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We present an experimental proposal for the rapid preparation of the center of mass of a levitated particle
in a macroscopic quantum state, that is a state delocalized over a length scale much larger than its zero-point
motion and that has no classical analog. This state is prepared by letting the particle evolve in a static
double-well potential after a sudden switchoff of the harmonic trap, following initial center-of-mass
cooling to a sufficiently pure quantum state. We provide a thorough analysis of the noise and decoherence
that is relevant to current experiments with levitated nano- and microparticles. In this context, we highlight
the possibility of using two particles, one evolving in each potential well, to mitigate the impact of
collective sources of noise and decoherence. The generality and scalability of our proposal make it suitable
for implementation with a wide range of systems, including single atoms, ions, and Bose-Einstein
condensates. Our results have the potential to enable the generation of macroscopic quantum states at
unprecedented scales of length and mass, thereby paving the way for experimental exploration of the
gravitational field generated by a source mass in a delocalized quantum state.
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Over the last century, many efforts have been directed
toward preparing a delocalized state of increasingly massive
objects over a distance comparable to their size [1–5]. The
preparation of such macroscopic quantum superposition
states of massive particles holds significant interest across
the field of quantum science [6]. Their high susceptibility
to external stimuli equips them with excellent sensor
capabilities. They also provide a testing ground for collapse
models [7–10], which predict the breakdown of the quan-
tum superposition principle at large scales. Moreover, they
could enable the direct observation of the gravitational field
generated by a sufficiently large source mass in a quantum
superposition state, which would shed light upon the
interplay between quantum mechanics and gravity [11,12].
The preparation of such macroscopic quantum states
requires: (i) fast experimental runs to avoid collisions
with gas molecules [9,13–15], (ii) minimal use of laser
light to avoid decoherence due to photon scattering [16–18]
and internal particle heating, which critically determines
decoherence due to thermal emission [9,19], (iii) access to
nonlinearities to generate negative Wigner function states,
and (iv) the ability to repeat nearly identical experimental
runs quickly and with the same particle to avoid low-
frequency noise, drifts, and other systematic errors.
In this Letter, we propose a scheme for preparing

macroscopic quantum superposition states that simultane-
ously satisfies the challenging requirements (i)–(iv). This
scheme is based on levitation and control of micro-objects
in high vacuum [20]. The scheme exploits the quantum
nonlinear dynamics generated in a static nonharmonic

potential (e.g., double-well potential, see Fig. 1), which
is assumed to be wide, time independent, and implemented
with static nonoptical fields. The dynamics is triggered
after switching off a tighter harmonic potential (e.g., optical
trap) where center-of-mass cooling is performed [21–27].
The harmonic potential is centered near the top of the
double-well potential but sufficiently far (compared to the
wave-function size) so that the induced dynamics occurs in
one of the wells only [Fig. 1(a)]. Because of the wide-
ranging size of the double-well potential, particle quantum
tunneling is absent. This nonharmonic potential is conven-
ient as it induces both coherent inflation [17,28], namely an
exponentially fast generation of motional squeezing via the
inverted harmonic term, and non-Gaussian physics when

(a) (b)

(c) (d)

FIG. 1. Schematic representation of the protocol. (a) The
particle is initially trapped and cooled in a harmonic potential.
(b) The trap is switched off and the particle explores the
nonharmonic potential, experiencing both coherent expansion
and non-Gaussian physics. (c) The particle returns to the original
position, allowing for repetition of the protocol. (d) Extending the
protocol to two particles allows for collective noise mitigation
and detection of weak interactions.

PHYSICAL REVIEW LETTERS 132, 023601 (2024)

0031-9007=24=132(2)=023601(7) 023601-1 © 2024 American Physical Society

https://orcid.org/0000-0002-7766-3190
https://orcid.org/0000-0003-3260-993X
https://orcid.org/0000-0003-2827-8517
https://orcid.org/0000-0002-9654-4824
https://orcid.org/0000-0003-4006-3391
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.023601&domain=pdf&date_stamp=2024-01-08
https://doi.org/10.1103/PhysRevLett.132.023601
https://doi.org/10.1103/PhysRevLett.132.023601
https://doi.org/10.1103/PhysRevLett.132.023601
https://doi.org/10.1103/PhysRevLett.132.023601


the particle wave packet arrives at the turning point where
the quartic term of the potential dominates [Fig. 1(b)]. Note
that the particle will evolve very rapidly and perform a loop,
returning to the initial position where the harmonic poten-
tial can be switched on again to repeat the experimental run
[Fig. 1(c)]. The double-well potential is also convenient as
our protocol can be extended to two particles, one evolving in
each of thewells in a mirror-symmetric way [Fig. 1(d)]. This
is useful as the two-particle dynamics can be used tomitigate
collective sources of noise and decoherence by performing
differential measurements [29] as well as to detect weak
long-range interactions between them [14,30,31].
More specifically, we consider the center-of-mass

motion of a particle of mass m and focus on the motion
along a given axis, described by the particle’s center-of-
mass position and momentum operators X̂ and P̂ fulfilling
½X̂; P̂� ¼ iℏ. The possible cross-coupling to other center-of-
mass degrees of freedom is assumed to add noise and
decoherence, whose effect is analyzed later. For times t < 0
we assume that the particle is cooled to a thermal state of a
harmonic potential of frequency Ω centered at position Xs,
namely V0ðXÞ ¼ mΩ2ðX − XsÞ2=2. A thermal state is
characterized by its phonon mean number occupation n̄.
Today, it is experimentally feasible to cool a levitated
dielectric nanoparticle to the ground state (n̄ < 1) [21–27]
with position and momentum zero-point fluctuations given
by XΩ ¼ ½ℏ=ð2mΩÞ�1=2 and PΩ ¼ ℏ=ð2XΩÞ, respectively.
At t ¼ 0, the harmonic potential is switched off (e.g.,
optical trap is turned off) such that a weaker nonharmonic
potential in the background (e.g., generated by electrostatic
fields [32–34]) is dominant. The center-of-mass quantum
dynamics generated by this nonharmonic background
potential is the focus of this paper. We consider the
double-well potential VðXÞ ¼ mω2½−X2 þ X4=ð2D2Þ�=2,
parametrized by the frequency ω and length D. We remark
that in absence of noise and decoherence, the induced
dynamics and the corresponding generated quantum states
depend on the following six parameters: m, Ω, Xs, n̄, ω,
and D.
In this Letter, we will focus on the quantum dynamics

generated in wide double-well potentials, i.e., potentials for
which D ≫ XΩ and ω ≪ Ω. The reason for this is that
nano- and microparticles cooled to the ground state have
subatomic zero-point motion fluctuations XΩ ≪ 10−10 m
and double-well potentials generated via static fields have
at least micrometer-sized scalesD ≫ 10−7 m (for example,
see [35] for an experimental implementation). In such wide
double-well potentials we will focus on the quantum
dynamics generated when the particle evolves in one of
the two wells (say, the right one for X > 0, see Fig. 1),
which requires Xs ≫ XΩ. In this parameter regime, large
phase-space expansions associated with the generation of
large motional squeezing are expected. The numerical
simulation of the Wigner function in dynamical scenarios
(including noise and decoherence) where large phase-space

squeezing and non-Gaussian states are generated is chal-
lenging. In order to overcome this challenge, we have
developed numerical and analytical methods that we
present in [36] and [37], respectively. These references,
and specially [37], provide the additional details and further
analysis required to validate the results presented in this
experimental proposal.
Let us now show the coherent dynamics generated in these

wide double-well potentials. To that end, we numerically
solve the Wigner function dynamics for the sets of param-
eters given in Table I assuming n̄ ¼ 0 for now. Let us first
focus on the quantumdynamics of the first and second phase-
spacemoments. Figure 2(a) shows the phase-space trajectory
given by the dimensionless position and momentum
expected values given by hX̂iðtÞ=D and hP̂iðtÞ=ðmωDÞ,
respectively. In these units, the trajectory is approximately
the same for any of the set of parameters listed in Table I.
The trajectory followed by the expected values is nearly
indistinguishable from the phase-space classical trajectory
XcðtÞ and PcðtÞ ¼ mẊcðtÞ followed by a particle with the
initial condition given by Xcð0Þ ¼ Xs andPcð0Þ ¼ 0, which
has an analytical solution [38,39]. The trajectory is a
closed orbit that facilitates the repetition of experimental
runs. The orbiting period 2tm can be well approximated
by ωtm ¼ logð4 ffiffiffi

2
p

D=XsÞ [38,39]. In order to prevent
decoherence due to the scattering of gas molecules, we
require that the probability to scatter a single gas molecule
during an experimental run, that is during the orbiting time
2tm, is negligible. This condition is given by tm ≪ tgas=2,
where tgas is the timescale associated with a single gas
scattering event and for a spherical particle of radius R is
given by tgas ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mgaskBTgas

p
=ð16π ffiffiffiffiffiffi

2π
p

PgasR2Þ [9], where
mgas, Tgas, and Pgas are the single molecule mass, temper-
ature, and pressure of the gas, respectively. This important
requirement can be satisfied in ultrahigh vacuum, where tgas
for nanoparticles is of the order of milliseconds.
Figure 2(b) shows the time dependence of the position

standard deviation ΔXðtÞ ¼ ½hX̂2iðtÞ − hX̂iðtÞ2�1=2 and the
Gaussian motional squeezing SðtÞ [41]. The quantum
dynamics generates a large spatial quantum delocalization
and motional squeezing. As one can observe in Fig. 2(b),
maximum spatial delocalization is achieved at t ¼ tD, when
hX̂iðtDÞ ¼ D and ΔXðtDÞ=XΩ ¼ η with

TABLE I. Double-well parameters considered in this Letter.
Configurations that generate quantum states with squeezing (in
variance) of the order of f1; 20; 40; 60; 80; 100g decibels are
defined as sizes {XS, S, M, L, XL, XXL}, respectively.

Size Xs=D ω=Ω D=XΩ
ffiffiffi
2

p
η S0 [dB]

XXL 10−1 10−4 108 105 97
XL 10−1 10−3 106 104 77
L 10−1 10−2 104 103 57
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η ¼ 1ffiffiffi
2

p Ω
ω

D
Xs

: ð1Þ

The corresponding motional squeezing is given by
SðtDÞ ¼ S0 where S0 ¼ −10log10ðη−2Þ. The parameter η
is thus key to quantifying the amount of spatial quantum
delocalization and motional squeezing generated during the
coherent dynamics in the double-well potential. Table I
shows how spatial delocalization orders of magnitude
larger than the zero-point motion with associated motional
squeezing of several tens of decibels can be rapidly
generated during the evolution in the double-well potential.
This fast generation of motional squeezing is due to the
coherent inflation generated by the inverted harmonic term
present in the potential [17,28]. At the turning points,
t ¼ tm and t ¼ 2tm, the quantum state recompresses such
that the position and momentum fluctuations are of the
order of the zero-point motion. The recompression is more

effective the wider the size of the double-well potential,
namely the larger the value of η. These expansion and
compression dynamics resemble the loop protocol [14] and
facilitate the repetition of an experimental run. In contrast
to [14], the generated motional squeezing enhances the
effect of the nonlinearities in the double-well potential,
thereby preparing quantum non-Gaussian states with
Wigner negativities, as we explicitly show in the following.
In Fig. 2(c) we plot the Wigner function at the six

relevant instances of time indicated in Fig. 2(a), using the
L set of parameters (see Table I). The Wigner function is
represented with phase-space coordinates X̃ and P̃ cen-
tered at the classical trajectory, namely X̃ ¼ X − XcðtÞ and
P̃ ¼ P − PcðtÞ. One can observe that when the quantum
state is largely squeezed, the potential does not only rotate
the squeezed state in phase space, as the harmonic part
of the potential does, but the nonharmonic terms bend
the phase-space distribution in a boomeranglike shape,
thereby generating Wigner negativities and interference
fringes [42,43]. These boomeranglike states can be well
described by a cubic-phase state [15,44–47], that is, the
state obtained by applying a cubic-phase operator to a
squeezed state. At the turning point t ¼ tm, the cubic-phase
state is such that an interference pattern in the probability
position distribution is obtained, see Fig. 3(a). Using the
analytical tools derived in [37], one can show that this
probability distribution is given by a squared Airy function
with a fringe separation between the two first maxima
Xf that scales as Xf=XΩ ∼ ðΩ=ωÞ2=3ðXΩ=DÞ1=3, for a
fixed Xs=D. For the set of parameters given in Table I,
Xf=XΩ ≈ 2.5 for all cases. Finally, one can also show [37]
that the state after one period, that is, at time t ¼ 2tm,
can be approximated as a quartic-phase state, namely a
state obtained by applying a quartic-phase operator to a
coherent state.
Before discussing how the generation of these macro-

scopic quantum states can be certified, let us discuss the
impact of noise and decoherence. We emphasize that
during the dynamics no laser light is used, and hence
decoherence due to recoil heating is absent [16,18]. In
addition, under the regime, 2tm ≪ tgas, achieved in ultra-
high vacuum [49] and fast experimental runs, decoherence
due to the scattering of gas molecules is prevented. Hence,
the main sources of noise and decoherence will be
(i) thermal emission from the particle [9,19,50,51], (ii) fluc-
tuations in the double-well potential, both in amplitude and
position [52–54], (iii) fluctuating forces acting on the
particle (e.g., due to fluctuating electric fields [55,56]),
(iv) finite phonon number occupation (n̄ > 0) and/or initial
position imprecision (i.e., different Xs in each experimental
run), and (v) timing imprecision, i.e., different values of the
measurement time tm (or 2tm) in each experimental run.
Cases (i)–(iii) can be modeled by calculating the dynamics
using the master equation

(a)

(b)

(c)

FIG. 2. Coherent quantum dynamics. (a) First order moments
(solid line) and classical trajectory (dashed line). (b) Normalized
Gaussian motional squeezing and position variance for different
double-well potentials. Solid, dashed, and dotted lines corre-
spond to XXL, XL, and L in Table I. (c) Wigner function for the L
set of parameters at different moments of time, ordered clockwise
and corresponding to the indicated points in (a). Numerical
results obtained using the split-step method [40].
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∂tρ̂ðtÞ ¼ −
i
ℏ
½Ĥ; ρ̂ðtÞ� − Γ

2X2
Ω
½X̂; ½X̂; ρ̂ðtÞ��; ð2Þ

where Γ ¼ ΓT þ ΓP þ ΓF is the decoherence with contri-
butions from (i), (ii), and (iii). The expression of ΓT can be
found in the literature [9,50,57] and for the particular case
of a silica nanoparticle with internal temperature T and trap
frequency Ω=ð2πÞ ¼ 100 kHz is given by ΓT=Ω ≈ 10−10 ×
½T=ð300 KÞ�6 [58]. The expression of ΓP can be obtained
by considering the potential fluctuations 1þ ξ2ðtÞV½X̂þ
ξ1ðtÞXΩ�, where ξjðtÞ for j ¼ 1, 2 are dimensionless
stochastic Gaussian variables of zero mean and assumed
delta-correlated in the relevant timescales, namely
hξjðtÞξjðt0Þi ¼ 2πSjδðt − t0Þ. For weak fluctuations and
when the particle is at Xc, it experiences a fluctuating
force given by ξ1ðtÞXΩV 00½XcðtÞ� þ ξ2ðtÞV 0½XcðtÞ�. Since
during the closed trajectory one has that V 00½XcðtÞ� < 5mω2

and V 0½XcðtÞ� <
ffiffiffi
2

p
Dmω2, the decoherence rate after

ensemble average [59], see further details in [37], is upper
bounded by

ΓP

Ω
≤
2πω

4

�
ω

Ω

�
3
�
25S1 þ 2

�
D
XΩ

�
2

S2

�
: ð3Þ

Finally, ΓF is obtained by considering a fluctuating force
FðtÞ (e.g., fluctuating electrostatic force) of zero mean,
assumed white in the relevant frequency range with corre-
lations given by hFðtÞFðt0Þi ¼ 2πSFδðt− t0Þ. The associated
decoherence rate is given by ΓF ¼ 2πX2

ΩSF=ℏ
2. In Fig. 3(c)

we show how the visibility of the interference pattern
generated at t ¼ tm [see Fig. 3(a)] depends on Γ for
double-well sizes defined in Table I. As we show in [37],
the effect of decoherence scales with Γη2=ω, and hence the
wider the double-well potential, the more motional squeez-
ing is generated, and the more stringent the requirements in
Γ. From Fig. 3(c) and Table I, one can rapidly calculate the
values of the S1, S2, and SF that are needed in an
experiment to generate a visible interference pattern.
Regarding cases (iv) and (v), we define σs and σt as the
standard deviations of normally distributed random vari-
ables that model the error in the initial position of the
particle and in the time of the measurement, respectively.
In Fig. 3 we plot the visibility of the interference pattern as
a function of n̄ and σs. Note that one can tolerate an initial
position imprecision of up to σs ∼ 10XΩ or, equivalently,
up to n̄ ∼ 40 in the initial state. Ground-state cooling is
thus not a strict requirement. We have analyzed that timing
errors up to σt ∼ 10−2ω−1, which are experimentally
feasible, provide a visible interference pattern.
In order to certify the generation of the macroscopic

quantum states during the dynamics in the double-well
potential, several strategies can be used. The most
unambiguous strategy is to measure the position interfer-
ence pattern generated at t ¼ tm [see Fig. 3(a)] using an
inverted optical potential with harmonic frequency Ωi. It is
known [15,17,28] that this technique magnifies the
interference pattern without compromising its visibility
if the condition Xf=XΩ ≫ ðΓ=ΩiÞ1=2 is met, where Γ is
dominated by optical backaction noise (i.e., recoil heat-
ing) [16,18]. Alternatively, one could consider performing
quantum tomography of the state at 2tm and show the
preparation of a state with a negative Wigner function.
Finally, measuring ΔXðtÞ, which is very sensitive to
external noise and decoherence, and comparing the result
to the predicted coherent value [shown in Fig. 2(b)] could
be used as a method to certify that the overall dynamics
was coherent.
As mentioned in the introduction and further analyzed

in [48], one can consider the use of two particles, one
evolving in each well in a mirror-symmetric way as
illustrated in Fig. 1(d). We define the relative distance
between the particles as r̃ ¼ X̃1 − X̃2, where X̃i is the
position of each particle relative to its classical trajectory. As
shown in Fig. 3(b), its probability distribution at t ¼ tm also
shows an interference pattern. While the visibility of this
interference pattern is not one, even in the absence of noise
and decoherence, it will be robust in front of sources of
noise and decoherence that are collective, that is, that only
affect the center-of-mass motion of the two particles [29].

(a) (b)

(c) (d)

FIG. 3. Quantum dynamics in the presence of decoherence.
(a) Position probability distribution at t ¼ tm PðX; tmÞ for the L
set of parameters (Table I) and with decoherence rates
Γ=Ω ¼ f1; 4; 10; 40g × 10−8. Darker lines correspond to higher
Γ=Ω. (b) Relative position probability distribution [48] at t ¼ tm
Pðr̃; tmÞ for the same potential. Visibility of the first minimum of
PðX; tmÞ as a function: (c) Γ=Ω for XXL (solid), XL (dashed),
and L (dotted) set of parameters. The horizontal line corresponds
to the visibility of the first minimum of Pðr̃; tmÞ as a function of
collective Γ=Ω. (d) Initial position imprecision σs (solid line) and
n (dashed line). Lines in (c),(b),(d) correspond to results obtained
using the analytical treatment presented in [37], while all other
results are obtained from numerical simulation using the method
presented in [36].
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Examples of this collective noise are fluctuations in the
center of the double-well potential (e.g., due to vibrations)
as well as the imprecision of the position of the two
harmonic traps, whose separation is assumed fixed, with
respect to the double-well potential. The latter could be
implemented by using a standing-wave optical trap [60],
such that the distance between two trapping points is fixed
by the laser wavelength, or by using a programmable array
of optical tweezers with two nanoparticles [31,61,62]. The
standing-wave optical configuration can also be used to
make sure that at t ¼ tm the particle is placed at a point of
the standing wave where it experiences an inverted poten-
tial, which, as described above, is required to measure the
interference pattern. Finally, the joint quantum dynamics of
the two particles will be very sensitive to any weak
interaction between them, and hence it could be used to
detect weak interacting forces similarly to what is discussed
in [14,30].
To conclude, we have shown how the dynamics of a

massive particle in a wide nonharmonic potential can be
used to rapidly prepare largely delocalized quantum states
and a quantum interference pattern. In essence, our protocol
implements an in-trap single particle matter-wave interfer-
ence experiment (à la double-slit Young’s experiment) in a
way that circumvents key challenges for large masses, such
as repeatability and absence of decoherence due to scattering
of gas molecules. While observing macroscopic quantum
physics is challenging [9,14,15,17,28,50,63–67], our results
showwhat is required in terms of noise and decoherence and
provide a feasible path to scale up themass of the objects that
could be prepared in a macroscopic quantum superposition
state. Our proposal is compatible with current state-of-the-
art technology, such as optically trapped dielectric nano-
particles hybridized with electrostatic potentials [32–34] or
magnetically levitated superconducting spheres [68,69].
Finally, we emphasize that our scheme is scale-free and
versatile and could thus be initially tested with single atoms
[70–74], ions [75,76], Bose-Einstein condensates [77–82],
clamped nanomechanical oscillators [83], or even with a
superconducting quantum circuit [84].
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