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We developed an exact theory of the superregular breathers (SRBs) of Manakov equations. We have
shown that the vector SRBs do exist both in the cases of focusing and defocusing Manakov systems.
The theory is based on the eigenvalue analysis and on finding the exact links between the SRBs and
modulation instability. We have shown that in the focusing case the localized periodic initial modulation of
the plane wave may excite both a single SRB and the second-order SRBs involving four fundamental
breathers.

DOI: 10.1103/PhysRevLett.132.027201

Understanding the formation of oscillating localized
structures known as “breathers” is a fundamental problem
in a wide variety of conservative and dissipative
systems [1–7]. Breathers are known in optics [8], hydro-
dynamics [9], Bose-Einstein condensates [6], microme-
chanical arrays [10], and in the cavity optomechanics [11].
They provide a basis for more complicated formations—
nonlinear superpositions of breathers that appear in many
nonlinear phenomena of physical importance such as rogue
wave events [12–14], breather molecules [15], chessboard-
like patterns [16], breather turbulence [17], higher-order
modulation instability (MI) [18,19], and the MI where
small periodic modulation is additionally localized in
transverse direction. The latter leads to the excitation of
superregular breathers (SRBs) [20].
As it was shown in [20–22], the SRBs are higher-order

exact solutions of the scalar nonlinear Schrödinger equation
(NLSE) that consist of two fundamental breathers propa-
gating at small angle to each other. Later, the ideas of SRB
theory have been successfully applied to the NLSE
with higher-order effects [23], complex modified KdV
equation [24], equations modeling the resonant erbium-
doped fiber [25], self-induced transparency [26], and the
derivative NLSE [27]. One of the important results of these
studies is that the MI growth rate related to the SRB
excitation is defined by the absolute difference of group
velocities of two breathers [28].
SRBs modeled by the scalar NLSE have been

observed both in experiments in fiber optics and on water
surface [22]. In each medium, the initial conditions
required to excite the SRBs have been carefully modeled
by the exact solutions. Further studies have shown that a
larger variety of initial conditions also lead to their
excitation [29–31]. So far, these studies are limited to

the NLSE-type integrable systems with an associated 2 × 2
Lax pair. Extending this knowledge to the more complex
systems consisting of two coupled wave fields still remains
a challenge. One of the practically important cases involves
Manakov equations [32]. These equations play a pivotal
role in modeling variety of nonlinear wave phenomena in
Bose-Einstein condensates [33], in optics [34–36], in
hydrodynamics [37], and, perhaps, in finances [38].
Higher-order nonlinear excitations in coupled wave

systems are under intense investigations [39,40]. It was
found, in the earlier work [40], that MI does exist in
defocusing Manakov system. Moreover, there are non-
trivial vector analogs of the focusing scalar rogue wave
solutions in the defocusing regime. It was also found,
in [40], that taking different wave vectors are important for
construction of new solutions that cannot be obtained
simply transforming the scalar ones. Our present work
confirms the above findings.
Several other studies in this direction have been

made [41–43]. Certain types of vector breathers of the
Manakov system (named vector breathers of types II
and III) have been derived in [43]. As it was shown later
in [42], these types of breathers cannot form SRB pairs.
The complications arise because of the increased number of
spectral parameters in vector breather solutions. Also, the
practically important task of their excitation from weak
modulations remains to be addressed.
We start with the Manakov equations in dimensionless

form, which are given by
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where ψ ðjÞ (j ¼ 1, 2) are the two nonlinearly coupled
components of the vector wave field. Parameter σð¼ �1Þ
defines the strength of the nonlinear terms in Eqs. (1). It
corresponds (in optics) to the self-focusing regime when
σ ¼ þ1 and self-defocusing regime when σ ¼ −1.
The fundamental breather solution can be constructed

using Darboux transformation [44] (see Supplemental
Material [45]):

ψ ðjÞ ¼ ψ ðjÞ
0

�
1 − ð1þ σAÞψ ðjÞ

a
�
; ð2Þ

where ψ ðjÞ
0 ¼ aj exp fiβjxþ i½σða21 þ a22Þ − 1

2
β2j �tg is the

vector plane wave of Eqs. (1) with aj, and βj being the
plane wave amplitudes and wave numbers, respectively.
Moreover, A ¼ P

2
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1þ σ
X2
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Parameters ω and γ determine the period and the width of
the breather. Spatiotemporal evolution of the breather (2) is
defined by the functions

ψ ðjÞ
a ¼ 2iχi

BðjÞðχÞðeΓ þ e−iΛÞ þ BðjÞðχ̃Þðe−Γ þ eiΛÞ
εðχÞeΓ þ εðχ̃Þe−Γ þDeiΛ þD�e−iΛ

;

where χ̃ ¼ χ þ ωþ 2iγ and the arguments Γ and Λ are

Γ ¼ 2γfx − VgðχÞtg; Λ ¼ ωfx − VpðχÞtg − θ1:

Here, x ¼ x − x01, t ¼ t − t01 with x01 and t01 being
responsible for the spatial and temporal position of the
breather. θ1 is an arbitrary phase, while Vg and Vp are the
group and phase velocities:

VgðχÞ ¼ −
ω

2γ
χi − ω − χr; ð4Þ
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2γ

ω
ðχi þ γÞ − ω

2
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Subscripts r and i denote the real and imaginary parts,

respectively. The coefficients in ψ ðjÞ
a are BðjÞðχÞ ¼

1=ðχ þ βjÞ, εðχÞ ¼ 1þ σ
P

2
j¼1 jaj=ðβj þ χÞj2, and D ¼

1þ σ
P

2
j¼1 a

2
j=½ðβj þ χ�Þðβj þ χ̃Þ�. The asterisk denotes

complex conjugation. Here, we use β1 ¼ −β2 ¼ β. In order
to simplify further our analysis, we take equal plane wave
amplitudes a1 ¼ a2 ¼ a ¼ 1.
The family of solutions (2) contains several subsets

[46–52]. They are vector generalizations of Kuznetsov-Ma
solitons [53], Akhmediev breathers (ABs) [54], and
Peregrine solitons [55]. In particular, when γ ¼ 0, implying
Γ ¼ −ωχit, Eqs. (2) define the vector ABs. They are

localized in t but periodic in x with period 2π=ω. The
AB is known as the nonlinear stage of MI developed from
purely periodic modulation [54]. The MI growth rate
described by the vector AB solution is given by

G ¼ j2γVgðχÞj ¼ jωχABj; χAB ≡ χijγ¼0: ð6Þ

At small but nonzero γ, Eqs. (2) describe vector quasi-
ABs with finite envelope width 1=ð2γÞ in x. The period in x
is still 2π=ω. The nonlinear superposition of a pair of quasi-
ABs each with the period 2π=ω and the width 1=ð2γÞ can
form a SRB. In contrast to ABs, it evolves from MI with
finite width of modulation.
Solution (2) requires further analysis. From Eq. (3), we

have explicit expressions for the eigenvalues χ:

χ1;3 ¼ ðμ ∓ ffiffiffi
ν

p Þ1=2 − α; χ2;4 ¼ −ðμ ∓ ffiffiffi
ν

p Þ1=2 − α;

ð7Þ

where μ ¼ α2 þ β2 − σa2, ν ¼ 4ðαβÞ2 − 4σðaβÞ2 þ a4,
and α ¼ ω=2þ iγ. The MI growth rate of the ABs, as

follows from Eq. (6) is defined by χð∓Þ
AB . It is given by

iχð∓Þ
AB þ ρð∓Þ ¼ ðμ ∓ ffiffiffi

ν
p Þ1=2jγ¼0: ð8Þ

The areas of parameters ω and β with nonzero growth
rate G define the existence of the vector ABs and SRBs.
These areas calculated using (6) and (8) are shown on the
diagrams presented in Figs. 1(a) and 1(b) for the defocusing
and the focusing cases, respectively. They are constructed
using the Hessian matrix formalism [56]. The ABs and
SRBs with various patterns do exist in the colored areas of
these diagrams. These patterns can be described as periodic
repetition of bright, dark, and four-petal structures observed
in the ABs [56].

FIG. 1. Existence diagram for ABs and SRBs on (ω, β) plane
when (a) σ ¼ −1 and (b) σ ¼ 1. Colored areas correspond to
nonzero growth rate G. The cyan, pink, and yellow areas
correspond to the bright, dark, and four-petal patterns, respec-
tively. Gray areas in (b) are invalid for AB and SRB formation.
The solid lines in (b) correspond to νjγ¼0 ¼ 0. In each panel,

ψ ð2ÞðβÞ ¼ ψ ð1Þð−βÞ. The solid triangles show the parameter
values used in Figs. 2 and 3.
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SRBs have slightly different eigenvalues and, conse-
quently, the growth rates than the ABs. Expanding Eqs. (7)
using the small parameter γ (γ2 ≪ 1), and separating the
real and imaginary parts, in the first order, we have

χ1;3i¼Oðγ2Þþχð∓Þ
AB −γ; χ1;3r¼Oðγ2Þþρð∓Þ−ω;

χ2;4i¼Oðγ2Þ−χð∓Þ
AB −γ; χ2;4r¼Oðγ2Þ−ρð∓Þ−ω: ð9Þ

The nonlinear superposition of one pair of quasi-ABs with
two different eigenvalues (9) produces potentially a vector
SRB. However, not every kind of combination of the
eigenvalues leads to the SRB generation.
Let us first consider the defocusing case. When σ ¼ −1,

we have μjγ¼0 > 0, νjγ¼0 > 0. This yields, from Eq. (8),

χðþÞ
AB ¼ 0, but χð−ÞAB ≠ 0 [when ðμ − ffiffiffi

ν
p Þjγ¼0 < 0]. Only the

eigenvalues χ1, χ2 are valid for the quasi-ABs, since χ3, χ4
become almost real (χ3i → 0, χ4i → 0), see Eqs. (9). As a
result, the superposition of two quasi-ABs with eigenvalues
χ1, χ2 can produce a vector SRB.
This should be further substantiated by considering the

exact relation between the MI and the SRBs. In our
previous work [28] involving 2 × 2 Lax matrixes, we have
revealed the exact link between them. It was found that the
growth rate G is equal to the absolute difference of group
velocities of paired quasi-ABs ΔVg. In other words,
G ¼ γΔVg. However, for vector SRBs this relation is more
complex. It involves specific eigenvalues of individual
quasi-ABs. Namely,

ΔVgðχ1; χ2Þ ¼ jVgðχ1Þ − Vgðχ2Þj: ð10Þ

By inserting (9) into (10) and omitting the higher-order

terms, we have ΔVgðχ1; χ2Þ ¼ jðω=γÞχð−ÞAB j. Comparing the
expressions for G and ΔVg, we have

G ¼ γΔVgðχ1; χ2Þ: ð11Þ

Equation (11) describes the explicit relation between the
MI and the SRBs in the defocusing case.
The main difference of vector SRBs from the SRBs of a

scalar NLSE is the complex amplitude profiles in the
components ψ ð1Þ and ψ ð2Þ. These profiles differ signifi-
cantly and cannot be reduced to a single function at any
β ≠ 0. These solutions are true vector SRBs. Only in the
limit β → 0, the two components become linearly related
thus leading to the scalar SRBs. The scalar SRBs do not
exist in the defocusing case as can be seen from Fig. 1(a).
They can only exist in the focusing regime, as follows from
the lhs panel in Fig. 1(b).
The exact SRB solutions can be constructed by perform-

ing the higher iterations of Darboux transformation. Such
iteration directly leads to the nonlinear superposition of the
fundamental quasi-ABs (Kth-order solutions where K is an

even number), where each breather is associated with an
individual eigenvalue and free parameters ðx0k; t0k; θkÞ,
k ¼ 1;…; K. If θk is fixed, the spatiotemporal distribution
of such SRB strongly depends on the relative separations in
both x and t, i.e., δx ¼ fx01;…; x0Kg, and δt ¼
ft01;…; t0Kg [45]. They are cumbersome and will not be
presented here in explicit form. Instead, we present them
graphically. An alternative way to obtain them is the direct
numerical simulations of Eqs. (1). By definition, the SRBs
can be excited using the initial conditions in the form of
periodic perturbation of the vector plane wave that is
localized in x:

ψ ðjÞ ¼ ψ ðjÞ
0 ½1þ ϵLpðx=xWÞ cosðωxÞ exp½iϕðjÞ��: ð12Þ

The localized function Lp is either the sech-function Lp ¼
sechðx=xWÞ or a Gaussian function Lp ¼ exp ð−x2=x2WÞ
with xW being the width of the localisation. The width xW
must be comparable to that of the exact solutions, 1=ð2γÞ.
The modulation frequency ω is the same as in the exact
solution while ϵ is the small amplitude (ϵ ≪ 1). The phases
ϕðjÞ are arbitrary. We let ϕðjÞ ¼ 0. We have shown that once
xW and ω are fixed by the exact solutions, ϕðjÞ are not
essential for the vector SRB excitation (see Supplemental
Material [45] for more numerical simulations).
Figure 2 displays the amplitude profiles of the vector

field obtained from (a) numerical simulations and (b) exact
solutions for the defocusing case (σ ¼ −1). The plane wave
in (12) is unstable relative to the modulation and evolves
into two dark quasi-ABs with opposite velocities. Despite
using the approximate initial conditions, numerical simu-
lations and exact solutions [ψ ðjÞðχ1; χ2Þ] are in good
agreement except for the SRB position in t. This can be
seen from Fig. 2(a) as well as from the detailed comparison
of the wave profiles in Fig. 2(b). Once the parameters (ω,

FIG. 2. Amplitude distributions of vector SRBs with σ ¼ −1.
(a) Numerical simulations started with (12), (b) Exact solution
jψ ðjÞðχ1; χ2Þj. Dashed lines illustrate the group velocities of
individual breathers. (c) Amplitude profiles at fixed values of t
in (a) and (b). Parameters are β ¼ 1, γ ¼ 0.059, ω ¼ 0.8,
δx ¼ f−4.8177;−2.6905g, δt ¼ f0.6511;−0.0300g, θ1 ¼ 0,
θ2 ¼ π, and xW ¼ 15, ϕðjÞ ¼ 0, ϵ ¼ 0.01.
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xW) are taken from the exact solutions, the input (12)
generates the SRBs with good accuracy.
Figure 1(b) shows that the focusing regime (σ ¼ 1) is

more complicated. Here, two subcases can be distin-
guished: νjγ¼0 ≥ 0 and νjγ¼0 < 0. When νjγ¼0 ≥ 0, only
χ1 and χ2 are valid eigenvalues for the quasi-ABs [left panel
in Fig. 1(b)]. On the contrary, when νjγ¼0 < 0, all four
eigenvalues (9) are valid [right panel in Fig. 1(b)].
However, not every nonlinear superposition leads to the
SRB. In particular, from Eq. (9) we have

ΔVgðχ1; χ3Þ ¼ ΔVgðχ2; χ4Þ ¼
����
ω

γ
χð−ÞAB

����: ð13Þ

The growth rate is G ¼ γΔVgðχ1; χ3Þ ¼ γΔVgðχ2; χ4Þ.
Then, there are two types of SRBs sharing the same growth
rate G for any given localized periodic modulation with the
width 1=γ and the frequency ω. They correspond to the
superposition of quasi-ABs either with the eigenvalues χ1
and χ3 or χ2 and χ4.
Figures 3(a) and 3(b) show the amplitude evolution of

these two SRBs, jψ ðjÞðχ1; χ3Þj and jψ ðjÞðχ2; χ4Þj, respec-
tively. They demonstrate complimentary wave patterns.
The SRB jψ ðjÞðχ1; χ3Þj clearly shows the two quasi-ABs
with periodic dark structures in ψ ð1Þ component and
periodic bright structures in ψ ð2Þ component. On the
contrary, the SRB jψ ðjÞðχ2; χ4Þj shows periodic bright
structures in ψ ð1Þ component and periodic dark structures
in ψ ð2Þ component. The angles of propagation of individual
quasi-ABs in the two superpositions correspond to their
group velocities that depend on the eigenvalues. This
creates an asymmetry in the SRB patterns.
More complex SRBs that involve four eigenvalues can

be constructed in the focusing case. These are fourth-order
solutions that are superpositions of four quasi-ABs. We
denote such a solution as ψ ðjÞðχ1; χ3; χ2; χ4Þ. The ampli-
tudes are presented in Fig. 4(b). It can be considered as a

superposition of the two types of SRBs shown in Figs. 3(a)
and 3(b).
Such a solution can be also generated in numerical

simulations using the same initial conditions (12) that
generate lower-order SRBs. The results are shown in
Fig. 4(a). The correspondence between the numerical results
and exact solution requires careful adjustment of parameters.
They aregiven in the caption to the figure.Wehave tomention
that the excitation of such higher-order structures using the
initial conditions (12) is possible only when the two lowest-
order SR breathers share the same MI growth rate.
In conclusion, we presented the theory of SRBs for

Manakov equations. It can be useful in practical applica-
tions and for the interpretation of experimental results. In
optics, defocusing vector breathers can be observed using
the platform developed in [36]. It potentially can be used to
experimentally reproduce solutions from the present Letter.
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