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We introduce a general method to engineer arbitrary Hamiltonians in the Floquet phase space of a
periodically driven oscillator, based on the noncommutative Fourier transformation technique. We establish

the relationship between an arbitrary target Floquet Hamiltonian in phase space and the periodic driving
potential in real space. We obtain analytical expressions for the driving potentials in real space that can
generate novel Hamiltonians in phase space, e.g., rotational lattices and sharp-boundary wells. Our protocol

can be realized in a range of experimental platforms for nonclassical state generation and bosonic quantum

computation.
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Introduction.—Generation of nonclassical bosonic states
[1-3], e.g., squeezed lights, Fock states, and Schrodinger’s
cat states, is important not only for fundamental studies of
quantum mechanics but also for applications in quantum
technologies [2,4-6]. For example, bosonic states with
discrete translational or rotational symmetries in phase
space [7-14] have been proposed to encode quantum
information [15-20], paving the way for hardware-efficient
quantum error correction [21-24]. Bosonic code states can
be prepared and stabilized against dissipation via, e.g.,
interleaved selective number-dependent arbitrary phase
(SNAP) and displacement gates [25-27]. A series of recent
works [28-31] have pointed to an alternative passive
control approach based on Hamiltonian engineering that
can be leveraged to facilitate fault-tolerant operations, e.g.,
by suppressing phase flip errors [28], suppressing dynami-
cally the coupling to the environment [30], and accelerating
state preparation of code words [31].

Another area of interest for Hamiltonian engineering is
topology. Because of the noncommutative nature of phase
space, a quantum particle moving on a closed phase-space
loop acquires a geometric phase analogous to the
Aharonov-Bohm phase for particles in magnetic fields.
As a consequence, a gapped lattice Hamiltonian in phase
space can support nontrivial Chern numbers [16,32-40].
This is an appealing feature because in a system with a
physical boundary, it would lead to topologically robust
edge transport. While it has been shown how to generate
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arbitrary lattice potentials in phase space [41], so far it is
unclear how to combine such a potential with a sharp
phase-space confinement.

It is well known that the stroboscopic dynamics of any
time-periodic system can be described in terms of a time-
independent Floquet Hamiltonian A defined via [42—44]

exp(%I:IFT) — ((T,0) = Texp B A Tﬁ(t)dt]. (1)

Here, U(T,0) is the time-evolution operator with 7' the
time period of the system’s time-dependent Hamiltonian
H(1). In addition, A is an effective dimensionless Planck
constant, and 7 is the time-ordering operator. Except for
very few models, it is impossible to obtain a closed form of
the Floquet Hamiltonian A from H(7). Instead, one often
evaluates Hy relying on a high-frequency expansion
[45,46], e.g., Magnus expansion theory [47,48], van
Vleck degenerate perturbation theory [42], and Brillouin-
Wigner perturbation theory [49]. In this work, we focus on
the inverse problem, that is, to find the time-dependent
Hamiltonian H(r) that synthetizes a target Floquet

Hamiltonian A ;”. This is the realm of Floquet engineering
which is a very developed and active field [39,43,50-52].
Most of the work so far has focused on implementing
specific Floquet Hamiltonians of interest. However, a
systematic constructive method to solve the inverse
Floquet problem for a single quantum particle is still
missing. In this work, we provide such a method.

Model and goal.—As a starting point, we consider a
periodically driven oscillator with lab-frame Hamiltonian

(1) :%(ﬁz +32) 4 BV (&, 1). 2)
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Here, w, is the oscillator natural frequency, f is the
amplitude of the nonlinear driving potential V (X, t) which
has time-period 7; and might contain also static terms. In
order to introduce an effective dimensionless Planck con-
stant A [53-55], the position %, the momentum p, and 7:[(t)
have been rescaled such that [%, p] = il and at the same
time the Schrodinger equation reads idy = H(1)y.
Parameter 4 measures the quantumness of our system
and 4 — 0 corresponds to the classical limit.

The Floquet Hamiltonian to be designed is defined via
O(t) = explia’ ar] with time period T = 27/ w,, where & =
(% + ip)/+/2A is the annihilation operator. In other words,
H(1) in Eq. (1) is the rotating-frame Hamiltonian given by
H(t) = O()F(1) O (1) + i2O(1) O
reads

(t), which in our case

H(t) = pV[i cos(wyt) + psin(wyt), 1. (3)
We enforce the time periodicity, H(r) = H(t+ T), by
setting T = gT, with g€N > 1, corresponding to a g-
photon resonance. Any detuning from the multiphoton
resonance is formally incorporated in the driving potential
V(x, t). For weak nonlinearity, # < @y, the evolution in the
rotating frame is slow. Thus, we are in the realm of
application of the Floquet high-frequency expansions, here,
with the small parameter /w,. This allows us to approxi-
mate the Floquet Hamiltonian with the leading order of the
Floquet-Magnus expansion corresponding to the rotating
wave approximation (RWA),

N 1 /T .
lim Ap(x.p) =7 A dr Fi(1). (4)

wo/p—c0

Our goal is to engineer an arbitrary target Floquet
Hamiltonian H(F> in phase space by properly designing
the driving potential V(x,¢) in real space. Up to leading
order (RWA) we, thus, require that the right-hand side of

Eq. (4) coincides with the target Hamiltonian H(FT). The
ensuing solution becomes exact in the high-frequency
limit wy/p — 0.

NcFT technique.—As a preliminary step towards deriv-
ing a suitable driving potential V(x,7), we introduce a
useful decomposition of the target Hamiltonian A %T) in the
form of a noncommutative Fourier transformation (NcFT).
This can be viewed as a variant of quantum distribution
theory [56]. We wish to decompose the target Hamiltonian

£(T
Hl(p) as a sum of plane-wave operators

. i s
A = o | dkadk, frlke k) B0 (s)

It can be shown that the Fourier coefficients fr(k,, k,) are

given by the inverse transformation (see Supplemental
Material (SM) Sec. I [57])

% k~+k,2,

fr(ke.kp)

//dxdeQ x, p)e” ik thop) - (6)

where the phase-space function H (QT) (x, p) is the equivalent

of the Husimi Q function, here, for a Hamiltonian instead of
the density operator. We remind that the Q function of an
operator evaluated at a phase space point (x, p) is simply its
expectation value in the corresponding coherent state,

HY (x.p)=(alH} (x+ip)/
\/ﬂ. The latter mean value can be calculated by normal

|a> with é|a) =ala) and a=

ordering the target Hamiltonian A f’(aﬁ, @). We point out
three important features of the Hamiltonian Q function:
(1) for fixed 4, the mapping between Floquet Hamiltonians
and Q functions is one to one; (ii) the Hamiltonian Q
function has the same phase-space symmetries as the
corresponding Floquet Hamiltonian, and (iii) a well-
defined classical limit HI(DT) (x,p) = lim,l_,oH(QT> (x, p) (see
SM Secs. II and IX [57]).

Designing driving potential—The driving potential
V(x,1) that generates the target Floquet Hamiltonian

H g) (%, p) can be readily obtained from its Fourier coef-
ficient f7(k,.k,). We can formally write the solution as a
superposition of cosinusoidal potentials

+o0
V(x,t) = / A(k, wgt) cos[kx + ¢(k, wot)|dk (7)
0
with time-varying amplitudes A(k, ) and phases ¢(k, 1)
determined from the Fourier coefficients in polar coordi-

nates (k, = kcost, k, = ksint)

A=k|fr(kcost,ksint)|,

¢=Argfr(kcost,ksinz). (8)

This solution can be readily verified by plugging it into
Egs. (3) and (4), and changing the integration variables
back to Cartesian coordinates to arrive at Eq. (5) (see SM
Sec. III [57]). In the remainder of this Letter, we demon-
strate the flexibility of our method by calculating the
potential V(x,7) for a range of interesting Floquet
Hamiltonians. In passing, we will also highlight more
general features of our solution and comment on certain
associated subtleties.

Example I: Rotational lattice.—We now apply our
method to engineer a particularly interesting Floquet
Hamiltonian with g-fold symmetry in phase space

AD =pl(x-ip) - 1[G +ip)r-1]. (9

The discrete rotational symmetry can be described by
RQr/q)H\VRT 27/ q)=H", where R(6) = exp(ia'a0)
is a phase-space rotation by an angle 6 [20,37]. This
Hamiltonian supports ¢ global minima, cf. the Q function
in Fig. 1 (left) for ¢ = 6. Here, we have rescaled the
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FIG. 1.
function H (QT) (x, p) of target Floquet Hamiltonian Eq. (9); (Right)
the engineered real-space potential V(x, ) for parameters ¢ = 6

and 1 = 0.01. The white contours indicate the minima of the
instantaneous real-space potential.

Rotational lattice Hamiltonian in phase space. (Left) Q

phase-space coordinates such that the g global minima
fulfill |x+ ip| =1 corresponding to different classical
solutions. Remarkably, quantum fluctuations do not intro-
duce any tunneling between these solutions as the corre-
sponding coherent states |a,,) = |e™(7/9)/\/2)) with
m=0,1,...,g — 1 are exact zero-energy eigenstates. In
other words, the ground state manifold is g-dimensional
space spanned by g g-legged cat states.

Note that since the Hamiltonian Q function is a poly-
nomial, its Fourier transformation Eq. (6) is divergent. To

solve this problem, we renormalize the divergence intro-

ducing the bounded Hamiltonian I:I;Ty):UyI:I(FT) U, with

U,=e7%'2 Obviously, lim},_>olflg) = ' We can calcu-
late analytically fr(k,.k,) and V(x,t) for I:Ig) for any
arbitrary positive integer ¢ and y > 0. This allows us to
arrive at a closed expression for the driving potential in the
limit y — 0 (see SM Sec. IV [57])

q
V(x, 1) = Z B, , AT — C, cos(qaot)x?,  (10)
m=1

with B, = [(2"¢!)*(—-1)4""/(2m)!(¢ — m)!] and C, =
{2\/7q!/T[(2q +3 — (—1)9)/4]}. We note that for g = 2
we recover a well-known result: Eq. (10) corresponds to a
parametrically driven Duffing oscillator [53,54,94,95]. We
further note that the driving period is T; = T//¢q which
directly follows from the g-fold rotational symmetry of the
Floquet Hamiltonian.

Realizing Hamiltonian (9) is appealing in view of
quantum computation because weak photon decay, with
rate k < 23g?, steers the oscillator towards its ground state
manifold containing code and error spaces of cat code [8],
see Ref. [28] for ¢ = 2 and SM for the general case [57]. In
the SM Sec. V [57], we numerically verify the quality of the
weak dissipation and rotating wave approximation for
realistic parameters.
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FIG. 2. Elliptical well in phase space. (a) Hamiltonian Q
function Hg) (x, p)/p with long axis a = 2, short axis b =1,

2 = 0.1, and convolution factor 6 = v/A. (b) Designed driving
potential V(x, ) in one Floquet period (lower) and at instants
t=0, t =x/2 (upper). (¢c) Energy spectrum and Husimi Q
functions of ground state (i = 1), first excited state (i = 2), fourth
(i =5) excited eigenstates. The dashed circles in (a) and
(c) indicate the boundary of the elliptical well.

Example II: Sharp-boundary well —Next, we demon-
strate that our method allows us to engineer wells with a
sharp boundary in phase space. For concreteness we choose

an elliptical shape, i.e., Hg) (x, p) = —p inside the white

dashed line in Fig. 2(a) and H g) = 0 otherwise. In the
classical limit A — 0, our method allows us to find a closed-
form solution for V(x, ) (see SM Sec. VII [57]). However,
our solution is divergent at two time-dependent positions.
In addition, it does not directly apply to the quantum
regime, 1 # 0, because the dependence of V/(x, 7) on A is not
analytical. This is due to the exponential factor in Eq. (6)
leading to divergent NcFT coefficients fr(k,,k,) in the
limit of large wave vectors, k2 + k%, — oo, for any 4 # 0.
We remove these unphysical features by smoothing out the
target Floquet Hamiltonian by applying a convolution with
a Gaussian kernel with standard deviation o, cf. Fig. 2(a).
For ¢ above a threshold, o > \/m, the NcFT coefficient
fr(ky, k,) becomes integrable and, thus, leads to a smooth
solution for V(x, 1), cf. Fig. 2(b) and the closed expression
in the SM Sec. VII [57]. This implies that we can imple-
ment a potential step that is arbitrarily sharp compared to
the typical dimensions of phase-space well, but should
remain smooth on the scale of the oscillator quantum
fluctuations. Note that Floquet Hamiltonians with sharper

boundaries (¢ < 4/4/2) are well defined but cannot be
realized using our method (see SM Secs. II and VII [57]).
The spectrum and first few eigenmodes are also shown in
Fig. 2(c). The latter are squeezed non-Gaussian states.
Example Il1: Moiré superlattice.—In Ref. [41], we have
shown how to synthesize arbitrary lattices in phase space.
We can use our method to combine a lattice potential with a
sharp confinement realizing a finite-size lattice. For con-
creteness we focus on a Moiré superlattice, cf. Fig. 3(a).
This is the phase-space equivalent of the 2D potential
for electrons in twisted graphene [96-99]. The Moiré
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FIG. 3. Moiré superlattice in phase space. (a) Hamiltonian Q

function of a Moiré superlattice with twisted angle 0 = 10° and
confined in a region with radius R = 20z. (b) Density plot of
NcFT coefficient ffy (k. k,). (c) Designed driving potential
V(x, 1) for t€[0,7/6). (d) V(x,1) at fixed time instants 1 =0
(upper) and t = T/12 (lower).

superlattice is formed by overlaying two honeycomb
lattices with a relative twist angle 6, in a finite region of

radius R. Outside of this region H SUT) (x,p) =0. The
resulting Hamiltonian Q function for the twist angle 6, =
10° is shown in Fig. 3(a). As discussed above, overall the
Floquet Hamiltonian should be smooth on the scale of the
oscillator quantum fluctuations. As for the phase-space well
example above, this can be implemented by applying a
convolution with a Gaussian kernel to the initially discon-
tinuous Floquet Hamiltonian. The ensuing transition

between the Floquet lattice potential and the phase-space

region with H%ﬂ (x, p) = 0 can be arbitrarily sharp com-

pared to R or to the honeycomb lattice constant. A closed
formula for the Floquet Hamiltonian is given in the SM
Sec. VIII [57].

Applying our method, we calculate the NcFT coefficient
fr(ky, k,) shown in Fig. 3(b). It is formed by three groups
of twelve peaks. Each group of peaks is obtained from a
single peak by applying one of the sixfold phase-space
rotations and/or the rotation by the twist angle 6,
cf Fig. 3(a). The width of all the peaks is & R~!. All these
features as well as the exact locations of the peaks can be
read out from a closed-form solution for f7(k,. k,) given in
the SM Sec. VIII [57]. In Fig. 3(c), we plot the ensuing
driving potential V(x,t) for 0 < < T,. [In this case, the
driving period T, is one-sixth of the natural period,
T, =T/6, reflecting the sixfold rotational-symmetry of
our target Floquet Hamiltonian.] In Fig. 3(d), we also plot
the instant driving potential at t =0 and r=T,/2 (or
t = T/12). We note that the real-space driving potential is a

sequence of discrete lattice potentials localized in a finite
region of real space that are switched on for a short time
interval. We note further that in the limit R — oo, the peaks
in (ky,k,) space become & functions, and the driving
potential reduces to a discrete sequence of stroboscopic
lattices with specific amplitudes, wavelengths, and phases
[39,41,100,101]. Considering that the contact interaction of
cold atoms turns into a long-distance Coulomb-like inter-
action in the rotating frame [39,41,58,101-106], many
atoms in the phase space Moiré superlattice would mimic
the behavior of electrons in twisted bilayer graphene
[96-99].

Example 1V: Artificial atomic spectrum.—Our method
can be leveraged to implement a target spectrum {E, } as
well as desired target eigenstates {|y,)}. As mentioned
above, this could be useful for quantum simulations with
interacting atoms. In this scenario, our method could be
straightforwardly applied to the target Floquet Hamiltonian

1:11@ => . E.w,) (y,|. For concreteness, we consider
lw,) = |n) where {|n)} is the harmonic oscillator eigen-
basis (Fock states). In this example, the Hamiltonian Q
function and the NcFT coefficient can be easily expressed
as a sum over the excitation number n,

(T) A =E, (x> + p*\"
H = 7 E -z 11
Q ('x’ p) & 2 < 21 ’ ( )

!
Ol’l.

and
“ E, @ k2
bk =Y a5t (14 mt-2 ). (2

respectively. Here, |F(a;b;z) is the Kummer confluent
hypergeometric function. The driving potential V(x) can be
straightforwardly calculated by plugging Eq. (12) into
Egs. (7) and (8). Note that since the NcFT coefficient
fr(kcost, ksinz) is independent of the angular coordinate
7, the driving potential V(x) is static. This, in turn, follows
from our choice of eigenbasis leading to a target Floquet
Hamiltonian invariant under arbitrary phase-space rota-
tions, cf. Eq. (11). Note further that the asymptotic behavior
1+ 515 =(k2/2)] ~ [ (k2 /2n0)) e W12 for k — oo
ensures that the integral in Eq. (7) is well defined. In Fig. 4

2 »
> O >
S o1} £
§ —Z " (n+1)? 10) §
£ @{& o
-2.5 0.0 2.5 -5.0 0.0 5.0
Position x Position x

FIG. 4. Artificial spectrum: (a) designed hydrogen atomic
levels with parameter 2 = 1; (b) levels |0) and |1) gapped from
other degenerate levels with A = 1. In both figures, the eigen-
states |n) are the harmonic Fock states.
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we display the potential V(x) for two interesting choices of
the spectrum {E,}. In panel (a), we fix {E,} to be the
spectrum of the hydrogen atom E, = —$4/(n +1)%. In
panel (b) we choose E; = —fA and Ey = E| — fA(A—3)
while all other levels are zero, E,., = 0. Thus, at A = 3/4,
the energies E, and E; of the second spectrum display an
exact crossing.

State preparation.—Our method combined with an
adiabatic ramp protocol following Ref. [31] can be
exploited to prepare a desired quantum state. As an
example, we demonstrate the preparation of a cat state
in the ground state manifold of Hamiltonian Eq. (9),
including also the effects of dissipation, see SM
Sec. VI [57].

Experimental implementations.—In order to design arbi-
trary Hamiltonians in phase space, one needs the ability to
engineer the driving real-space potential V(x, ¢) in experi-
ments. This might be difficult in practice. An alternative
route is to directly use Eq. (7). In the SM Sec. VIB [57], we
show that the target Floquet Hamiltonian can be well
approximated by replacing the integral with the sum of a
finite number of cosine lattice potentials. For example, we
demonstrate the preparation of a three-legged cat state with
99% fidelity using only five such potentials. In cold atom
experiments, the building block cosine lattice is formed by
laser beams intersecting at an angle [41,59,60]. In experi-
ments with superconducting circuits [61-63], a microwave
cavity in series with a Josephson junction (JJ) biased
by a dc voltage (V) is described by the Hamiltonian
H(1) = hwoa'a — E; cos|wyt + A(a + a)], where E; is
the JJ energy, w; = 2¢V /A is the Josephson frequency, and

2¢?/(hw,C) with C the cavity capacitance [64—
69,107-112].

Summary and outlook—In this work, we have intro-
duced a general constructive method to derive the driving
potential, up to leading order in the Floquet-Magnus
expansion, generating any arbitrary Floquet Hamiltonian
of a single Bosonic mode. We have also shown that, in
SM Secs. Vand VI [57], it can be transferred to state-of-the-
art experimental platforms to efficiently prepare quan-
tum states as part of a long-lived quantum memory. A
natural extension of our work would be to include higher-
order perturbative corrections as the inverse problem
of the Floquet-Magnus theory. Another exciting pros-
pect is to extend our method to a many-body scenario
by upgrading the single-particle plane-wave operator
expli(kX 4 k,p)] used in Eq. (5) to a many-body equiv-
alent exp[ ;i (k{jc, + k) P;)]. In experiments with super-
conducting circuits, this could be implemented coupling a
dc-voltage biased JJ to multiple superconducting cavities
[64-69].

We acknowledge helpful discussions with Florian
Marquardt and Muxin Han.
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