
Comment on “Anomalous Reentrant 5=2 Quantum
Hall Phase at Moderate Landau-Level-Mixing
Strength”

Das, Das, and Mandal [1] examine a wave function for
ν ¼ 5=2 on a sphere including moderate Landau-level
mixing evaluated perturbatively. In contrast to the claims
of Ref. [1], the wave function they find is not a fractional
quantum Hall (FQH) state. Splitting the system into two
hemispheres, each with N=2 particles, Ref. [1] shows
entanglement spectra (Figs. 3, 5) that (i) do not change
qualitatively when two flux are either added or subtracted
and (ii) have a branch that remains at very low entangle-
ment energy (high weight) out to the maximum possible Lz
angular momentum. Neither (i) nor (ii) is the case for any
known FQH states. Instead, I claim that these wave
functions exhibit phase separation or bubble or stripe
formation.
Assuming the system of N electrons separates into a

compact filled region (ν ¼ 1) and a remaining empty region
(ν ¼ 0), on a sphere we would expect a ground state at
maximal angular momentum. If we focus instead on
angular momentum L2 ¼ 0 states, the best clustering
occurs by separating the system into two filled regions
containing N=2 electrons each (assuming even N), which
are arranged antipodally (opposite) on the sphere, and then
we sum over all directions of the antipodal axis to obtain
L2 ¼ 0. I claim that this L2 ¼ 0 antipodal cluster state is
what is found in the numerics of Ref. [1].
This type of antipodal clustering should not care much

about the precise value of N (even) or flux Nϕ in agreement
with (i). Further, such a wave function should have high
entanglement for a cut with maximal Lz from the configu-
ration with clusters at the north and south poles. This is in
agreement with (ii). A branch of lower Lz states should also
have similarly high entanglement, corresponding to con-
figurations with the antipodal axis not along the poles.
These statements are in agreement with the numerical
observations of Ref. [1].
In order to prove our claim that the data of Ref. [1] is

showing clustering, following Ref. [2] we consider elec-
trons with short ranged attraction only, i.e., Haldane
pseudopotentials V1 ¼ −1 and Vn≠1 ¼ 0. With such a
Hamiltonian the electrons attract each other as much as
possible, forming entirely filled regions. The ground state is
at maximum L, but if we look instead at the lowest energy
L2 ¼ 0 state, we see in Fig. 1 that its entanglement
spectrum is identical to that shown in Ref. [1]. Note that
this particular toy-model Hamiltonian is particle-hole
symmetric, and for filling ν < 1=2 the holes will cluster
instead of the electrons. The Hamiltonian considered in
Ref. [1], in contrast, is not particle-hole symmetric and
shows the same electron clustering behavior for all fillings
shown in Fig. 3.

The explicit analytic wave function shown in Ref. [1]
(Eq. 2) is a Halperin 113 state [3] that has been fully
antisymmetrized between two species. It is known that the
113 state phase separates between species [4]. Once the
species are physically separated, the effects of antisymmet-
rization are expected to be minor. Here, the phase sepa-
ration is so strong that the electrons form regions that are
entirely filled and entirely empty.
The fact that the system breaks up into antipodal clusters

is perhaps not surprising given that there is a well-known
tendency to stripe or bubble formation in the higher Landau
levels [5] and at ν ¼ 5=2 when strong enough Landau-level
mixing is included perturbatively [2]. What might be more
surprising is that in all cases observed in Ref. [1], it appears
there are exactly two clusters on the sphere. There could be
several reasons for this. First, if it were just a single cluster,
one would not have L2 ¼ 0. Second, it is possible that such
finite size systems are too small to fit more than two clusters.
In summary, the states studied in Ref. [1] are not FQH

states but rather show phase separations or stripe or bubble
formation. All conclusions stated by Ref. [1] must be
considered in this light.
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FIG. 1. Entanglement spectra for two N ¼ 12 electron states on
a sphere with Nϕ ¼ 25 flux. The entanglement cut is along the
equator and each half of the cut has N=2 electrons. Left: toy
model. The wave function is the lowest energy L2 ¼ 0 state of a
Hamiltonian with short range attraction: V1 ¼ −1 and Vn≠1 ¼ 0.
Middle: data taken from Fig. 3(c) of Ref. [1]. The wave function
is the ground state with Landau-level mixing parameter κ ¼ 1.2
using the approximate Hamiltonian described in Ref. [1]. Right:
left and middle overlayed.
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