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Solitons, and Condensates in a Discrete Nonlinear Schrodinger Equation
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We investigate a discrete nonlinear Schrodinger equation with dynamical, density-difference-dependent
gauge fields. We find a ground-state transition from a plane wave condensate to a localized soliton state as
the gauge coupling is varied. Interestingly we find a regime in which the condensate and soliton are both
stable. We identify an emergent chiral symmetry, which leads to the existence of a symmetry-protected
zero-energy edge mode. The emergent chiral symmetry relates low and high energy solitons. These states
indicate that the interaction acts both repulsively and attractively.
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Introduction.—The nonlinear Schrodinger equation
(NLSE) is an essential model for a variety of physical
systems [1,2]. In ultracold atomic physics, the NLSE
describes Bose-Einstein condensates (BECs) in the
dilute limit where only the leading order interaction is
relevant [3-6]. In optical systems, the NLSE describes light
propagating in nonlinear media, originally employed to
describe self-focusing beams of light [7-9]. Since these
initial investigations a wide range of studies into the NLSE
and its extensions have been developed, identifying a variety
of nonlinear phenomena [10-16]. Additionally, extensions
have been made to simulate gauge theories [17-21]. Much
work has gone into understanding the stability of NLSE
solutions. This is in part because the onset of instability can
often be associated with a phase transition to a stable
nondispersive bound state, termed a soliton [22-27].

Solitons and other localized states have been predicted
and verified in the NLSE and its extensions [28—31]. These
bound states result from the competition between
the nonlinearity and the kinetic dispersion. In the case of
the discrete NLSEs [32,33], the existence of bound
states termed discrete breathers has been shown to be
generic [34]. Such self-stabilizing solutions are widely
studied for both their mathematical properties as well as
their potential applications in developing communications
technology. Recently, matter wave breathers were exper-
imentally observed by quenching the strength of the
attractive interactions in a quasi-one-dimensional Bose-
Einstein condensate [35]. Engineering and manipulation
of soliton modes has been achieved through various
methods, including time-dependent modulation and spatial
modulation [36-40].

An interesting avenue explored in recent years has been
to consider NLSE which contains a dynamical, density-
dependent, gauge field. Here, in the context of discrete
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(lattice) models, the gauge field is a nontrivial phase factor
one has upon hopping between adjacent sites, and density-
dependent gauge field means that the phase factor depends
on the density of sites involved in the hopping [41-46]. It
has been shown that density-dependent hopping induced by
sinusoidal temporal modulations of the nonlinearity in the
discrete NLSE leads to the formation of compactons, i.e.,
nonlinear bound states that, unlike breathers, do not have
exponential decay tails [31]. Recently, two of us proposed a
novel type of density-dependent gauge field, in the context
of interacting non-Hermitian quantum physics, where the
hopping depends on the difference of the density of sites
involved in hopping [47]; such a gauge field has a unique
feature that the sign of the interaction is not determined
a priori but dynamically depends on the density gradient of
the wave function profile. In this paper, we find that the
NLSE derived from such a density-difference-dependent
gauge field results in a variety of unique phenomena,
including the coexistence of plane-wave condensate state
and soliton state, the coexistence of attractive and repulsive
solitons, and the emergent Su-Schrieffer-Heeger (SSH)-like
physics with a symmetry-protected zero-energy mode. Our
paper opens an avenue to explore nonlinear physics of this
exotic form of gauge field.

The discrete density difference dependent nonlinear
Schrodinger equation (D* NLSE).—We consider a one-
dimensional discrete NLSE derived from the following
classical Hamiltonian:

H:Z‘P;-‘rl [—]+]/(nj+1 —I’lj)]lpj‘l‘C.C., (1)
J

where W; is the complex-valued amplitude of the wave
function at site j, n; = W;¥; is the corresponding density,
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J is the density-independent part of hopping between
adjacent sites, y is the coupling constant of the density-
difference-dependent hopping which can generally be a
complex number. We assume that the wave function is
normalized as ) ;|W;|* =1. A crucial aspect of this
Hamiltonian is that the sign of the interaction, either
repulsive or attractive, is not determined a priori, but
rather determined dynamically through the density profile
of the wave function.

The corresponding NLSE can be obtained by computing
the Poisson bracket i(d¥;/dt) = {¥;, H} = (6H/8¥7):

yo2
i—t = {=J +y(2n;—n; ) }¥, - ¥,

dt
+{=T =7 Q2nj—ni )} YL, (2)

which is the one-dimensional discrete density difference
dependent (D*) nonlinear Schrodinger equation we are
going to explore in this paper.

We note that the Hamiltonian in Eq. (1) can also be
thought of as quantum Hamiltonian by identifying ¥; and
W; as creation and annihilation operators of a particle at
site j. Then the Poisson bracket mentioned above should be
replaced by a commutator, and D* NLSE describes a
situation where the mean-field theory is applicable and
the Gross-Pitaevskii treatment of the condensate wave
function is justified.

Ground-state phase diagram.—We explore the station-
ary state of the D* NLSE evolving in time as ¥;(r) =
e~"¥;(0), where  is the chemical potential. Of particular
interest is the ground state, which is the state with the
lowest energy. We can numerically explore the ground state
by the method of imaginary-time propagation, which is to
start from a random initial state and simulate the time
evolution of the D* NLSE with an imaginary time, that is,
to consider the equation obtained after setting t = —iz and
simulate the evolution with respect to 7. After evolving for a
long enough time in 7, one converges to the ground state (if
the ground state is unique) [48,49]. Assuming periodic
boundary condition and applying an imaginary time evo-
lution method to various values of y, we see that the ground
state is either a plane-wave condensate state or a sharply
localized solitonlike state, which we explain now.

We first note that, for states with a uniform density,
n; = nj,, y dependence in the Hamiltonian vanishes. The
plane-wave state e’** with k = 2x(integer)/L, where L is
the number of lattice sites, is thus a valid stationary state
with chemical potential y = —2J cos(k). Among the plane-
wave solutions, the ground state is the k£ = O state, and the
corresponding chemical potential as well as the energy
isu=FE=-2J.

Now the question to ask is if one can obtain a state with
lower energy by allowing the density to vary. We indeed
find that the system can host localized stationary states

which we call solitons. Essential features of the soliton can
be captured through the following ansatz where the soliton
is spread over only three sites around a site n:

lI‘n:I:I = e?= (1 - a)/27 an = \/57 (3)
where ¢_, ¢, a are variational parameters which we take
as real numbers. We expect that the interaction energy
dominates in such soliton states. The transition between the
k = 0 plane wave and the localized ansatz can be solved
analytically for purely real y and is predicted to occur at
ly| = 2.53J. For complex , the critical |y| weakly depends
on its phase, decreasing slightly as the phase goes towards
purely imaginary y where the transition occurs around
ly| ~ 2.5J. We find from imaginary time evolution that the
transition occurs at |y| ~2.04J for fully real y and |y| ~
1.9J for fully imaginary y; these values are smaller than the
prediction from the three-site ansatz we obtained above
because the soliton state around the transition point can be
more spread and/or asymmetric. We numerically confirm
that, typically, more than 95% of the weight of the soliton
lies on three sites, and the three-site ansatz becomes more
and more accurate as |y| becomes larger.

We provide a more detailed analysis for the case of
purely imaginary y = iy;. The results are qualitatively the
same for any fixed phase of y with slight quantitative
differences as mentioned above. In Fig. 1, we plot the
energy and the chemical potentials for the lowest and
highest energy localized soliton states as a function of |y;|
obtained from imaginary time evolution. These results were
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FIG. 1. Left: energy (green solid curve) and the chemical
potential (blue dotted curve) of the localized soliton state, in
units of J, obtained from the imaginary time propagation method,
as a function of the gauge coupling which we assume to be purely
imaginary, y = iy;. The red dashed lines correspond to the
chemical potential of the localized states obtained when setting
J = 0. The dashed horizontal black lines correspond to the lowest
and highest plane-wave condensate states at 4 = E = +2J. The
inset highlights the transition point and soliton disappearance.
Right: ground-state and highest energy state wave function for
J =1, y=-4.0i and length L = 29. The blue, green, and red
curves are the wave function amplitude, real part, and imaginary
part, respectively.
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found in excellent agreement also with the ones obtained by
means of self-consistent numerical diagonalizations of the
nonlinear eigenvalue problem associated with Eq. (2) [30].
The symmetry around E =0 is a consequence of an
emergent chiral symmetry which we discuss later. At
ly7| > 1.9J, the solitons are the lowest energy states. In
the region 1.67J < |y;| < 1.9/, the soliton solution still
exists as a stationary state, but its energy is higher than the
energy of the plane-wave condensate state. As |y;]
approaches ~1.67J from above, the chemical potential
of the soliton changes rapidly, and at |y;| < 1.67J, the
soliton state no longer exists as a stationary state but rather
merges with the extended modes. The energy and the
chemical potential of the soliton state just above |y;| =
1.67J are E~ —1.9J and u ~ —2.3J. Note that we have
studied this model in the continuum and found that in
solving for a localized state, the energy is unbounded from
below, suggesting that soliton formation is a genuine lattice
effect (see the Supplemental Material [50]).

Stability of the condensate.—We have just seen that the
ground state changes from the plane-wave condensate state
to the localized soliton state as one increases the coupling
ly|. The mechanism behind the formation of the soliton
ground state is qualitatively different from more conven-
tional soliton formation in, for example, NLSE with a cubic
nonlinearity, where the development of modulational insta-
bility of the plane-wave condensate state leads to the
formation of solitons [51]. In contrast, in the D* NLSE,
there can be regions in the parameter space where the zero
momentum plane-wave condensate and the soliton both
exist as stable stationary states. Depending on the value of
7, the condensate can become unstable, as we show soon,
but the instability of the condensate and the formation of
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FIG. 2. Phase diagram of the D®NLSE as a function of the
complex gauge field coupling y. The complex gauge coupling is
defined as yy + iy;, J is the single particle hopping parameter,
and L is the length of the chain. Note that this phase diagram only
considers the linear stability. Numerically we have observed that
the instability can occur for completely real y, likely due to higher
order instabilities.

the soliton appear to be not directly related. We now
explore this linear stability of the condensate phase and
present a complete phase diagram, shown in Fig. 2,
including the stability analysis. (In the Supplemental
Material [50], we also present the continuum model and
demonstrate that its plane-wave solutions have the same
stability condition).

To investigate the linear stability of a condensate upon
small perturbation, we introduce the Fourier transformed
Hamiltonian. Defining the wave function in momentum
space with momentum k by ¥, as

1 - y
o= P ek 4
J \/Z; k ( )
the Hamiltonian is

H= Z —2J cos kPP,
k

1 T\ I I
+ ];]V(q, LA A TR

V(q.k) = 2iyg(sink — sinq) + 2iy;(cos g — cos k),  (5)

where we have introduced the notation y = yp + iy;. The
time evolution equation in momentum space is then

l.\LPk = —2J(COS k — 1)@]{ =+ ZV(Q, k)‘i‘z"i‘kJrk/—qqu
q.K

+ ZV(Qa k/)\i‘Z’lilk-&-k’—qu’q' (6)
q.K

We assume that the condensate takes place at zero
momentum, and add a small perturbation at momentum

p to investigate its stability; we set ‘i’o =1, ‘i’ip = 6‘i’il,
which should be kept up to linear order, and ¥, = 0
otherwise. Inserting them into Eq. (6) and ignoring terms of
higher order in s¥, »» We obtain the equation for the time
derivative of 6% p s

ds¥ o 4 .
i p:—ZJ(cosp—l)é‘Pp—l-%(cosp—1)5‘1”11,, (7)

dt

and a similar equation for the time evolution of 5%_ - This
set of equations can be diagonalized, in a manner analogous
to the Bogoliubov transformation, to obtain the dispersion
relation, which is

e(p)=2J (I —cos p). (8)

This dispersion relation contains unusual features. First, at
small momentum p, the dispersion is quadratic rather than
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a more standard linear excitation spectrum in NLSE. The
effect of the interaction y is to modify the overall multi-
plicative factor, which is analogous to modifying the
effective mass of a particle. The second point to notice
is that only the imaginary part of y enters the dispersion
relation. The real part does not affect the excitation
properties of the zero momentum condensate phase. The
third point is that the dispersion becomes imaginary,
implying the appearance of modulational instability, above
a threshold value of y; > JL/2; notably the transition
depends on the length of the system L. The threshold to
the instability of this condensate is drawn in the phase
diagram (Fig. 2). We point out that the stability condition is
solely determined by y; whereas the transition from the
condensate ground state to the soliton ground state depends
on |y|, implying that these two transitions occur from
different mechanisms. (The stability condition for a con-
densate at arbitrary momentum k is presented in the
Supplemental Material [50] derived from the Bogoliubov
analysis of a bosonic system.)

Chiral symmetry and zero mode.—In Fig. 1, we see that
the figure is symmetric around E = 0. This symmetry is a
consequence of the chiral symmetry present in the system.
By examining the equation of motion, we see that for a
stationary state {'¥';}, we obtain a state with the opposite
chemical potential by multiplying the state by e, i.e., a
factor of —1 to every other site. In Fig. 1, the wave functions
of the ground state and the highest energy state are plotted
for y = —4i to demonstrate that they are precisely related
by the transformation e*/. Note that the existence of these
two bound states is a signature of the attractive and
repulsive nature of our interaction. Typically the appear-
ance of low energy bound states is a signature of an
attractive interaction [25,52] whereas the existence of high
energy bound states is a signature of a repulsive inter-
action [53].

The presence of such a chiral symmetry suggests the
existence of a symmetry-protected zero mode analogous
to the SSH model. The SSH model is the one-dimensional
tight-binding model with alternating weak and strong
hopping strengths, and its momentum-space topology is
nontrivial when the hopping from the edge starts with a
weak hopping. The topologically nontrivial SSH model
hosts a zero-energy edge state protected by the chiral
symmetry whose wave function takes nonzero values in
every other site. Our D* NLSE does not have a priori
alternating hopping; however, since the density depend-
ence affects the hopping strength, one can expect an
emergent SSH-like physics induced dynamically by an
appropriate density distribution. To explore such emergent
SSH-like physics, we look for a zero-energy edge mode.
Such a zero-energy edge mode must have nonzero wave
function in every other site. We consider an open
boundary condition with j > 1, and set the wave function
on sites with even indices to zero ¥,, = 0. The D* NLSE

5 1
0.8
0.6
& 0
0.4
0.2
-5 0

5 4 3 2 -1 0

FIG. 3. Localization ratio |¥5|*/|¥;|? in the complex y plane.
The coloring corresponds to this ratio. Note that the ratio vanishes
at y = —1 where the singleton state stabilizes.

taking zero chemical potential leads to the following
condition to be satisfied by the wave functions in odd
sites:

(‘] +7|‘I’2n—1|2>ly2n—1 = <_‘]+ y*|lP2n+1|2)lP2n+l' (9)

One can iteratively solve this equation for decreasing
solution starting from some value of ¥; for yx < 0 or ¥,
for yp > 0. When the total number of sites is odd, the
iteratively constructed solution is the exact zero-energy
solution of the D* NLSE. When the total number of sites is
even, this construction fails as the final even site with only
one adjacent odd site cannot properly satisfy the above
equation. We note that there is a zero-energy mode
completely localized at one site on the edge, i.e.,

n =1, when y/J = —1, which we call a singleton state.
(This state exists regardless of the number of sites). As y
moves from y/J = —1, the state becomes more and more

delocalized as shown in Fig. 3, which plots the ratio of the
|¥5]2/|¥,|* in the complex y plane as a measure of
localization. The predominant trends show that as ||
moves from 1 and as y; grows the state spreads further. In
fact for a purely imaginary y, the state is evenly spread on
odd numbered sites.

Floquet realization.—Finally, we present one method
using Floquet engineering to realize the D* NLSE, which
can be implemented in systems such as Bose-Einstein
condensates of ultracold quantum gases and waveguide
arrays. We derive an effective Hamiltonian of a three step
Floquet protocol as derived in the formalism presented in
Ref. [54]. We consider the time dependent quantum
Hamiltonian with periodic drive V(1) = V(¢ + T,,)

H(t)=-JY ¥ %+ W%, +v() (10)
J
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Vi, O§t<%
V() =4 Va. Loct < (11)
V=V, He<i<T,,

which corresponds to a free boson with pulsed modulation
of the hopping parameter V| = Zjll‘i’j-ﬂ‘i‘j + H.c. and a
pulsed on site interaction V, = U j‘i’;‘i’;‘i’j@j in three
steps of equal duration with total period T, = 27/ ®. In the

limit of large @ (i.e., U/w, J;/w < 1), the effective
Hamiltonian to first order in 1/w is given as

. 2inUT, . . R
Heff = ZT;JFI |:—J +W(i’l} - l’lj+1>:| lP]
J

2inUT} | . A
T 2w . (”j - ”j+1)] lPj+1’ (12)

+ W [—J

which maps directly onto Eq. (1) with y = 2izUJ,/(27w)
and identifying the quantum operators by classical variables
assuming mean-field theory. We control the phase of the
complex coupling y by changing the phase of the modulated
hopping J;. Complex hopping of J; can be engineered
through modulation such as in Struck et al. [55], which
can be combined with our proposed Floquet protocol, or
through Raman-assisted tunneling [56]. Similar Floquet
interactions have been previously studied in various ultra-
cold and optical systems [41,43,44,57].

Conclusion.—In this Letter, we have presented the
D*NLSE and its phase diagram. We have derived the
conditions for plane-wave stability as well as a phase
transition from the extended k = 0 plane-wave ground state
to a localized ground state. Contrary to conventional NLSE,
this model admits the coexistence of a stable k = 0 plane
wave and a soliton ground state. We have further demon-
strated that the interaction of the D* NLSE acts either
attractively or repulsively depending on the state in ques-
tion. Although the D* NLSE itself is fully translationally
invariant, the density distribution results in emergent
SSH-like physics, and as a consequence, a zero-energy
edge-localized mode exists. Finally we derived a possible
method of Floquet engineering to realize the D* NLSE.

Many of the characteristic features of D* NLSE we
found in this Letter stem from the fact that the sign of the
interaction is not determined a priori, but rather dynami-
cally determined by the density distribution of the nonlinear
wave. The emergent chiral symmetry analogous to the one
discussed in this Letter can be a versatile mechanism to
obtain interaction-induced topology.

The dynamical dependence of the sign of the interaction
represents a new emerging paradigm in the field of non-
linear physics opening up unexpected and unexplored
scenarios at both the classical and quantum levels. In this

Letter we have focused on properties of the classical ground
state of the mean-field problem under this exotic form of
dynamical gauge field. A ground-state phase diagram of the
corresponding quantum many-body problems as well as its
non-Hermitian generalizations are left for future studies.
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