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Twisted light carries a nonzero orbital angular momentum, that can be transferred from light to electrons
and particles ranging from nanometers to micrometers. Up to now, the interplay between twisted light with
dipolar systems has scarcely been explored, though the latter bear abundant forms of topologies such as
skyrmions and embrace strong light-matter coupling. Here, using first-principles-based simulations, we
show that twisted light can excite and drive dynamical polar skyrmions and transfer its nonzero winding
number to ferroelectric ultrathin films. The skyrmion is successively created and annihilated alternately at
the two interfaces, and experiences a periodic transition from a markedly “Bloch” to “Néel” character,
accompanied with the emergence of a “Bloch point” topological defect with vanishing polarization. The
dynamical evolution of skyrmions is connected to a constant jump of topological number between “0” and
“1” over time. These intriguing phenomena are found to have an electrostatic origin. Our study thus
demonstrates that, and explains why this unique light-matter interaction can be very powerful in creating
and manipulating topological solitons in functional materials.
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With their noncolinear spin patterns and particlelike
features [1,2], skyrmions have attracted enormous interests
in condensedmatter physics. Their unique properties, such as
topological Hall effect [3,4] and low current-driven motion
[5,6], enable promising applications, including racetrack
memory and logic gates [7–10]. Inspired by these discoveries,
scientists recently aimed to seek an electric counterpart of
topological solitons in ferroelectric systems, as they can be
more easily controlled by an electric field [11–13]. Polar
patterns with skyrmion topologies have been predicted in
BaTiO3=SrTiO3 nanocomposites and bulk PbTiO3 by first-
principles-based approaches [14,15], and lately skyrmion-
like polar solitons have been observed in ðPbTiO3Þn=
ðSrTiO3Þn superlattices and SrTiO3=PbðZrxTi1−xÞO3=
SrTiO3 heterostructures [16–18]. Different from magnetic
skyrmions forming out of asymmetric exchange interaction
between spins [19,20], nontrivial ferroelectric structures
typically originate from a competition between elastic,
electrostatic, and gradient energies [14,21].
In addition to magnetic spins and electric dipoles,

skyrmion can also be constructed from other three-
dimensional vector fields. By controlling the interference
of plasma polaritons on a patterned metallic plate, the
optical skyrmion lattice can be established from evanes-
cent electromagnetic waves [22–24]. Unlike static mag-
netic and polar skyrmions, optical skyrmions display a
dynamical characteristic due to the nature of electromag-
netic fields. By using time-resolved photoemission elec-
tron microscopy, it is observed that the field configuration
of Néel skyrmions evolves over time in a repetitive pattern
marked by the continuous reversal of the out-of-plane
components, resulting in a periodic modulation of the

skyrmion number [25]. Such spatial-temporal variations of
vector fields, which provide valuable insights into sky-
rmion dynamics, are rarely seen in other media, including
both magnetic and ferroelectric materials.
In this Letter, we present a promising approach to induce

dynamical polar skyrmions at interfacial layers in ferro-
electric PbðZrxTi1−xÞO3 (PZT) ultrathin films, allowing
such topological defects to evolve in a controllable manner.
By introducing interaction between electric dipoles and
external nontrivial light, dipoles form a skyrmion and it
dynamically evolves between a markedly “Bloch” type to
“Néel” type, as a transient electrodynamic response to the
optical field. A topological defect “Bloch point” with
vanishing polarization is identified in ferroelectrics and
is involved in skyrmion creation [26–28]. Moreover, the
robustness of the mechanism manifests itself in the sense
that the skyrmion is well maintained under different
conditions, and its intrinsic characteristics such as size
and switching speed are highly tunable by controlling
external variables of the beam. Our study thus shows that
the ferroelectric system can serve as a promising platform
for presenting polar patterns that exhibit dynamical char-
acters via light-matter interaction.
The optical field we introduce into the PZT ultrathin

films is called the optical vortex (OV) beam, which is akin
to superfluid vortices and carries a nonzero orbital angular
momentum (OAM) [29–31]. In recent works, nonuniform
heating and magnetic field in the form of a vortex beam
have been predicted to induce topological defects in chiral
magnets [32,33]. Here, we explore whether the nontrivial
optical field can be printed on dipoles to create topological
solitons in ferroelectric systems.
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Technically, we use a first-principles-based effective
Hamiltonian approach to study ferroelectric ultrathin films
made of PbðZr0.4Ti0.6ÞO3 [34–36]. Under different mecha-
nical and electrical conditions, PZT and related systems
have been found to exhibit several exotic phases, including
vortex [37], flux closure [38], and nanobubble domains
[39]. Here, we introduce the lowest order of the “Laguerre-
Gaussian” beam (i.e., l ¼ 0) propagating along the direc-
tion normal to the film and passing through the center of
each (001) layer to interact with the well-equilibrated
monodomain at 10 K (Fig. 1) [29]. As such, the time-
dependent, in-plane electric field can be written as

E⃗ðr⃗; tÞ ¼ E0
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Here, e⃗x and e⃗y are polarization vectors along the x and y
axes that are lying along the [100] and [010] pseudocubic
(p. c.) directions, respectively; mϕ and σ characterize the
phase twist of the field and the handness of the polarization,
corresponding to orbital and spin angular momentum,
respectively; E0, ω, and w denote the field magnitude,
light frequency, and beam radius, respectively. r⃗ (ρ, ϕ, z) is
the position vector from the center of the supercell to any
B-site of the film in cylindrical coordinates. In the present
work, we set ω ¼ 1 THz, w ¼ 5 unit cells (u.c.), and we
consider σ ¼ 1; m ¼ −1 for simplicity; as such, this elec-
tric field E⃗ always has an in-plane orientation and carries a
winding number wv½E⃗� ¼ −m [40]. The characteristic time
of polarization switching τ can be estimated from the
kinetic energy and the leading self-energy of local mode

(see Supplemental Material [41]), and τ ≈ 0.1 ps falls in the
range of the variation of a THz electric field. Computational
details about other parameters and justifications for choos-
ing their values are detailed in the Supplemental Material.
We turn on the OAM field at t ¼ 0. Molecular dynamics

simulations show that at the time t ¼ 3 ps, the local dipoles
already establish a well-defined cyclical motion passing
through a sequence of states shown in Figs. 2(a) and 2(b).
Each of such states has a continuous rotational symmetry
around the central line of the vortex beam. Hence, in the
subpanels of Fig. 2(a) we show the distribution of dipoles
only in one of the radial cross sections, i.e., the y ¼ 40
ðx; zÞ plane passing through the rotational symmetry axis.
Technically, the slab used to model our PZT films have
eight (001) layers, including one for the substrate (layer 1),
five for the film (layers 2–6), and two for the vacuum
(layers 7 and 8). Additionally, we schematically show in
Figs. 2(a1) and 2(b1) the structural evolution of the dipoles
in the top and bottom ðx; yÞ planes of the film (further plots
showing the time evolution of dipole configurations at
these two planes are reported in Fig. S2).
At t ¼ 3.3 ps [Fig. 2(a)] the polar structure is homo-

geneous throughout all layers. The dipoles both at the
center of the beam (ρ ¼ 0) and in the far-field region
(ρ > 13 u:c:) retain their original downward orientation. In
contrast, at the intermediate distances from the central line
(1 < ρ < 10 u:c:), the out-of-plane component (Pz) of
electric dipoles is suppressed. Within this ring-shaped
region, the in-plane components Px and Py grow following
the intensity profile of the beam [Fig. 1(a)] and form an
anticlockwise vortex pattern [see the 0.25T field configu-
ration in Fig. 1(b)] where T denotes the period of the field.
The rotations from the out-of-plane to in-plane orientations
have a pronounced Bloch character as illustrated in the top
leftmost panel of Fig. 2(a). Overall, the structure at t ¼
3.3 ps can be described as an anticlockwise annular vortex
with downwards polarized core and surrounded by a
downwards polarized matrix.
As time passes, the downwards polarized core (ρ ¼ 0)

rapidly undergoes a partial switching. For instance, at
t ¼ 3.4 ps the direction of the central dipole in top plane
(z ¼ 6) is already reversed to Pz > 0. At the same time, the
core dipoles in all other planes are still oriented downwards
but their magnitude decreases with increasing z. Such
inhomogeneous core structure persists from t ≈ 3.38 ps up
to t ≈ 3.75 ps, i.e., during almost a full half-period. It is
also important to note that owing to the gradient of Pz at
ρ ¼ 0, the magnitude of the central dipole in the z ¼ 5

plane almost vanishes at t ¼ 3.5 ps and t ¼ 3.6 ps. As will
be discussed later, such quasisingular behavior as well as
the reversal of Pz at the top layer are nontrivial topological
features. Note, however, that all layers possess similar
patterns for the in-plane dipole components Px and Py at
any given time (see Fig. S1).

FIG. 1. Illumination of poled PZT films by an OV beam.
(a) The helical wavefront represents the OV beam. The red
“doughnut” shape in the upper left corner denotes the circularly
symmetric intensity profile of the l ¼ 0 and m ¼ 1 “Laguerre-
Gaussian” mode, and the colorful palette shows its phase
variation of 2π. Local electric dipoles are represented by cones
pointing down. (b) The evolution of the beam-generated electric
fields within the film. The four panels show subsequent field
configurations (anticlockwise, convergent, clockwise, and diver-
gent vortices) separated by quarter of a period T.
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Another structural change that occurs during the first
half-period is the rotation of the dipoles around the z axis
[top row in Fig. 2(a)] which is remindful of the evolution of
the OAM field [Fig. 1(b)]. Such rotation gradually trans-
forms the dominant Bloch component at t ¼ 3.3 ps into its
center-convergent Néel counterpart at t ¼ 3.5–3.6 ps until,
having accomplished a 180° turn, the dipolar structure
regains its assertive Bloch character at t ¼ 3.7 ps, but is
reversed with respect to t ¼ 3.3 ps [rightmost vs leftmost
top panel in Fig. 2(a)].
Thereby, the first half-period ends at t ¼ 3.8 ps with an

annular vortex state akin to the t ¼ 3.3 ps structure but
in a clockwise manner. During the second half-period

t ¼ 3.8–4.2 ps [Fig. 2(b)], dipoles at each site continue
to rotate anticlockwise around the z axis. Such rotations
generate the center-divergent (e.g., t ¼ 4.0 ps) and the
anticlockwise (e.g., t ¼ 4.2 ps) vortex patterns in the
(x,y) planes. The corresponding mutual transformation of
Bloch and Néel rotations are schematically shown in the
top row of Fig. 2(b). Moreover, similar to the first half-
period evolution, the core polarization is partially switched
during t ¼ 3.88–4.25 ps. Yet, the reversal of Pz is rather
observed in the bottom (z ¼ 2) plane of the film, while in
all other planes the magnitude of Pz increases with z.
Consequently, the quasisingular point (P ≈ 0) occurs in the
z ¼ 3 plane.

FIG. 2. Effective Hamiltonian simulation of the electric dipole evolution in the presence of an OAM field. (a) The view of the dipole
configuration in the y ¼ 40 plane in the first half-period (3.3–3.7 ps), containing Px and Pz (denoted by black arrows). The horizontal
axis denotes the site number along the [100] direction and the vertical axis denotes the index of the (001) layers. Top row illustrates the
“Bloch” ⟶ “Néel” ⟶ “Bloch” rotations of the dipoles at the top layer (z ¼ 6) highlighted by the black box. (a1) Schematic plot
about the dynamical skyrmion evolution at the top interfacial layer during the first half-period (3.3–3.7 ps). (b) Similar to (a), the view of
the dipole configuration in the y ¼ 40 plane in the second half-period (3.8–4.2 ps). Top row illustrates the “Bloch” ⟶
“Néel” ⟶ “Bloch” rotations of the dipoles at the bottom layer (z ¼ 2) highlighted by the black box. (b1) Schematic plot about
the dynamical skyrmion evolution at the bottom interfacial layer during the second half-period (3.8–4.2 ps).

PHYSICAL REVIEW LETTERS 132, 026902 (2024)

026902-3



One can readily notice [Figs. 2(a1) and 2(b1)] that the
optical vortex creates polar skyrmion textures at the top and
bottom interfaces of the film whenever the direction of the
central dipole in the corresponding layers is reversed. This
observation is confirmed by the calculated evolution of the
skyrmion numberNSk for z ¼ 2–6 planes [Fig. 3(a)]. As the
in-plane dipole components closely follow the morphology
of the OAM field, the skyrmion helicity γ also continuously
evolves with time accompanying the vortex beam’s phase,
i.e., γ ¼ ωtðmod 2πÞ [1]. For instance, a perfectly center-
divergent (convergent) Néel skyrmion characterized by γ ¼
0 (γ ¼ π) forms at t ¼ T (t ¼ 0.5T) on the bottom (top)
interface; in contrast, at the same time, center-divergent
(convergent) skyrmions never occur at the top (bottom)
plane [Figs. 2(a1) and 2(b1)]. Additionally, at t ¼ 0.25T or
t ¼ 0.75T (γ ¼ �π=2), the system always opts for a
topologically trivial annular vortex state instead of Bloch
skyrmions. Since the dipoles forming the skyrmion texture
have to cover the full body angle, such behavior is
topologically tied to the inhomogeneous switching of Pz
at the center line.
Interestingly, such switching is not a direct effect of the

beam-generated field since E⃗ðr⃗; tÞ lacks an out-of-plane
component at all times but also vanishes at ρ ¼ 0. Instead,
the switching mechanism roots in the electrostatic inter-
actions between Px;y and Pz. Namely, the development of
the radial component of polarization leads to a buildup of
an electric bound charge ρx;yb ¼ −ð∂xPx þ ∂yPyÞ. In
response, by adopting a monotonically changing PzðzÞ,
the material develops a bound charge ρzb ¼ −∂zPz to

compensate ρx;yb [illustrated in Fig. 3(b)]. Such mechanism
is further confirmed by our calculations of bound charges
ρzb and ρ

x;y
b evolving with time (see Supplemental Material).

Thereby, depending on the sign and magnitude of ρx;yb , the
reversal of Pz occurs either in the vicinity of the top or
bottom interfaces whenever d≳ jPz

maxj=jρzbj, where d
denotes the film thickness. On interfacial layers, the
continuity condition is naturally removed, so polarization
there can have more abrupt change compared to pola-
rization at layers far from the interface. This condition
also defines the minimum values of parameters (i.e., field
magnitude E0 and film thickness d) required to create polar
skyrmion textures by the OAM light (see Supplemental
Material). We also expect that it is more difficult to induce a
dynamical polar skyrmion in a much thicker PZT film,
where the response of electric polarization and bound
charge to the external electric field gets weaker due to a
stronger dielectric screening and a weaker surface depo-
larization field in a 3D-like system.
The evolution of Pz and ρb with time also allows one to

explain the formation of polar skyrmions from a topologi-
cal perspective. Specifically, the continuity of polarization
does not allow Nsk to vary with time, unless a topological
transition occurs. This can be realized by introducing a
Bloch point, a three-dimensional singularity with vanishing
polarization. Such defect has been seen to mediate the
dynamical evolution of magnetic skyrmions [99]. As being
composed of planes with different Nsk, Bloch point can
induce a jump of Nsk by 1 when going through these
planes. The above discussion about Fig. 2 points out a
negligible dipole moment at the center of layer 3 or layer 5
when skyrmion is present. Indeed, with the same method
used in Ref. [27], by computing the topological charge of
each cell, we find a negatively charged (−1) Bloch point at
the center between layer 2 and layer 3 during 3.9–4.2 ps,
and a positively charged (þ1) Bloch point at the center
between layer 5 and layer 6 during 3.4–3.7 ps, in concert
with the presence of a skyrmion. According to Fig. 2, both
Bloch points have spiraling configurations evolving with
time as schematically shown in Fig. 3(c), and they are
involved in the creation of polar skyrmions. Note at 3.5 and
3.6 ps (4.0 and 4.1 ps), the dipole at the center of layer 5
(layer 3) exhibits extremely small magnitudes, indicating
the singularity feature of a Bloch point; while at 3.4 and
3.7 ps (3.9 and 4.2 ps), the dipoles there have a more
notable magnitude, and the exact position of a Bloch point
can be determined by interpolating dipoles at the center of
adjacent layers along z directions.
We note Nsk of the two interfacial layers stay on “0” and

“1” alternately. This behavior keeps proceeding as long as
the OAM field does not vanish (Fig. S7). The intercon-
version between Nsk of 0 or 1 highly resembles digital
binary signals and suggests that this dynamical skyrmion
can be implemented as a component in logic gates. The
variation of the skyrmion number also bears resemblance to

FIG. 3. Topological and electrostatic origin of the OAM-
induced skyrmion. (a) The variation of skyrmion number Nsk
at each layer with time. (b) Illustration about bound charge
density ρx;yb induced by Px;y, and ρ

z
b induced by Pz to compensate

ρx;yb . (c) Illustration about two spiraling Bloch points located
between layer 5 and layer 6 (first half-period) and between layer 2
and layer 3 (second half-period). 90° denotes dipole evolution
with time. (d) The variation of averaged Pz within skyrmion
radius at each layer with time.
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that of optical skyrmion constructed from surface plasmon
polariton [22,25], owing to its transient nature that dipoles
adjust their alignments instantly to the incident OAM field.
Though Nsk cannot be directly observed, it is associated
with the switching of out-of-plane dipole components. This
can be probed by measuring the out-of-plane polarization
Pz using interdigited electrodes [12]. Figure 3(d) shows
how Pz averaged within the skyrmion radius at each (001)
layer changes with time. With periodic evolution of dipole
components, we see that when the corresponding Néel-type
skyrmion is formed, Pz at layer 2 or layer 6 reaches its
maxima and has positive values, in contrast to negative
values at most other times. By tuning the magnitude of the
OAM field E0, as well as thickness of the film and its
screening to the depolarization field, the positive Pz value
can be further increased, resulting in a more prominent
detection signal (see Figs. S5, S6, S9). The subpicosecond
period represents a much faster switching process, as
compared to conventional memory devices (μs) and mag-
netic skrymions (ns) [100]. Furthermore, the switching
period of Nsk can be tuned by the frequency of the field
(Fig. S8). As we vary the field magnitude and the screening
of the depolarization field, the skyrmions are stabilized
when parameters span a large range (Fig. S5 and Fig. S9).
Moreover, by delicately tuning the electrostatic energy,
namely, starting from a stripe phase, the lifetime of the
dynamical skyrmion can be extended: the dynamical
skyrmion survives even when the field is much lower than
the minimal threshold magnitude, and it evolves into a
stable skyrmion even after the field is removed (see
Supplemental Material and Fig. S9).
In summary, we predict that the nontrivial winding

pattern of the field in an optical vortex beam can be
imprinted in ferroelectrics, and dipolar skyrmions will
emerge and evolve dynamically out of an electrostatic
cooperation between microscopic bound charges and the
external field. This unusual light-matter interaction delivers
a new perspective about dynamically manipulating topo-
logical solitons in ferroelectric materials.
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