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The quantum geometry has significant consequences in determining transport and optical properties in
quantum materials. Here, we use a semiclassical formalism coupled with perturbative corrections unifying
the nonlinear anomalous Hall effect and nonreciprocal magnetoresistance (longitudinal resistance) from the
quantum geometry. In the dc limit, both transverse and longitudinal nonlinear conductivities include a term
due to the normalized quantum metric dipole. The quantum metric contribution is intrinsic and does not
scale with the quasiparticle lifetime. We demonstrate the coexistence of a nonlinear anomalous Hall effect
and nonreciprocal magnetoresistance in films of the doped antiferromagnetic topological insulator
MnBi2Te4. Our work indicates that both longitudinal and transverse nonlinear transport provide a
sensitive probe of the quantum geometry in solids.
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Introduction.—The quantum geometry of wave func-
tions significantly impacts transport properties in quantum
materials [1–3]. It is encoded in the quantum geometric
tensor [4], which includes the Berry curvature [5] and a
quantum metric [4,6,7]. As is well-known, the Berry
curvature causes the intrinsic anomalous Hall effect in
magnetic materials [8,9]. In similar vein, it has been
suggested that the Berry curvature dipole [10] and the
quantum metric [11] generate a nonlinear anomalous Hall
effect (NLAHE). The former was predicted [12,13] and
shortly after realized experimentally in Weyl semimetals
(e.g., WTe2 and MoTe2) [14–16]. More recently, the latter
has been predicted to appear in antiferromagnetic metals
(e.g., CuMnAs) [17–19]. The NLAHE might be useful in
optoelectronic applications such as terahertz detection and
radio frequency rectification [20–22].
Another nonlinear transport phenomenon that has

recently gained attention is the nonreciprocalmagnetoresist-
ance (NMR) (also called electric magnetochiral anisotropy)
[23]. Here, the longitudinal resistance exhibits a second-
order correction that can be reversed by the magnetism or a
magnetic field, acting as a magnetic diode. It is extensively
studied in noncentrosymmetric or chiral materials [24–29].
The NMR is believed to originate either from the inelastic
scattering by magnons [30] and spin clusters [31] or
alternatively from the second-order Drude conductivity
caused by an asymmetric band structure [32,33]. We note
that previous theories based on the Berry curvature or
quantum metric [11,17,18,34] lead to a vanishing second-
order conductivity in the longitudinal direction.
In this Letter, we propose a unification of the NLAHE

and NMR in the same theory framework of second-order

perturbation theory, based on the quantum geometry. For
the NLAHE, we find a significant interband correction
related to the quantum metric. This quantum metric
correction leads to a compact expression [i.e., Eq. (12)]
for the nonlinear transport in metals and concomitantly
predicts a NMR (i.e., a nonvanishing longitudinal nonlinear
conductivity). Here, this NMR is created partially by the
normalized quantum metric dipole, besides by the known
Drude term. We further provide a scaling relation with the
linear conductivity (σk) to separate three contributions at
second order: namely, the (i) normalized quantum metric
dipole (independent of σk), (ii) Berry curvature dipole
(linear to σk), and (iii) Drude weight (quadratic to σk).
These three contributions can be distinguished by sym-
metry restrictions, as summarized in Table I. We demon-
strate the coexistence of a large NLAHE and the NMR in
thin films of the well-studied, doped antiferromagnetic
(AFM) topological insulator, MnBi2Te4 [35], and call for
experimental verification. Our findings indicate that

FIG. 1. Schematics of the nonlinear anomalous Hall effect
(NLAHE) and nonreciprocal magnetoresistance (NMR) due to
the anomalous motion of wave packets induced by the quantum
geometry. The dependence of the current components Jx, Jy with
respect to the electric field Ex are illustrated on the right.
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nonlinear longitudinal and transverse transports provide a
sensitive probe for the quantum geometry in solids, as
illustrated in Fig. 1.
Semiclassical kinetic equation.—We derive the nonlinear

conductivity for a generic metal from a modification to the
Boltzmann equation. Similar calculations have been per-
formed very recently using the Kubo formalism [36–38],
where the manipulations can be done order by order in the
lifetime. In the following, we show that by combining
perturbation theory and the Boltzmann approach, such an
analysis reveals that the renormalization of quasiparticle
properties enables longitudinal nonlinear current response,
stemming from the quantum geometry.
Within the semiclassical approach, the nonlinear con-

ductivity arises from a renormalization of the distribution
function and quasiparticle operators due to the applied
field, consistent with other approaches. In the semiclassical
approach, corrections that are independent of scattering
time arise solely due to correction to ground state quan-
tities, while the scattering time enters through the time
evolution of the distribution function. For the electron
distribution function fðr;k; tÞ, the Boltzmann equation is,

∂tf þ F
ℏ
∇kf þ v∇rf ¼ IðfÞ: ð1Þ

Here, F is the semiclassical force in the presence of electric
field, F ¼ eE, v is the band diagonal velocity given by
vcnðkÞ ¼ ∂kcεnðkÞ, with εnðkÞ being the energy of Bloch
state n with momentum k. For a uniform perturbation, we
drop the spatial gradient acting on the distribution function.
I refers to the collision integral, and throughout this work
we adopt the relaxation time approximation and set
IðfÞ ¼ −½ðf − f0Þ=τ�, where τ is the scattering time and
f0 is the Fermi Dirac distribution. The solution to the
equation follows by an order-by-order (in electric field)
expansion of the density, f ¼ f0 þ f1 þ f2 þ � � �. The
zeroth order evolves trivially in time, as expected.
Working in the frequency domain, the two relevant devia-
tions from equilibrium are

iωf1þ
eE
ℏ
∂kf0¼−

f1
τ
; iωf2þ

eE
ℏ

∂kf1¼−
f2
τ
: ð2Þ

As the current is given by j ¼ −e
R
k vf, it is imperative to

consider correction to second order in the applied field not
only in f but also in v.
We study these corrections using a modified form of the

Luttinger-Kohn method [39]. In the presence of an electric
field, the band Hamiltonian H0 is modified by the coupling
term H1 ¼ −eE · r, where r is the position operator. The
effective low energy degrees of freedom are therefore given
by a renormalized band Hamiltonian H0, which can be
obtained through the unitary transformation H0 ¼ eSHe−S.
To fix S, we expand eSHe−S to first order in E, with the
condition

H1 þ ½S;H0� ¼ 0: ð3Þ

This yields the matrix elements

Snm ¼ −e
EaAa

nm

εnm
; n ≠ m; ð4Þ

where Snn ¼ 0 and εnm ¼ εn − εm. The interband Berry
connection is defined as Aa

nm ¼ hnkjr̂jmki. The immedi-
ate effect of the transformation S is in the renormalization
of operators. The diagonal part of the Berry connection is
analogously transformed, A → eSA−S,

A0a
n ¼ Aa

n þ ½S;Aa�n ¼ Aa
n − eEbGba

n : ð5Þ

The energy is accordingly renormalized,

ε0n ¼ εnðkÞ − eE · r0n ¼ εnðkÞ þ e2Gab
n EaEb; ð6Þ

whereGab
n ¼P

m≠n½ðAa
nmAb

mnþAb
nmAa

mnÞ=εnm� is the band-
normalized quantum metric and r0n is the linear correc-
tion toAn, Eq. (5) (the full derivation of the correction to the
Hamiltonian is found in the Supplemental Material [40]. The
velocity operator incurs both a first- and second-order
correction via dressing with S, giving

v0an ¼ ∂ε0n
∂ka

þ ½S; va�nn ¼ v0an − eE ×Ω0
n: ð7Þ

The term linear in E is the familiar anomalous velocity,
which is itself corrected by the electric field. The corrected
Berry curvature is then obtained via

Ω0αβ ¼ ∂αA
0β
n − ∂βA0α

n : ð8Þ

Scattering time analysis.—The solutions to Eq. (2) give
terms that depend explicitly on the scattering time τ.
Working iteratively, it is

f1 ¼
−eE∇kf0
ℏðiωþ 1=τÞ ; f2 ¼

e2EaEb

ℏ2ðiωþ 1=τÞ2
∂f0

∂ka∂kb
: ð9Þ

We arrive at two charge current pieces along the c direction
at second order in the electric field, which depend explicitly
on the scattering time

jc1 ¼ −
eEaEb

ℏ

X
n

Z
k

e2

ðiωþ 1=τÞ2
∂
2fn

∂ka∂kb

∂εn
∂kc

;

jc2 ¼
eEaEb

ℏ

X
n

Z
k

e2

ðiωþ 1=τÞ
∂fn
∂ka

Ωbc
n þ ða ↔ bÞ: ð10Þ

Here, jc1 results from combining the second-order correc-
tion to the density f2 [right-hand term in Eq. (9)] with the
unperturbed band velocity vcn ¼ ð∂εn=∂kcÞ. jc2, similarly
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draws from the perturbed velocity in Eq. (7) with the first-
order correction in f1 [left-hand term in Eq. (9)]. Note that
the sum is over all ground state single-particle bands n.
Besides the terms generated by the perturbation of the
semiclassical density (jc1;2), there are extra corrections to
the operators. The associated currents are due to corrections
to the dispersion (jcdisp) and to the anomalous velocity
(jcanom), respectively. We stress that although these currents
couple to the equilibrium density, they exist only for finite
electric field. They are given by

jcdisp ¼ −
eEaEb

ℏ

Z
k
f0v0cn ¼ −

e3EaEb

ℏ

X
n

Z
k
fn∂kcG

ab
n ;

jcanom ¼ e2

ℏ

Z
k

f0
2
ðEaΔΩac

n þ EbΔΩbc
n Þ; ð11Þ

where in the last line the expressions are written manifestly
symmetric with respect to (a ↔ b). We also include the
linear-in-field contribution to the Berry curvature with the
notation ΔΩac ¼ −ðeEa∂kaG

ba
n − eEb∂kcG

cb
n Þ. Assembling

all terms ðjc1; jc2; jcdisp; jcanomÞ, one arrives at the conductivity,
which is given by jc=EaEb,

σab;c ¼ −
e3τ2

ℏ3

X
n

Z
k
fn∂ka∂kb∂kcεn ð12aÞ

−
e3τ
ℏ2

X
n

Z
k
fnð∂kaΩbc

n þ ∂kbΩac
n Þ ð12bÞ

−
e3

ℏ

X
n

Z
k
fn

�
2∂kcGab

n −
1

2
ð∂kaGbc

n þ ∂kbG
ac
n Þ

�
: ð12cÞ

We observe that ∂kaGbc
n is the band-normalized quantum

metric dipole. Equation (12a) refers directly to the non-
linear Drude weight [36] and is obtained by integrating
twice by parts the first line in Eq. (10). Similarly, the Berry
curvature dipole Eq. (12b) is obtained by integrating by
parts the second line of Eq. (10), in agreement with
Ref. [10]. The intrinsic contribution, which is τ-indepen-
dent in Eq. (12c), is caused by the band-normalized
quantum metric dipole. The Fermi surface contribution
to the current of this intrinsic term is obtained again by
integrating by parts. It should be noted that Eq. (12c)
violates the (a, b, c) cyclic permutation symmetry, the
source of which is a gravitational anomaly [19].
Discussion.—As demonstrated, Eq. (12c) naturally de-

composes into jcdisp, which propagates with the current
direction ∂kcGab

n , and the purely transverse current jcanom,
related to ∂kcGab

n − 1
2
ð∂kaGbc

n þ ∂kbG
ac
n Þ, which vanishes

whenever a ¼ b ¼ c [11,46]. Therefore, Eq. (12) naturally
unifies both longitudinal and transverse effects at nonlinear
order. Specifically, we find that the longitudinal component
(i.e., the NMR) has contributions from both the Drude

conductivity (∼τ2) and the band-normalized quantummetric
dipole, independent of τ. On the other hand, the NLAHE is
constituted by the Berry curvature dipole at order τ, and
again the band-normalized quantum metric dipole. The
band-normalized quantum metric Gab

n thus enters in both
the longitudinal and the transverse components.
The second-order conductivity has received much atten-

tion lately, with some variation in the precise form of the
expressions due to the large number of terms involved
[11,38,47,48]. While there is some disagreement between
different approaches regarding coefficients, in all works
there exists a broad consensus that the nonlinear conduc-
tivity is nonzero at all orders of τ. A simple criterion to
validate our result is that Eq. (12) respects the intrinsic
permutation symmetry when exchanging Ea and Eb, as
required by the dc response. The common geometric origin
of longitudinal and transverse components shows that
unlike for the linear conductivity, at second order, valuable
information about the band structure geometry is accessible
in either spatial component.
We point out two possible limitations of our calculation.

First, second-order perturbation theory captures the instan-
taneous response of the system, but is insensitive to
nonperturbative effects like a steady-state equilibration at
long times. Second, we focused on effects of the band
structure in a system with finite quantum lifetime τ. Further
extrinsic contributions to the conductivity beyond the
relaxation time approximation were neglected. In principle,
the nonlinear Hall effect is composed of extrinsic contri-
butions [49,50] that induce corrections to the nonlinear Hall
conductivity to all three contributions, at order τ2, τ, and τ0.
However, for a collinear antiferromagnet (such as MnBi2T4

discussed in the following section) skew scattering con-
tributions are expected to be significantly suppressed [47].
More exotic mechanisms such as anomalous skew scatter-
ing proposed by Ref. [51] require breaking of C3z symmetry
to appear, and are therefore not relevant in MnBi2Te4.
To detect the signatures of the quantum geometry in

experiments, we suggest examining the scaling relation
between the transverse second order (σð2Þ⊥ ) and longitudinal
linear conductivity (σk), which reads

σð2Þ⊥ ¼ η2ðσkÞ2 þ η1σk þ η0: ð13Þ

Here, the coefficients ηi denote the respective part of the
nonlinear conductivity that contributes at order OðτiÞ.
Namely, η2 contains the nonlinear Drude term, and if
present contributions from skew scattering [50]. η1 contains
the Berry curvature dipole term, as well as extrinsic
contributions related to side jump scattering. η0 contains
the effect of the normalized quantum metric. Similarly, for
the longitudinal components it holds that

σð2Þk ¼ η02ðσkÞ2 þ η01σk þ η00; ð14Þ
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where η01 will be nonzero only if there are extrinsic
contributions. Using these scaling relations, Eqs. (13)
and (14), it is therefore possible to isolate each of these
terms and to quantify both the NLAHE and the NMR.
Realization in a magnetic metal.—In Eq. (12), the Drude

term and the normalized quantum metric dipole are anti-
symmetric under momentum inversion (k → −k), which is
related to the inversion symmetry (P) or time-reversal
symmetry (T ). Thus, breaking both P and T is required to
obtain a nonzero contribution over the full Brillouin zone.
In contrast, the Berry curvature dipole integral requires
breaking both P and the combined symmetry PT (see
Table I).
While the NLAHE induced by the Berry curvature

dipole was already observed in many materials, it is much
harder to realize the quantum metric dipole-driven NLAHE
or likewise the NMR. We will now demonstrate the
coexistence of both NLAHE and NMR in a doped
AFM topological insulator, MnBi2Te4. MnBi2Te4 is a
layered Van der Waals material with the A-type AFM
structure. Thin film of this material with an even number
of layers break P and T , but preserve PT . The PT
symmetry specifically excludes the Berry curvature dipole

contribution in the NLAHE, so that we can focus on the
effect of the quantum metric. Experimentally, PT seems to
be weakly broken in some MnBi2Te4 samples. For exam-
ple, PT breaking was witnessed by the finite anomalous
Hall signal for a six-layer-thick film [52]. However, even in
this case the Berry dipole contribution to the NLAHE is
still strongly suppressed by the threefold rotational sym-
metry (C3z).
The crystal symmetry helps us understand the shape of

nonlinear conductivity tensor. In a 2D film of MnBi2Te4,
we set x along the lattice vector direction in the basal plane
for convenience. Here, C3z constrains that the NLAHE and
NMR share the same amplitude but opposite sign, i.e., it
holds that

σyy;x ¼ −σxx;x; σxx;y ¼ −σyy;y:

The combined symmetry [53] by mirror reflection
(Mx; x → −x) and T then enforces σxx;y ¼ −σyy;y ¼ 0.
Therefore, we only have one independent nonlinear con-
ductivity, the NLAHE conductivity σyy;x, or equivalently
the NMR conductivity σxx;x. When rotating the sample, we
obtain the angle (θ) dependence in the new coordinates
ðx0; y0Þ by σy

0y0;x0 ¼ −σx0x0;x0 ¼ cosð3θÞσyy;x.
Figure 2 shows the band structure and σyy;x calculated on

a eight-layer-thick (8L) film by first-principles methods.
We carried out ab initio density-functional calculations [54]
on slab models of 2,4,6,8 layered MnBi2Te4 with AFM
order. We then projected the converged wave functions of
each slab onto local Wannier functions [55] of Bi-p and Te-
p orbitals, which accurately span the energy window
around the Fermi level. The energy dispersion is asym-
metric between Γ − K̄ and Γ − K because both P and T are
broken. Each energy state is furthermore doubly degene-
rate due to PT symmetry. The lowest conduction bands
and highest valence bands contribute opposite signs in
the nonlinear conductivity. Between k and −k, bands

TABLE I. Symmetry restrictions for three contributions in
Eq. (12) for a two-dimensional system regarding the inversion
symmetry (P), time-reversal symmetry (T ), and combined PT
symmetry. With the rotational symmetries C3z related to
MnBi2Te4 film, both longitudinal (jk) and transverse currents
(j⊥) exists. We note that jk is dissipative because j · E ≠ 0,
despite that the quantum metric-induced jk is τ-independent.

Mechanism C3z P T PT jk j⊥
Nonlinear Drude ✓ ✗ ✗ ✓ ✓ ✓
Berry curvature dipole ✗ ✗ ✓ ✗ ✗ ✓
Quantum metric ✓ ✗ ✗ ✓ ✓ ✓

FIG. 2. Band structure and nonlinear conductivity of antiferromagnetic MnBi2Te4 thin films (σyy;x ≡ −σxx;x in this case). (a) The band
structure of an eight-layer (8L) thick film. The band-decomposed contribution to σyy;x is indicated by the color. (b)–(e) The energy
dependence of σyy;x for different films with the contribution from quantum metric (QM).
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contribute opposite signs to σyy;x, but at different amplitude.
Indeed, the asymmetry between k and −k leads to nonzero
σyy;x. As varying the Fermi energy, σyy;x shows sign
changes when a group of new bands appear at the Fermi
surface. It vanishes in the energy gap. Upon increasing the
number of layers from two to eight layers, the region near to
the lowest conduction band exhibits comparatively small
changes in σyy;x, while the valence band region changes
dramatically [see Fig. 2(c)]. This is related to the fact that
the lowest conduction bands are composed of gapped Dirac
surface states while the top valence states have a bulk origin
[42]. We therefore conclude that films thicker than two
layers have similar surface states in the lowest conduc-
tion bands.
Numerically, σyy;x is in the order of magnitude of several

mAnmV−2, when using a relaxation time τ¼ 0.04 ps to
evaluate the Drude weight. As MnBi2Te4 samples com-
monly suffer from defects and exhibit a low mobility [56],
the Drude contribution may be smaller in reality. The
presence of defects may also change the magnitude of the
conductivity due to the decreased band gap and renorm-
alization of surface state dispersion. A calculation for a
defective slab is presented in the Supplemental Material.
Given that similar transport devices have recently become
readily available [29,57], MnBi2Te4 films are ideal candi-
dates to explore the quantum metric-driven NLAHE
and NMR.
Summary.—We have shown that signatures of the

quantum geometry of the band structure are imprinted in
the second-order conductivity not only in the transverse
components but also in the longitudinal ones. To this end,
we derived a NLAHE and NMR, which both appear due to
the quantum metric, and explored their effect in thin films
of the PT -symmetric antiferromagnet MnBi2Te4. We
found an intrinsic contribution to both NLAHE and
NMR in antiferromagnetic thick films, providing an ideal
platform to detect the quantum metric.
Our results further strengthen the observation that non-

linear responses carry more intricate and at the same time
much more interesting information about the quantum
geometry than linear response functions [58,59]. It is
imperative to further explore these aspects systematically
in theory, for example for finite frequency response
functions, and also for the magnetotransport. At the same
time, present sample quality and device technology have
the capabilities to detect these phenomena experimentally.

Note added.—We note that the quantum metric-induced
NLAHE and NMR were observed in MnBi2Te4 thin films
by a very recent experiment [60].

We acknowledge helpful discussions with Professor
Weibo Gao from Nanyang Technological University and
Professor Yang Gao from University of Science and
Technology of China. B. Y. acknowledges financial support

by the European Research Council (ERC Consolidator
Grant No. 815869, “NonlinearTopo”) and Israel Science
Foundation (ISF No. 2932/21). D. K. acknowledges sup-
port from the Weizmann Institute Sustainability and Energy
Research Initiative.

*Corresponding author: binghai.yan@weizmann.ac.il
[1] A. Shapere and F. Wilczek, Geometric Phases in Physics

(World Scientific, Singapore, 1989), Vol. 5.
[2] A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, and J.

Zwanziger, The Geometric Phase in Quantum Systems:
Foundations, Mathematical Concepts, and Applications
in Molecular and Condensed Matter Physics (Springer,
New York, 2003).

[3] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on
electronic properties, Rev. Mod. Phys. 82, 1959 (2010).

[4] J. P. Provost and G. Vallee, Riemannian structure on mani-
folds of quantum states, Commun. Math. Phys. 76, 289
(1980).

[5] M. V. Berry, Quantal phase factors accompanying adiabatic
changes, Proc. R. Soc. A 392, 45 (1984).

[6] M. V. Berry, The quantum phase, five years after, Geom.
Phases Phys. 5, 7 (1989).

[7] N. Marzari and D. Vanderbilt, Maximally localized gener-
alized Wannier functions for composite energy bands, Phys.
Rev. B 56, 12847 (1997).

[8] T. Jungwirth, Q. Niu, and A. H. MacDonald, Anomalous
Hall effect in ferromagnetic semiconductors, Phys. Rev.
Lett. 88, 207208 (2002).

[9] M. Onoda and N. Nagaosa, Topological nature of anoma-
lous Hall effect in ferromagnets, J. Phys. Soc. Jpn. 71, 19
(2002).

[10] I. Sodemann and L. Fu, Quantum nonlinear Hall effect
induced by Berry curvature dipole in time-reversal invariant
materials, Phys. Rev. Lett. 115, 216806 (2015).

[11] Y. Gao, S. A. Yang, and Q. Niu, Field induced positional
shift of Bloch electrons and its dynamical implications,
Phys. Rev. Lett. 112, 166601 (2014).

[12] Y. Zhang, Y. Sun, and B. Yan, Berry curvature dipole in
Weyl semimetal materials: An ab initio study, Phys. Rev. B
97, 041101(R) (2018).

[13] Y. Zhang, J. van den Brink, C. Felser, and B. Yan, Electri-
cally tuneable nonlinear anomalous Hall effect in two-
dimensional transition-metal dichalcogenides WTe2 and
MoTe2, 2D Mater. 5, 044001 (2018).

[14] Q. Ma, S.-Y. Xu, H. Shen, D. MacNeill, V. Fatemi, T.-R.
Chang, A. M. Mier Valdivia, S. Wu, Z. Du, C.-H. Hsu, S.
Fang, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava,
E. Kaxiras, H.-Z. Lu, H. Lin, L. Fu, N. Gedik, and P. Jarillo-
Herrero, Observation of the nonlinear Hall effect under
time-reversal-symmetric conditions, Nature (London) 565,
337 (2019).

[15] K. Kang, T. Li, E. Sohn, J. Shan, and K. F. Mak, Nonlinear
anomalous Hall effect in few-layer WTe2, Nat. Mater. 18,
324 (2019).

[16] A. Tiwari, F. Chen, S. Zhong, E. Drueke, J. Koo, A.
Kaczmarek, C. Xiao, J. Gao, X. Luo, Q. Niu et al., Giant

PHYSICAL REVIEW LETTERS 132, 026301 (2024)

026301-5

https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1007/BF02193559
https://doi.org/10.1007/BF02193559
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevLett.88.207208
https://doi.org/10.1103/PhysRevLett.88.207208
https://doi.org/10.1143/JPSJ.71.19
https://doi.org/10.1143/JPSJ.71.19
https://doi.org/10.1103/PhysRevLett.115.216806
https://doi.org/10.1103/PhysRevLett.112.166601
https://doi.org/10.1103/PhysRevB.97.041101
https://doi.org/10.1103/PhysRevB.97.041101
https://doi.org/10.1088/2053-1583/aad1ae
https://doi.org/10.1038/s41586-018-0807-6
https://doi.org/10.1038/s41586-018-0807-6
https://doi.org/10.1038/s41563-019-0294-7
https://doi.org/10.1038/s41563-019-0294-7


c-axis nonlinear anomalous Hall effect in Td −MoTe2 and
WTe2, Nat. Commun. 12, 2049 (2021).

[17] H. Liu, J. Zhao, Y.-X. Huang, W. Wu, X.-L. Sheng, C. Xiao,
and S. A. Yang, Intrinsic second-order anomalous Hall
effect and its application in compensated antiferromagnets,
Phys. Rev. Lett. 127, 277202 (2021).

[18] C. Wang, Y. Gao, and D. Xiao, Intrinsic nonlinear Hall
effect in antiferromagnetic tetragonal CuMnAs, Phys. Rev.
Lett. 127, 277201 (2021).

[19] T. Holder, D. Kaplan, R. Ilan, and B. Yan, Mixed axial-
gravitational anomaly from emergent curved spacetime in
nonlinear charge transport, arXiv:2111.07780.

[20] Y. Zhang and L. Fu, Terahertz detection based on nonlinear
Hall effect without magnetic field, Proc. Natl. Acad. Sci.
U.S.A. 118, e2100736118 (2021).

[21] D. Kumar, C.-H. Hsu, R. Sharma, T.-R. Chang, P. Yu, J.
Wang, G. Eda, G. Liang, and H. Yang, Room-temperature
nonlinear Hall effect and wireless radiofrequency rectifica-
tion in Weyl semimetal TaIrTe4, Nat. Nanotechnol. 16, 421
(2021).

[22] Z. Z. Du, H.-Z. Lu, and X. C. Xie, Nonlinear Hall effects,
Nat. Rev. Phys. 3, 744 (2021).

[23] G. L. J. A. Rikken, J. Fölling, and P. Wyder, Electrical
magnetochiral anisotropy, Phys. Rev. Lett. 87, 236602
(2001).

[24] Y. Tokura and N. Nagaosa, Nonreciprocal responses from
non-centrosymmetric quantum materials, Nat. Commun. 9,
3740 (2018).

[25] K. Yasuda, T. Morimoto, R. Yoshimi, M. Mogi, A.
Tsukazaki, M. Kawamura, K. S. Takahashi, M. Kawasaki,
N. Nagaosa, and Y. Tokura, Large non-reciprocal charge
transport mediated by quantum anomalous Hall edge states,
Nat. Nanotechnol. 15, 831 (2020).

[26] W. Zhao, Z. Fei, T. Song, H. K. Choi, T. Palomaki, B. Sun,
P. Malinowski, M. A. McGuire, J.-H. Chu, X. Xu, and D. H.
Cobden, Magnetic proximity and nonreciprocal current
switching in a monolayer WTe2 helical edge, Nat. Mater.
19, 503 (2020).

[27] T. Ideue and Y. Iwasa, Symmetry breaking and nonlinear
electric transport in van der Waals nanostructures, Annu.
Rev. Condens. Matter Phys. 12, 201 (2021).

[28] J. Li, M. Rashetnia, M. Lohmann, J. Koo, Y. Xu, X. Zhang,
K. Watanabe, T. Taniguchi, S. Jia, X. Chen, B. Yan, Y.-T.
Cui, and J. Shi, Proximity-magnetized quantum spin
Hall insulator: Monolayer 1 T0WTe2=Cr2Ge2Te6, Nat.
Commun. 13, 5134 (2022).

[29] Z. Zhang, N. Wang, N. Cao, A. Wang, X. Zhou, K.
Watanabe, T. Taniguchi, B. Yan, and W.-b. Gao, Controlled
large non-reciprocal charge transport in an intrinsic m
agnetic topological insulator MnBi2Te4, Nat. Commun.
13, 6191 (2022).

[30] K. Yasuda, A. Tsukazaki, R. Yoshimi, K. S. Takahashi, M.
Kawasaki, and Y. Tokura, Large unidirectional magneto-
resistance in a magnetic topological insulator, Phys. Rev.
Lett. 117, 127202 (2016).

[31] H. Ishizuka and N. Nagaosa, Anomalous electrical
magnetochiral effect by chiral spin-cluster scattering, Nat.
Commun. 11, 2986 (2020).

[32] T. Ideue, K. Hamamoto, S. Koshikawa, M. Ezawa, S.
Shimizu, Y. Kaneko, Y. Tokura, N. Nagaosa, and

Y. Iwasa, Bulk rectification effect in a polar semiconductor,
Nat. Phys. 13, 578 (2017).

[33] Y. Liu, T. Holder, and B. Yan, Chirality-induced giant
unidirectional magnetoresistance in twisted bilayer gra-
phene, Innovation 2, 100085 (2021).

[34] Z.-Y. Zhuang and Z. Yan, Extrinsic and intrinsic nonlinear
Hall effects across Brry-dipole transitions, Phys. Rev. B
107, L161102 (2023).

[35] Y. Gong et al., Experimental realization of an intrinsic
magnetic topological insulator, Chin. Phys. Lett. 36, 076801
(2019).

[36] D. Kaplan, T. Holder, and B. Yan, Unifying semiclassics
and quantum perturbation theory at nonlinear order, SciPost
Phys. 14, 082 (2023).

[37] D. Kaplan, T. Holder, and B. Yan, General nonlinear Hall
current in magnetic insulators beyond the quantum anoma-
lous Hall effect, Nat. Commun. 14, 3053 (2023).

[38] Y. Michishita and N. Nagaosa, Dissipation and geometry in
nonlinear quantum transports of multiband electronic sys-
tems, Phys. Rev. B 106, 125114 (2022).

[39] J. M. Luttinger and W. Kohn, Motion of electrons and holes
in perturbed periodic fields, Phys. Rev. 97, 869 (1955).

[40] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.132.026301 for the
derivation of the energy correction and the effect of disorder
on the conductivity, which includes Refs. [41–45].

[41] M. Garnica, M. M. Otrokov, P. C. Aguilar, I. I.
Klimovskikh, D. Estyunin, Z. S. Aliev, I. R. Amiraslanov,
N. A. Abdullayev, V. N. Zverev, M. B. Babanly et al.,
Native point defects and their implications for the Dirac
point gap at MnBi2Te4ð0001Þ, npj Quantum Mater. 7, 7
(2022).

[42] H. Tan and B. Yan, Facet dependent surface energy gap on
magnetic topological insulators, Phys. Rev. B 105, 165130
(2022).

[43] X. Wu, C. Ruan, P. Tang, F. Kang, W. Duan, and J. Li,
Irremovable Mn-Bi site mixing in MnBi2Te4, Nano Lett. 23,
5048 (2023).

[44] H. Tan and B. Yan, Distinct magnetic gaps between
antiferromagnetic and ferromagnetic orders driven by sur-
face defects in the topological magnet MnBi2Te4, Phys.
Rev. Lett. 130, 126702 (2023).

[45] Y. Onishi, H. Watanabe, T. Morimoto, and N. Nagaosa,
Effects of relaxation on the photovoltaic effect and possi-
bility for photocurrent within the transparent region, Phys.
Rev. B 106, 235110 (2022).

[46] Y. Gao, Semiclassical dynamics and nonlinear charge
current, Front. Phys. 14, 33404 (2019).

[47] H. Watanabe and Y. Yanase, Nonlinear electric transport in
odd-parity magnetic multipole systems: Application to
Mn-based compounds, Phys. Rev. Res. 2, 043081 (2020).

[48] R. Oiwa and H. Kusunose, Systematic analysis method for
nonlinear response tensors, J. Phys. Soc. Jpn. 91, 014701
(2022).

[49] Z. Z. Du, C. M. Wang, S. Li, H.-Z. Lu, and X. C. Xie,
Disorder-induced nonlinear Hall effect with time-reversal
symmetry, Nat. Commun. 10, 3047 (2019).

[50] Z. Z. Du, C. M. Wang, H.-P. Sun, H.-Z. Lu, and X. C. Xie,
Quantum theory of the nonlinear Hall effect, Nat. Commun.
12, 5038 (2021).

PHYSICAL REVIEW LETTERS 132, 026301 (2024)

026301-6

https://doi.org/10.1038/s41467-021-22343-5
https://doi.org/10.1103/PhysRevLett.127.277202
https://doi.org/10.1103/PhysRevLett.127.277201
https://doi.org/10.1103/PhysRevLett.127.277201
https://arXiv.org/abs/2111.07780
https://doi.org/10.1073/pnas.2100736118
https://doi.org/10.1073/pnas.2100736118
https://doi.org/10.1038/s41565-020-00839-3
https://doi.org/10.1038/s41565-020-00839-3
https://doi.org/10.1038/s42254-021-00359-6
https://doi.org/10.1103/PhysRevLett.87.236602
https://doi.org/10.1103/PhysRevLett.87.236602
https://doi.org/10.1038/s41467-018-05759-4
https://doi.org/10.1038/s41467-018-05759-4
https://doi.org/10.1038/s41565-020-0733-2
https://doi.org/10.1038/s41563-020-0620-0
https://doi.org/10.1038/s41563-020-0620-0
https://doi.org/10.1146/annurev-conmatphys-060220-100347
https://doi.org/10.1146/annurev-conmatphys-060220-100347
https://doi.org/10.1038/s41467-022-32808-w
https://doi.org/10.1038/s41467-022-32808-w
https://doi.org/10.1038/s41467-022-33705-y
https://doi.org/10.1038/s41467-022-33705-y
https://doi.org/10.1103/PhysRevLett.117.127202
https://doi.org/10.1103/PhysRevLett.117.127202
https://doi.org/10.1038/s41467-020-16751-2
https://doi.org/10.1038/s41467-020-16751-2
https://doi.org/10.1038/nphys4056
https://doi.org/10.1016/j.xinn.2021.100085
https://doi.org/10.1103/PhysRevB.107.L161102
https://doi.org/10.1103/PhysRevB.107.L161102
https://doi.org/10.1088/0256-307X/36/7/076801
https://doi.org/10.1088/0256-307X/36/7/076801
https://doi.org/10.21468/SciPostPhys.14.4.082
https://doi.org/10.21468/SciPostPhys.14.4.082
https://doi.org/10.1038/s41467-023-38734-9
https://doi.org/10.1103/PhysRevB.106.125114
https://doi.org/10.1103/PhysRev.97.869
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.026301
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.026301
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.026301
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.026301
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.026301
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.026301
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.026301
https://doi.org/10.1038/s41535-021-00414-6
https://doi.org/10.1038/s41535-021-00414-6
https://doi.org/10.1103/PhysRevB.105.165130
https://doi.org/10.1103/PhysRevB.105.165130
https://doi.org/10.1021/acs.nanolett.3c00956
https://doi.org/10.1021/acs.nanolett.3c00956
https://doi.org/10.1103/PhysRevLett.130.126702
https://doi.org/10.1103/PhysRevLett.130.126702
https://doi.org/10.1103/PhysRevB.106.235110
https://doi.org/10.1103/PhysRevB.106.235110
https://doi.org/10.1007/s11467-019-0887-2
https://doi.org/10.1103/PhysRevResearch.2.043081
https://doi.org/10.7566/JPSJ.91.014701
https://doi.org/10.7566/JPSJ.91.014701
https://doi.org/10.1038/s41467-019-10941-3
https://doi.org/10.1038/s41467-021-25273-4
https://doi.org/10.1038/s41467-021-25273-4


[51] D. Ma, A. Arora, G. Vignale, and J. C. W. Song, Anomalous
skew-scattering nonlinear Hall effect in PT -symmetric
antiferromagnets, Phys. Rev. Lett. 131, 076601 (2023).

[52] D. Ovchinnikov, X. Huang, Z. Lin, Z. Fei, J. Cai, T. Song,
M. He, Q. Jiang, C. Wang, H. Li et al., Intertwined
topological and magnetic orders in atomically thin Chern
insulator MnBi2Te4, Nano Lett. 21, 2544 (2021).

[53] H. Tan, D. Kaplan, and B. Yan, Momentum-inversion
symmetry breaking on the Fermi surface of magnetic
topological insulators, Phys. Rev. Mater. 6, 104204
(2022).

[54] G. Kresse and J. Furthmüller, Efficiency of ab-initio total
energy calculations for metals and semiconductors using a
plane-wave basis set, Comput. Mater. Sci. 6, 15 (1996).

[55] A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D.
Vanderbilt, and N. Marzari, wannier90: A tool for obtaining
maximally-localised Wannier functions, Comput. Phys.
Commun. 178, 685 (2008).

[56] Z. Huang, M.-H. Du, J. Yan, and W. Wu, Native defects in
antiferromagnetic topological insulator MnBi2Te4, Phys.
Rev. Mater. 4, 121202(R) (2020).

[57] A. Gao, Y.-F. Liu, C. Hu, J.-X. Qiu, C. Tzschaschel, B.
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