter
joint state evolves to ρjt ¼ Ûρ ⊗ j0imh0jÛ†. Given a pair of
postselection projectors π̂a0 and π̂a corresponding to the
conjugate operators M̂a0;a and M̂a;a0 , we perform both
postselection on the QS and measure the observables σ̂þ ¼
σ̂x þ iσ̂y and σ̂− ¼ σ̂x − iσ̂y of the MS to obtain the weak
average TrðM̂a0;aρÞ and the complex conjugate of
TrðM̂a;a0ρÞ, respectively. Thus, the density-matrix element
can be derived by

ρa;a0 ¼
1

2 sinð2gÞTr½ðΠ̂a0;þ þ Π̂a;−Þρjt�; ð1Þ

where Π̂a0;þ ¼ π̂a0 ⊗ σ̂þ and Π̂a;− ¼ π̂a ⊗ σ̂− denote the
joint observables of the QS and the MS.
In Fig. 1(b), our formalism is extended to the direct

characterization of N-qudit density matrix ρðNÞ¼P
S;S0ρðNÞ

S;S0 jSihS0j, where jSihS0j¼ja1;…;aNiha01;…;a0N j
and jani represents the eigenstate of the nth qudit. To
directly characterize the off-diagonal element ρS;S0 , we
decompose the operator M̂S0;S ¼ jS0ihSj (or its conjugate
M̂S;S0 ) into the product of the joint efficient observable

ĈðNÞ ¼⊗N
n¼1 Ĉn and the postselection projector Π̂ðNÞ

S0 ¼
jS0ihS0j (Π̂ðNÞ

S ). The efficient observable Ĉn for the nth
qudit is divided into the following two cases: (i) if aj ≠ a0j,
we choose Ĉj ¼ jajiha0jj þ ja0jihajj þ

P
kj≠aj;kj≠a0j

jkjihkjj,
and the coupling process is analogous to that in the single-
qudit situation; (ii) if ak ¼ a0k, Ĉk is equal to 1̂s;k and no
coupling is required. The separate measurement of the
efficient observable Ĉj on each qudit with the identical
coupling strength g is implemented by the Hamiltonian
ĤðNÞ ¼ GðtÞPaj≠a0j

Ĉj ⊗ σ̂y;j. Assuming that there are

totally l independent couplings in the N-qudit system,

(a) Direct characterization of 

(b)

Postselection

Direct characterization of 

Postselection

FIG. 1. The schematic diagram of the resource-efficient direct-
characterization schemes for (a) single-qudit states and (b) multi-
qudit states.
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we get the joint state ρðNÞ
jt ¼ ÛðNÞ½ρðNÞ ⊗ ðj0imh0jÞ⊗l�ÛðNÞ†

with the unitary operator ÛðNÞ ¼ exp½−i R ĤðNÞdt�.
The direct product of the postselection operator Π̂S0 (Π̂S)
and the observable ⊗l

j¼1 σ̂þ;j (⊗l
j¼1 σ̂−;j) leads to the joint

measurement operator Π̂ðlÞ
S0;þ (Π̂ðlÞ

S;−). Thus, the density-
matrix element can be directly obtained by

ρS;S0 ¼ 1

2 sinlð2gÞTr½ðΠ̂
ðlÞ
S0;þ þ Π̂ðlÞ

S;−ÞρðNÞ
jt �: ð2Þ

To comprehensively evaluate the precision of the direct-
characterization schemes, we analyze the statistical errors
of the measured density-matrix elements. Given that the
quantum states are uniformly sampled over the state space,
the statistical properties of errors provide an insight into
the expected precision and feasibility of the scheme.
Specifically, the arbitrary qudit state ρd ¼ V̂j0ih0jV̂†

is sampled by evolving the initial state j0ih0j ¼
ð1; 0;…; 0ÞTð1; 0;…; 0Þ under the unitary operator
V̂ ∈ ÛðdÞ. We denote the variances of the real and imagi-
nary parts of ρa;a0 ða ≠ a0Þ as δ2Reðρa;a0 Þ and δ2Imðρa;a0 Þ,
respectively. With the Haar measure μdðV̂Þ, the variance
δ2Reðρa;a0 Þ or δ2Imðρa;a0 Þ for any a ≠ a0 can be equiv-
alently represented by δ2d to quantify the mean precision of
single-qudit characterization as

Δ2
d ¼

Z
V̂ ∈ ÛðdÞ

δ2ddμdðV̂Þ: ð3Þ

ForN-qudit quantumsystems,we evolve thenth qudit froma
maximally entangled state jΨ0i ¼ 1=

ffiffiffi
d

p P
d−1
m¼0 jm;…; mi

with the unitary operator V̂n ∈ ÛðdÞ to obtain an arbitrary
sampling state jΨEi ¼⊗N

n¼1 V̂njΨ0i. We focus on the

completely off-diagonal density-matrix elements ρðNÞ
S;S0 which

satisfy an ≠ a0n for all n since such elements imply the
coherence information among all qudits. With the Haar
measure μdðV̂nÞ for all the nth qudits, the variance of the real
or imaginary part of an arbitrary completely off-diagonal

density-matrix element, i.e., δ2Re½ρðNÞ
S;S0 � or δ2Im½ρðNÞ

S;S0 �, can
be equivalently represented by δ2N;d to quantify the mean
precision of N-qudit characterization as

Δ2
N;d ¼

Z
…

Z
V̂n ∈ ÛnðdÞ

δ2N;d

YN
n¼1

dμdðV̂nÞ: ð4Þ

The equivalent variances δ2d and δ2N;d that depend on the
specific quantum measurements are theoretically derived in
the Supplemental Material [42].
Experiment.—In order to demonstrate the feasibility of

the RES, we experimentally apply it to the direct charac-
terization of several typical photonic quantum states. The
experimental setup for the preparation and direct charac-
terization of single-qutrit states ρT is shown in Fig. 2(b).
Heralded single photons generated in Fig. 2(a) input the S1
port and subsequently pass through a half wave plate
(HWP), a quarter wave plate (QWP), and a polarizer to
initialize the polarization to the horizontal state jHi. We
employ two HWPs positioned at angles of θ1 and θ2,
respectively, for polarization rotation. The relative phases
ϕ1 and ϕ2 between the horizontal and vertical polarization
are adjusted by a liquid-crystal variable retarder (Thorlabs
LCC1423-B) and a QWP-HWP-QWP combination,

Coupling

MMS
QWP HWP Projector

45° 22.5°
45° -22.5°
45° 0°

-45° 0°

90°

(a)

(c)

(b) 0°

MMS45°

45°45°
Coupling

22.5°

22.5°

(M)
(M)

0°/22.5°
0°

45°

22.5°

0° 45° 22.5°

45°0° 22.5°

0°45°

45° 45°

PC

0°
PC

FIG. 2. Experimental setup. (a) A 405 nm continuous-wave laser is used to pump a periodically poled KTiOPO4 (PPKTP) crystal
inside a Sagnac interferometer for spontaneous parametric down-conversion to prepare heralded single- or two-photon polarization-
entangled states. (b) The single-photon path-encoded qutrit states are prepared and characterized directly. (c) The two-photon
polarization-entangled states are characterized directly by separately inputting two photons into the corresponding setup. The MMSs are
realized with the angles of wave plates listed. PC, polarization compensation; DM, dichroic mirror; PBS, polarizing beam splitter; POL,
polarizer; LCVR, liquid-crystal variable retarder; FC, fiber coupler.
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respectively. The polarizing beam displacers (PBDs) imple-
ment beam splitting by transmitting (refracting) photons
in jVi (jHi). With the optical paths fup;middle; bottomg
corresponding to the basis fj0i; j1i; j2ig, we prepare an
arbitrary pure qutrit state jψTi ¼ cos 2θ1 cos 2θ2j0i þ
cos 2θ1 sin 2θ2eiϕ2 j1i þ sin 2θ1eiðϕ1þϕ2Þj2i [42]. Mixed
qutrit states are obtained by probabilistically mixing
specific pure states (see Supplemental Material [42]).
We realize the Hadamard transformations Ĥ0;1, Ĥ1;2, and

Ĥ0;2 on the qutrit states with three steps: (i) the first three
HWPs and the following PBD transform the path-encoded
information to the polarization; (ii) the middle three HWPs
perform the Hadamard transformation on the polarization;
(iii) the last three HWPs recover the polarization of photons
at all paths to jHi, initializing the MS [42]. To realize the
coupling operation, the HWPs at all paths are rotated
by g=2°, except for the HWP at the path a0, which is rotated
by −g=2°. The measurements of the meter states (MMSs)
are performed using a QWP-HWP-polarizer combination.
After the surviving photons undergo the second Hadamard
transformation, the photons are detected by the detectors
D1, D2, and D3, corresponding to the successful post-
selection by the operators π̂0, π̂1, and π̂2, respectively.
As shown in Fig. 2(c), two-photon entangled states ρE

are directly characterized by separately inputting two
photons into S1 and S2 ports, respectively. Both photons
undergo identical setups illustrated in the dotted box
labeled “(M)” with the specific configurations depending
on the density-matrix element of interest. We refer to the
polarization degree of freedom of photons as the QS.
Photons first get through a QWP-QWP-HWP combination
for compensating the polarization changes in fiber trans-
mission [43]. Then, we implement an arbitrary unitary
transformation Û1ð2Þ on the QS with a QWP-HWP-QWP
combination [44,45]. The subsequent HWP (as well as

the last HWP) at 22.5° implements the Hadamard trans-
formation on the polarization qubit. To facilitate the
coupling between the QS and the MS, we transform the
polarization information of photons to the path information
through a PBD and the polarization of photons at both
paths is initialized to jHi as the MS. The coupling
operation and MMSs are analogous to the single-qutrit
experiment. We capture the coincidental counts by
detecting the simultaneous arrival of two photons at
specific pairs of detectors including D4 and D6, D4 and
D7, D5 and D6, and D5 and D7 to realize the postselection

operators Π̂ð2Þ
00 , Π̂

ð2Þ
01 , Π̂

ð2Þ
10 , and Π̂ð2Þ

11 , respectively.
Results.—In Fig. 3(c), we depict the experimental

results of directly characterizing the density-matrix
elements of qutrit states during the unitary process by
setting the parameters θ1 ¼ arcsinð ffiffiffiffiffiffiffiffi

1=3
p Þ=2, θ2 ¼ π=8,

ϕ1 ¼ ϕ2 þ π=3 and varying ϕ2 from π=3 to 4π=3.
Furthermore, we select a qutrit state ρT;0 by setting
ϕ2 ¼ 2π=3 and subject it to a dephasing process
N ðjaiha0jÞ ¼ γT jaiha0j, in which the dephasing coeffi-
cient (0 ≤ γT ≤ 1) is adjusted by mixing specific
pure states with different probabilities [42]. The
measured results of the decreased off-diagonal ele-
ments γThajρT;0ja0i are shown in Fig. 3(b). To di-
rectly characterize 2-qubit systems, we evolve one
of the Bell states jψbi ¼ ðjHijVi þ jVijHiÞ= ffiffiffi

2
p

under the composed unitary Û1ð2Þ ⊗ Û2ð2Þ with

Ûnð2Þ ¼
�
cos 2θne−iϕn1 − sin 2θneiϕn2

sin 2θne−iϕn2 cos 2θneiϕn1

�
to prepare the

sampling state jψEi ¼ Û1ð2Þ ⊗ Û2ð2Þjψbi and its den-
sity matrix ρE ¼ jψEihψEj. By setting the parameters
θ11 ¼ π=8, θ21 ¼ ϕ21 ¼ ϕ22 ¼ 0, ϕ12 ¼ ϕ11 þ π=4 and
varying ϕ11 from 0 to π, we illustrate the completely off-
diagonal density-matrix elements, i.e., h00jρEj11i and

(a) (b)

R
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l p
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t
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ag
in

ar
y 
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rt

(c) (d)

FIG. 3. The density-matrix elements of the qutrit states ρT and two-photon entangled states ρE are experimentally measured during the
unitary and dephasing processes, with the correspondence (a) ρT , unitary; (b) ρT , dephasing; (c) ρE, unitary; and (d) ρE, dephasing. In
(a),(b), solid (circular), dashed (triangular), and dotted (quadrate) lines (points) are used to represent theoretical (experimental) results. In
(c),(d), dashed lines represent ideal theoretical results, while solid lines are derived according to realistic states. Circular and triangular
points are used to depict experimental results.
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h01jρEj10i, in Fig. 3(c). Next, an original state ρE;0 ¼
jψE;0ihψE;0j with ϕ11 ¼ π=3 undergoes a dephasing process
N ðjSihS0jÞ ¼ γEjSihS0j with the coefficient γE adjusted by
appropriately mixing certain unitary operators Û1ð2Þ and
Û2ð2Þ [42]. The experimental completely off-diagonal den-
sity-matrix elements of ρE during the dephasing process are
shown in Fig. 3(c).
In Fig. 4, we compare the precision of the RES and

sequential schemes with different coupling strength g.
Provided that the total number of single photons or
photon pairs per unit time follows a Poisson distribution
with an average value of nt, the mean characterization
precision that is achieved with a single copy of single-
qutrit and 2-qubit states are theoretically derived as ntΔ2

T

and ntΔ2
E, respectively (see Supplemental Material [42]).

In the experiment, we randomly prepare 100 single-qutrit
states jψTi ¼ Ûð3Þj0i or two-photon polarization states
jψEi ¼ Û1ð2Þ ⊗ Û2ð2Þjψbi with the unitary operators
Ûð3Þ, Û1ð2Þ, and Û2ð2Þ sampled according to the Haar
measure. The experimental precision is obtained from
Monte Carlo simulation based on raw data. The results
show that the precision of both direct-characterization
schemes is improved with stronger coupling strength g.
The optimal precision of the RES in characterizing both
single-qutrit states (g ¼ π=4, ntΔ2

T ¼ 0.125) and 2-qubit
states (g ¼ π=4, ntΔ2

E ¼ 0.208) is overall better than
that of sequential schemes with single-qutrit states

(g ¼ π=2, ntΔ2
T ¼ 0.708) and 2-qubit states (g ¼ π=2,

ntΔ2
E ¼ 0.458).

Discussion and conclusions.—The insets (a)–(d) of
Fig. 4 show nondivergent statistical errors, which confirms
the feasibility of our scheme for characterizing arbitrary
quantum states. In weak-measurement scenario (i.e.,
g → 0), the precision of the RES is significantly better
than that of sequential schemes with a ratio following g2N

for N-qudit systems. This advantage makes our scheme
more suitable for studying weak-measurement problems,
such as the share of nonlocality [46], the error-disturbance
relationship [47], and so on [48,49]. With qubit meter states
used for the direct characterization of N-qudit systems, the
resource-efficient or sequential schemes typically perform
22N or 23N projective measurements, respectively. When
the efficiency of direct-characterization schemes is com-
pared quantitatively by counting the total number of
photons (or equivalent time consumption) required to
achieve the same precision, the mean efficiency of the
optimal RES is 11.3 or 8.8 times higher than that of the
optimized sequential schemes for single-qutrit states or
2-qubit states, respectively.
In conclusion, we have proposed a RES that can be

used to directly characterize the density matrix of general
multiqudit quantum systems. Compared to sequential
schemes, the RES only requires one coupling process
for each qudit to extract the arbitrary density-matrix
element of interest through an efficient observable. We
experimentally demonstrate the advantages of the RES
over sequential schemes by directly characterizing qutrit
and 2-qubit states with fewer measurements and better
precision. These advantages are significantly enhanced as
the particle number increases in weak-coupling scenarios.
Even when both the resource-efficient and sequential
schemes are optimized in terms of precision over the
coupling strength, the former still demonstrates an
approximately tenfold efficiency advantage over the latter.
Our Letter provides a promising approach for the char-
acterization and exploration of large-scale quantum sys-
tems, with broad extensions from integrated photonic chip
to other physical systems.
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