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We investigate order parameter fluctuations in the Hubbard model within a time-dependent Gutzwiller
approach. While in the weak coupling limit we find that the amplitude fluctuations are short-lived due to a
degeneracy with the energy of the edge of the quasiparticle continua (and in agreement with
Hartree-Fockþ RPA theory), these are shifted below the edge upon increasing the interaction. Our
calculations therefore predict undamped amplitude (Higgs) oscillations of the order parameter in strongly
coupled superconductors, cold atomic fermion condensates, and strongly interacting charge- and spin-
density wave systems. We propose an experimental realization for the detection of the spin-type Higgs
mode in undoped cuprates and related materials where, due to the Dzyaloshinsky-Moriya interaction, it can
couple to an out-of-plane ferromagnetic excitation that is visible via the Faraday effect.
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The appearance of amplitude and phase modes in BCS
superconductors is a consequence of the breaking of Uð1Þ
symmetry (for a review, see Ref. [1]). The invariance of the
ground state energy with respect to the phase of the
complex order parameter Δ leads to the appearance of a
Goldstone mode that is pushed up to the plasma frequency
by the long-range Coulomb interaction [2]. This work has
inspired the development of a similar theory in the Lorentz
invariant case, which could account for the mass of gauge
bosons in the standard model [3–5]. Recently, due to this
analogy, the amplitude modes in a superconductor (SC) are
also named “Higgs modes”; see, e.g., Refs. [1,6–19].
In a SC, the energy of the Higgs mode is determined

from the pole in the pair correlation function χΔΔðωÞ [20].
For an s-wave SC and within BCS theory (density of states
ρðϵÞ, coupling λ) this correlation function reads

χΔΔðωÞ ¼
χð0ÞΔΔðωÞ

1 − λχð0ÞΔΔðωÞ
ð1Þ

with the bare BCS correlations

χð0ÞΔΔðωÞ ¼ 2

Z
dϵρðϵÞ ϵ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ2 þ ϵ2
p 1

ω2 − 4ðΔ2 þ ϵ2Þ ; ð2Þ

and Δ denotes the SC order parameter. Thus, the denom-
inator of Eq. (1) vanishes exactly at ω ¼ 2Δ where it
reduces to the BCS self-consistency condition

1 ¼ −
λ

2

Z
dϵ

ρðϵÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ϵ2

p : ð3Þ

As a result, the energy of the Higgs mode is identical to the
spectral gap and the associated damping, due to the decay

into quasiparticle excitations, together with its property as a
scalar quantity has hampered the experimental detection of
the Higgs mode via conventional spectroscopy. In princi-
ple, the application of a supercurrent can make the Higgs
mode infrared active [21]; however, the associated breaking
of inversion symmetry also allows for optical transitions
across the SC gap, even in the clean case [22,23].
Therefore, current research related to the detection of the
Higgs mode mainly focuses on nonequilibrium (and) or
nonlinear response techniques [7,8,17] as third-harmonic
generation in time-resolved terahertz spectroscopy. How-
ever, also in this case it is difficult to disentangle Higgs and
single-particle excitations across the gap [24] since both
occur at the same energy and often yield comparable
contributions to the response [25–27]. A notable exception
is the case of NbSe2 where due to the coexistence of s-wave
SC with a charge-density wave (CDW) the Higgs mode can
be pushed below the spectral gap, which allows to
distinguish both excitations in Raman scattering [28–32].
It should be stressed that (in the absence of coexisting

orders) the equality of Higgs mode energy and spectral gap
is peculiar to s-wave BCS SCs. For other pairing sym-
metries this is no longer valid and, e.g., for a d-wave SC the
signature of the Higgs mode in fact can appear slightly
below the maximum spectral gap. However, it turns out that
in this case the mode does not correspond to a pole in the
pairing correlation function, which together with the finite
density of quasiparticle excitations inside the gap leads to
comparable difficulties in the experimental observability as
in the s-wave case.
Here, we show that even for a pure s-wave condensate

the situation changes dramatically, when a mean-field BCS
picture does not apply and correlations become important.
For SCs in the strongly coupled regime, we predict a shift
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of the Higgs mode energy below the spectral gap leading to
a long-lived collective mode. This provides a sharp tool to
determine if a SC is in the strong-coupling regime, which is
certainly of relevance for ultracold atom experiments
where the strong-coupling regime is easily achieved
[33]. Furthermore, we also analyze the appearance of
amplitude (“Higgs”) modes in itinerant antiferromagnets
where analogous mechanisms are at work due to the
breaking of spin-rotational symmetry and the strong-
coupling regime applies to a variety of condensed matter
systems. We propose an experimental setup that should
allow identifying these excitations in undoped (antiferro-
magnetic) cuprates and related materials.
As our considerations are both valid for a magnetically

ordered state or a SC, we start our discussion with the
repulsive single-band Hubbard Hamiltonian relevant for the
former,

H ¼ −t
X
hiji;σ

c†i;σcj;σ þ jUj
X
i

�
ni;↑ −

1

2

��
ni;↓ −

1

2

�
; ð4Þ

where h…i restricts the sum to the nearest neighbor sites,
−t is the hopping amplitude, and jUj parametrizes the
strength of the on-site repulsive interaction. Here, ni ¼P

σ ni;σ with ni;σ ¼ c†i;σci;σ.
We focus on the interaction dependence of amplitude

modes in the particle-hole symmetric limit of the bipartite
model (half-filling) where SC charge-ordered and spin-
ordered ground states are related by canonical transforma-
tions of the Hamiltonian [34,35] (see Appendix).
It is convenient to define the staggered spin operators,

Ŝi ¼
1

2
eiQ:Ri

�
c†i;↑; c

†
i;↓

�Tσ
�
ci;↑
ci;↓

�
: ð5Þ

Here, σ is the vector of Pauli matrices and Q ¼ ðπ; πÞ for a
square lattice (lattice constant a≡ 1).
In the repulsive case, broken symmetry appears as a spin-

density wave (SDW) with uniform staggered magnetization
m, which can be oriented in any direction, i.e., hŜii ¼ m=2.
The mean-field Hamiltonian takes the form

HMF ¼ −t
X

hiji;σσ0
qσσ

0
ij c†i;σcj;σ0 þ

X
i

λ · Ŝi; ð6Þ

with qσσ
0

ij ¼ δi;jδσ;σ0 and λ ¼ −jUjm. The invariance of the
ground state with respect to the orientation of m generates
the Goldstone spin-wave modes, whereas fluctuations of
jmj correspond to the spin amplitude mode.
From Eq. (6) it follows that within standard Hartree-Fock

theory, the amplitude of the order parameter Δ ¼ jλj ¼
Ujmj also determines the spectral gap 2Δ for single-particle
excitations. As a consequence, the Higgs excitations have a
minimum energy of 2Δ that can be immediately derived

from the corresponding RPA equation [Eq. (1)],
cf. Ref. [36].
In order to study the relation between Higgs excitation

and spectral gap beyond a mean-fieldþ RPA scheme, the
model Eq. (4) is solved within the time-dependent
Gutzwiller approximation (TDGA) [37–45] based on a
wave function,

jΨGiðtÞ ¼ P̂GjHFi; ð7Þ

where the time-dependent Gutzwiller projector P̂G optimizes
the number of doubly occupied states in the underlying
Hartree-Fock state jHFi (seeRef. [46] for a finite temperature
extension). The solution can be obtained from a time-
dependent variational principle that allows to compute the
time-dependent density matrix ρðtÞ and variational double-
occupancy parameters DiðtÞ ¼ hΨGjni;↑ni;↓jΨGiðtÞi. We
have previously shown that the dynamic correlation functions
for the two-dimensional Hubbard model, obtained within
the TDGA, are in very good agreement with corresponding
results from exact diagonalization on small lattices,
MonteCarlo, and dynamicalmean-fieldmethods [37–41,45].
In case of the TDGA, the underlying quasiparticle

Hamiltonian also takes the form of Eq. (6) but now the
hopping renormalization qσσ

0
ij ðn;m; DÞ is a function of

charge density n, magnetization m, and double occupancy
D [39]. More importantly, the parameter λ in the TDGA
originates from a constraint that links the double-
occupancy parameter to the fermion operators and in
general is not directly related to the order parameter for
the SDW. As a consequence, the associated dynamics is
generally different, which leads to a decoupling of ampli-
tude fluctuations and spectral gap in the TDGA.
Thanks to the repulsive-attractive transformation [34,35]

(see Appendix) the above considerations apply also to the
attractive Hubbard model. Indeed, applying Eqs. (A1) and
(A2) one finds that an antiferromagnetic ground state with
magnetization in the xy plane transforms into a SC state,
whereas a state with staggered magnetization along the z
direction transforms into a CDW. In the case of the SC the
quasiparticle wave function in Eq. (7) becomes a BCS state,
i.e., jHFi ¼ jBCSi [47].
Figure 1 shows the spectrum of Higgs excitations for the

half-filled two-dimensional square lattice (bandwidth
parameter B ¼ 4t). Here, the momentum of the (imaginary
part of the) order parameter correlation function χΔΔðq;ωÞ
corresponds to q ¼ ðπ; πÞ in case of SDW and CDW,
whereas q ¼ ð0; 0Þ for the SC. Clearly, in HFþ RPA (red
dashed) the enhancement of χΔΔðq;ω ¼ 2ΔÞ indicates the
presence of amplitude excitations at ω ¼ 2Δ, the value of
which is indicated by the vertical dashed line. On the
other hand, the low energy peak in the corresponding
TDGA correlations starts to shift below the spectral gap of
the quasiparticle continuum (vertical solid line) when the
interaction becomes larger than the bandwidth jUj=B≳ 1.

PHYSICAL REVIEW LETTERS 132, 026501 (2024)

026501-2



In addition, one observes the formation of a high-energy
double-occupancy (“doublon”) excitation above the con-
tinuum of single-particle excitations.
We have checked that both HFþ RPA and TDGA obey

the first-moment sum rule, [48,49]

1

π

Z
∞

0

dωωImχΔΔðq;ωÞ ¼ 2hTi;

where hTi denotes the kinetic energy in the corresponding
ground state. Clearly, the Higgs mode and the high-energy
doublon excitation have opposite roles in the sum rule and
tend to cancel in the average kinetic energy.
Figure 2 shows the evolution of the spectral gap and the

Higgs mode energy vs the interaction jUj=B. For U=B≳ 1
both energy scales start to separate up to U=B ≈ 2,
corresponding to the total bandwidth where the relative
shift (inset) acquires a maximum. The subsequent decrease
of the relative shift for larger values of U=B is not only due
to the increase of 2Δ but also due to a slight decrease of
2Δ −ΩHiggs beyond jUj=B ¼ 2.
As mentioned above, the splitting of ΩHiggs from the

continuum above a critical Uc is due to the fact that the
spectral gap and the order parameter become decoupled
within the TDGA. It is not influenced by an anomalous
power in the real part of the (bare) amplitude correlation

function, which still displays the BCS-like 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ΔÞ2 − ω2

p
behavior.
We checked that the above results are not exclusive of the

two-dimensional square lattice but are quite robust and also
present, for example, in the Bethe lattice with coordina-
tion number z → ∞ for which the exact evaluation of
expectation values within the Gutzwiller wave function
coincides with the Gutzwiller approximation [50]. In
the following, we present results for this model, which
has a particularly simple semicircular density of states,
ρðωÞ ¼ ð1=πÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − ω2

p
.

Let us study first the density dependence of the Higgs
mode for the attractive model, where away from half-filling
the SC instability dominates over the CDW. Instead of
evaluating the amplitude correlation function, we explicitly
study the time evolution under the influence of an infini-
tesimal interaction quench U → U � δU (δU=U ¼ 0.005).
The energy of the Higgs mode is then obtained from a
Fourier transformation of the resulting dynamics of the
anomalous correlation function JðtÞ ¼ hdi;↓di;↑i of the
attractive Hubbard model [Eq. (A3)]. Here, without loss
of generality, we assume a real order parameter.
Transformations [Eqs. (A1) and (A2)] map the HFþ

RPA approximation of the repulsive Hubbard model into a
bare ladder approximation in the attractive case, which
becomes exact at low densities [42,51] as it coincides with
Galitskii’s approach [52]. Our TDGA also converges to the
correct low-density limit, where one finds that the energy of
the Higgs mode in the attractive model coincides with the
spectral gap in the particle-particle continuum (see Fig. 3
for jUj=B ¼ 2). However, as the density increases, the
Higgs mode shifts inside the spectral gap. For the present
parameters, in the low-density limit, the fermions form
bound states, so the ground state can be seen as a Bose
condensate characterized by a chemical potential below the
lower band edge. The vertical dotted line in Fig. 3 marks the
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FIG. 1. Imaginary part of the amplitude correlation function
χΔΔðq;ωÞ for the half-filled 2D Hubbard model in case of a SC
(attractive model, q ¼ 0), a CDW (attractive model, q ¼ Q), or a
SDW (repulsive model, q ¼ Q) ground state. Panels (a)–(c) refer
to different interactions jUj=B ¼ 0.75, 1.25, 1.75, and black (red)
lines correspond to the TDGA (HFþ RPA) result. The green
vertical solid (dashed) line indicates the spectral gap of the
particle-hole continuum (particle-particle continuum in the SC
case) in case of TDGA (HFþ RPA).
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FIG. 2. Main panel: TDGA energies of the spectral gap 2Δ
(black) and the Higgs mode (red) as a function of jUj=t for the
half-filled 2D Hubbard model. Inset: relative shift of the Higgs
mode inside the spectral gap.
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density below, which the chemical potential moves below
the lower band edge and defines the Bose condensation
regime. We see that the divergence of the Higgs mode from
the edge of the quasiparticle continuum sets in practically at
the same density.
In the low-density regime, where ΩHiggs coincides with

the spectral gap, the decay into single-particle excitations
induces the same damping ∼1=

ffiffi
t

p
in the time evolution of

the anomalous correlation as in the conventional BCS case,
cf. inset n ¼ 0.1. As soon as the Higgs mode is split off
from the continuum the dynamics does not show any
damping (cf. inset n ¼ 0.2); however with increasing
density a stronger admixture with double-occupancy fluc-
tuations leads to interesting coupling phenomena [47].
SCs by definition are charged and one has to take into

account the long-range Coulomb interaction that pushes the
Goldstone mode to high energy [2], thus eliminating a
decay channel for the amplitude excitation. On the other
hand, the prerequisite of strong coupling hampers the
observability of a subgap Higgs mode in superconducting
materials since it requires an interaction that is at least of
the order of the bandwidth, cf. Figs. 2 and 3. In principle,
ultracold fermionic quantum gases can provide a platform
to investigate in a controlled way the coherent modes of
superfluid systems [33,53–55] where the interaction
strength can be tuned via Feshbach resonances [56].
After our work was submitted, it was reported [57] that
a long-lived amplitude mode, as predicted here, indeed
appears in the strongly interacting regime of an ultracold
quasi-2D Fermi gas.
Concerning “condensed matter systems,” we propose

that the antiferromagnetic order observed in many tran-
sition metal oxide materials is an ideal playground for
studying the subgap Higgs mode corresponding to the

associated spin amplitude fluctuations. As an example, we
consider undoped high-Tc superconductors, for which the
repulsive Hubbard model, including a next-nearest neigh-
bor hopping t0, can account for the antiferromagnetic state.
For the undoped system, Fig. 4 reports previous results

for the low-energy transverse magnetic excitations [58,59]
in very good agreement with inelastic neutron experiments
from Coldea et al. [60]. The same figure shows the lower
bound of the continuum (red) at ∼2 eV, which at q ¼ 0
would correspond to the onset of charge excitations as seen
in the optical conductivity. The blue symbols report the
prediction for the amplitude mode, which in the magnetic
Brillouin zone would appear well below the continuum. A
much weaker signal from the charge correlations (which
are mixed to the longitudinal spin excitations) is also
expected to appear in the “nuclear zone” (green symbols)
near q ¼ 0. It should be noted that corresponding signa-
tures of subgap modes have been previously obtained in the
antiadiabatic limit of the TDGA [61] and from Gaussian
fluctuations around slave-boson saddle points [62] without,
however, linking this feature to the possibility of undamped
Higgs excitations.
Also in the present case, the scalar property of subgap

spin amplitude excitations makes them invisible in the
optical conductivity. In principle, the scattering by impu-
rities can provide a dipole moment; however, this would
similarly broaden the onset of the continuum and therefore
put in jeopardy a clear subgap feature. Polarized resonant
inelastic x-ray scattering would be an ideal experimental
tool for the detection of the subgap spin amplitude mode;
however, in cuprates the relevant energy range is dominated
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by the dd excitations, which would overshadow the
corresponding signatures. More promising could be a
resonant inelastic x-ray scattering experiment in AgF2
where the charge transfer excitations are at significantly
higher energy than in cuprates while the energy of dd
excitations is similar [63].
Here, we propose that the spin amplitude mode at q ¼

ðπ; πÞ can be transferred to an out-of plane q ¼ ð0; 0Þ
excitation through the Dzyaloshinsky-Moriya interaction
[64], which is present in most cuprates and induces spin-
canting (angleΘ, cf. Fig. 5) with a concomitant out-of plane
ferromagnetic alignment. The idea, which we outline in the
following, is that the amplitude (Higgs) fluctuations couple
to fluctuations of this ferromagnetic moment (Fig. 5), which
can be detected by magneto-optical methods.
In the low-temperature oxide LTO1 phase of La2CuO4

the ferromagnetic moments between adjacent planes are
coupled antiferromagnetically, so that a sufficiently large
magnetic field has to be applied in order to generate the
spin-flop transition to a global ferromagnet [65,66]. This is
not necessary in the LTO2 phase of La2−xNdxCuO4 [67–
70] or in AgF2 [71], which are globally and spontaneously
weak ferromagnets even in the absence of an external field.
Fluctuations in the ferromagnetic moment Mc along the

c axis can be measured using Raman scattering via the
magneto-optical Faraday effect. The Raman Hamiltonian
reads [72]

ĤR ¼ −
i
8π

ðEa
I E

b
S − Eb

I E
a
SÞfc1cMc: ð8Þ

Here, fc1c is the relevant component of the first-order
magneto-optical constant tensor and Eμ

I , Eν
S are the

basal-plane components of the incoming and scattered
light electric field. The Raman spectra is proportional to
the Fourier transform of the dynamical magnetic suscep-
tibility χM;MðtÞ ¼ −iθðtÞhMðtÞ;Mð0Þi. Because of the
mixing between the amplitude mode and the magnetization
(cf. Fig. 5) the Raman intensity becomes IRðωÞ¼
ðEa

I E
b
S−Ey

IE
x
SÞ2½sin2θχΔΔðωÞþcos2θχ⊥ðωÞ�. Here, χ⊥ðωÞ

is a transverse susceptibility, while the term χΔΔðωÞ gives
access to the Higgs mode of the antiferromagnet. By this
process, an incident photon with frequency ω polarized,
i.e., along the x direction is absorbed and subsequently
emitted with frequency ω�Ω along the y direction. Thus,

this dynamic generalization of the Faraday effect gives
access to the detection of the spin amplitude mode. In
contrast to the case of a SC, where the low-energy mode is
shifted to the plasma frequency by long-range Coulomb
interactions, this is not the case for the magnons of the
antiferromagnet. Therefore, the amplitude mode, though
split off from the continuum, can still decay into magnons,
which, however, should only lead to minor damping due to
the large energy separation between both excitations [73].
In summary, we found that in systems with an isotropic

continuous order parameter, the Higgs amplitude excitation
can manifest as a long-lived mode when the coupling
becomes sufficiently strong. This is in stark contrast to the
result from weak coupling BCS or Hartree-Fock theories,
where this mode always appears at the energy of the
spectral gap and is strongly damped. Besides the possibility
of detecting the mode in cold atom systems, we propose
that in the low-temperature LTO2 phase of La2−xNdxCuO4

and related materials the spin amplitude mode couples to
the out-of-plane ferromagnetic moment, which therefore
can be measured from the frequency-dependent Faraday
rotated optical signal.
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Appendix: Repulsive-attractive transformation.—The
sign of the interaction in the Hamiltonian Eq. (4) can be
reversed by a canonical transformation that allows the
mapping of different ground states [34,35]. The trans-
formation reads

ci;↑ ¼ di;↑ ðA1Þ
ci;↓ ¼ eiQRid†i;↓; ðA2Þ

with Q ¼ ðπ=a; π=aÞ and lattice constant a≡ 1, and one
obtains

H ¼ −t
X
hiji

d†i;σdj;σ − jUj
X
i

�
ni;↑ −

1

2

��
ni;↓ −

1

2

�
ðA3Þ

with densities defined as before (ni;σ ¼ d†i;σdi;σ). The
transformation [Eqs. (A1), (A2)] also maps the staggered
spin operator [Eq. (5)] to real-space Anderson pseudo-
spins J but with staggered charge density,

Ji ¼
1

2

0
BBB@

d†i;↑d
†
i;↓ þ di;↓di;↑

i
�
−d†i;↑d

†
i;↓ þ di;↓di;↑

�
eiQRi

�
d†i;↑di;↑ þ d†i;↓di;↓ − 1

�

1
CCCA: ðA4Þ

FIG. 5. Staggered spin structure with a small ferromagnetic
component along the c axis as found in the LTO1 phase of
La2CuO4. For simplicity, we show only a Cu-O chain. Because of
the Dzyaloshinsky-Moriya interaction, an amplitude excitation at
the antiferromagnetic wave vector (shown as semitransparent red
arrows) implies an oscillation of the ferromagnetic moment along
the c direction.

PHYSICAL REVIEW LETTERS 132, 026501 (2024)

026501-5



[1] D. Pekker and C. M. Varma, Amplitude/Higgs modes in
condensed matter physics, Annu. Rev. Condens. Matter
Phys. 6, 269 (2015).

[2] P. W. Anderson, Coherent excited states in the theory of
superconductivity: Gauge invariance and the Meissner
effect, Phys. Rev. 110, 827 (1958).

[3] P. W. Higgs, Broken symmetries, massless particles and
gauge fields, Phys. Lett. 12, 132 (1964).

[4] F. Englert and R. Brout, Broken symmetry and the mass of
gauge vector mesons, Phys. Rev. Lett. 13, 321 (1964).

[5] G. Guralnik, C. R. Hagen, and T.W. B. Kibble, Global
conservation laws and massless particles, Phys. Rev. Lett.
13, 585 (1964).

[6] Shunji Tsuchiya, R. Ganesh, and Tetsuro Nikuni, Higgs
mode in a superfluid of Dirac fermions, Phys. Rev. B 88,
014527 (2013).

[7] R. Matsunaga, Y. I. Hamada, K. Makise, Y. Uzawa, H. Terai,
Z. Wang, and R. Shimano, Higgs amplitude mode in the
BCS superconductors Nb1−xTx N induced by terahertz
pulse excitation, Phys. Rev. Lett. 111, 057002 (2013).

[8] Ryusuke Matsunaga, Naoto Tsuji, Hiroyuki Fujita, Arata
Sugioka, Kazumasa Makise, Yoshinori Uzawa, Hirotaka
Terai, Zhen Wang, Hideo Aoki, and Ryo Shimano, Light-
induced collective pseudospin precession resonating with
Higgs mode in a superconductor, Science 345, 1145 (2014).

[9] T. Cea and L. Benfatto, Nature and Raman signatures of the
Higgs amplitude mode in the coexisting superconducting
and charge-density-wave state, Phys. Rev. B 90, 224515
(2014).

[10] M.Swanson, Y.-L. Loh, M. Randeria, and N. Trivedi,
Dynamical conductivity across the disorder-tuned super-
conductor-insulator transition, Phys. Rev. X 4, 021007
(2014).

[11] G. E. Volovik and M. A. Zubkov, Higgs bosons in particle
physics and in condensed matter, J. Low Temp. Phys. 175,
486 (2014).

[12] P. W. Anderson, Higgs, Anderson and all that, Nat. Phys. 11,
93 (2015).

[13] D. Sherman, U. S. Pracht, B. Gorshunov, S. Poran, J.
Jesudasan, M. Chand, P. Raychaudhuri, M. Swanson, N.
Trivedi, A. Auerbach, M. Scheffler, A. Frydman, and M.
Dressel, The Higgs mode in disordered superconductors
close to a quantum phase transition, Nat. Phys. 11, 188
(2015).

[14] A. F. Kemper, M. A. Sentef, B. Moritz, J. K. Freericks, and
T. P. Devereaux, Direct observation of Higgs mode oscil-
lations in the pump-probe photoemission spectra of elec-
tron-phonon mediated superconductors, Phys. Rev. B 92,
224517 (2015).

[15] L. Schwarz and D. Manske, Theory of driven Higgs
oscillations and third-harmonic generation in un-
conventional superconductors, Phys. Rev. 101, 184519
(2020).

[16] H. Chu, M. J. Kim, K. Katsumi et al., Phase-resolved Higgs
response in superconducting cuprates, Nat. Commun. 11,
1793 (2020).

[17] R. Shimano and N. Tsuji, Higgs mode in superconductors,
Annu. Rev. Condens. Matter Phys. 11, 103 (2020).

[18] S. Pashalou, H. Goudarzi, M. Khezerlou, and S. A. Jafari,
Higgs-mode signature in ultrafast electron dynamics in

superconducting graphene, Phys. Rev. B 104, 174307
(2021).

[19] H. P. Ojeda Collado, N. Defenu, and J. Lorenzana, Engi-
neering Higgs dynamics by spectral singularities, Phys. Rev.
Res. 5, 023011 (2023).

[20] T. Cea, C. Castellani, G. Seibold, and L. Benfatto, Non-
relativistic dynamics of the amplitude (Higgs) mode in
superconductors, Phys. Rev. Lett. 115, 157002 (2015).

[21] S. Nakamura, Y. Iida, Y. Murotani, R. Matsunaga, H. Terai,
and R. Shimano, Infrared activation of the Higgs mode by
supercurrent injection in superconducting NbN, Phys. Rev.
Lett. 122, 257001 (2019).

[22] M. Papaj and J. E. Moore, Current-enabled optical conduc-
tivity of superconductors, Phys. Rev. B 106, L220504
(2022).

[23] P. J. D. Crowley and L. Fu, Supercurrent-induced resonant
optical response, Phys. Rev. B 106, 214526 (2022).

[24] B. Mansart, J. Lorenzana, A. Mann, A. Odeh, M.
Scarongella, M. Chergui, and F. Carbone, Coupling of a
high-energy excitation to superconducting quasiparticles in
a cuprate from coherent charge fluctuation spectroscopy,
Proc. Natl. Acad. Sci. U.S.A. 110, 4539 (2013).

[25] T. Cea, C. Castellani, and L. Benfatto, Nonlinear optical
effects and third-harmonic generation in superconductors:
Cooper pairs versus Higgs mode contribution, Phys. Rev. B
93, 180507(R) (2016).

[26] G. Seibold, M. Udina, C. Castellani, and L. Benfatto, Third
harmonic generation from collective modes in disordered
superconductors, Phys. Rev. B 103, 014512 (2021).

[27] M. Udina, J. Fiore, T. Cea, C. Castellani, G. Seibold, and L.
Benfatto, Hz non-linear optical response in cuprates: Pre-
dominance of the BCS response over the Higgs mode,
Faraday Discuss. 237, 168 (2022).

[28] R. Sooryakumar and M. V. Klein, Raman scattering by
superconducting-gap excitations and their coupling to
charge-density waves, Phys. Rev. Lett. 45, 660 (1980);
C. A. Balseiro and L. M. Falicov, Phonon Raman scattering
in superconductors, Phys. Rev. Lett. 45, 662 (1980).

[29] R. Sooryakumar and M. V. Klein, Raman scattering from
superconducting gap excitations in the presence of a
magnetic field, Phys. Rev. B 23, 3213 (1981).
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