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In recent years, there has been significant interest in the field of extended black hole thermodynamics,
where the cosmological constant and/or other coupling parameters are treated as thermodynamic variables.
Drawing inspiration from the Iyer-Wald formalism, which reveals the intrinsic and universal structure of
conventional black hole thermodynamics, we illustrate that a proper extension of this formalism also
unveils the underlying theoretical structure of extended black hole thermodynamics. As a remarkable
consequence, for any gravitational theory described by a diffeomorphism invariant action, it is always
possible to construct a consistent extended thermodynamics using this extended formalism.
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Introduction.—Black hole thermodynamics plays a cen-
tral role in understanding the characteristics of quantum
gravity. In recent years, the so-called extended black hole
thermodynamics has been proposed and substantially
developed [1–3]. For instance, by treating the cosmological
constant Λ as a thermodynamic variable, the first law of
thermodynamics of the anti–de Sitter (AdS)-Schwarzschild
black hole can be expressed as

δ̃M ¼ Tδ̃Sþ Vδ̃P; ð1Þ

where P≡ −ðΛ=8πÞ and V ¼ ð4π=3Þr3h are commonly
referred to as the pressure and thermodynamic volume
in the literature. However, literally interpreting Λ as
pressure could be misleading in some sense [4]. A better
strategy is to put Λ on equal footing with other couplings in
the action. Note that we use δ̃ to represent variations in the
extended thermodynamics, distinguishing it from the con-
ventional variation δ that satisfies the thermodynamic
law δM ¼ TδS.
At first glance, this extension may seem perplexing, as Λ

was traditionally considered a fixed parameter in the theory.
However, as suggested in Refs. [5,6], the cosmological
constant could become a dynamical variable in gauged
supergravity and string theories. And a recent work [7]
illustrated that the variation of the cosmological constant
could be induced by tuning the brane tension in a brane-
world model. Therefore, it is generally possible to circum-
vent the problem by taking Λ as an external parameter
controlled by a more comprehensive theory.

The extended black hole thermodynamics has offered a
multitude of intriguing physical implications and applica-
tions. It serves as a fertile ground for investigating black
hole phase transitions, triggering the emergence of a
research direction known as black hole chemistry [8–10].
Moreover, within the framework of AdS=CFT, the holo-
graphic dual of the extended black hole thermodynamics
on the conformal field theory (CFT) side has been widely
explored. The AdS=CFT correspondence dictates that
c ∝ ðlD−2=GNÞ, so the cosmological constant is not directly
related to the CFT pressure but rather to the central charge;
see [11,12] for details. Besides, the extended thermody-
namics can also find applications in the study of holographic
complexity, weak cosmic censorship conjecture, and other
research fields [13–15].
In fact, it is not only the cosmological constant that can

be considered as a thermodynamic variable; other coupling
parameters in higher curvature theories of gravity, such as
those in Lovelock gravity, can also be regarded as thermo-
dynamic variables [16–20]. Given the successes and
universality of the extended thermodynamics, a natural
question arises as to whether there exists a fundamental
theoretical framework that underlies it. We will show that
the answer is affirmative.
In this Letter, we propose a robust formalism that

guarantees the presence of the extended thermodynamic
law for any diffeomorphism invariant theory of gravity.
More significantly, it also provides a novel and systematic
approach for computing the conjugate quantities associated
with the couplings. In the past, the thermodynamic volume
was primarily derived through the thermodynamic relation
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V th ≡ ð∂M=∂PÞS;J;���, or extracted from the Komar integrals
that possess an important geometric interpretation and are
closely linked to the Smarr relations [5]. In contrast, our
formalism enables an independent calculation of such
quantities, which has unexpectedly resolved an ambiguity
between the thermodynamic volume and the geometric
volume present in the literature. All the detailed calcula-
tions are provided in the Supplemental Material [21].
Iyer-Wald formalism for conventional black hole

thermodynamics.—As is well known, for any diffeomor-
phism invariant gravitational theory, the conventional black
hole thermodynamic law can be easily obtained by employ-
ing the Iyer-Wald formalism [22–24].
Consider the Lagrangian denoted by L ¼ Lϵ, where ϵ

is the volume form of the D ¼ dþ 1 dimensional space-
time. Its variation with respect to the dynamic fields
ϕ≡ fgμν;ψg can be expressed as

δL ¼ Eϕδϕþ dΘ½δϕ�; ð2Þ

where Eϕ represents the equations of motion of the fields,
and dΘ½δϕ� is a total derivative term. The differential forms
on space-time are written in boldface, and below we
implicitly use the on shell condition Eϕ ¼ 0.
For an arbitrary, fixed vector ξ, the familiar Noether

current Jξ is defined as

Jξ ≡Θ½Lξϕ� − ξ ·L: ð3Þ
Under the on shell condition, dJξ ¼ 0, so the Noether
charge Qξ can be constructed from Jξ ¼ dQξ. Then,
requiring ξ to be Killing, two pivotal formulas can be
proven:

dðδQξ − ξ ·Θ½δϕ�Þ ¼ 0; ð4Þ

dQξ ¼ −ξ ·L: ð5Þ

The proof of Eq. (4) has been left to the Supplemental
Material [21]; Eq. (5) is a direct consequence of the Killing
property Lξϕ ¼ 0.
For a stationary black hole with a bifurcate Killing

horizon, we integrate the two formulas over a hypersurface
Vr extending from the bifurcation surface denoted by Sh to
another codimension-2 surface Sr. Owing to Gauss’s
theorem, Eqs. (4) and (5) become

Z
Sr

ðδQξH − ξH ·Θ½δϕ�Þ −
Z
Sh

δQξH ¼ 0; ð6Þ
Z
Sr

QξH −
Z
Sh

QξH ¼ −
Z
Vr

ξH ·L; ð7Þ

where we have applied the horizon Killing vector ξH that
vanishes on Sh. Owing to the unique characteristics of the
horizon Killing vector and the bifurcation surface, one can

show that
R
Sh
δQξH ¼ TδS and similarly

R
Sh
QξH ¼ TS for

the gravity sector, which actually is the origin of the
definition of Wald entropy [22,23]. Thus it is essential
to use ξH in order to establish a connection with the
thermodynamic properties of a black hole. Thereupon, the
first law of black hole thermodynamics follows from
Eq. (6), and the Smarr relation follows from Eq. (7).
We emphasize that Eqs. (6) and (7) are valid for any

surface Sr of radius r that encompasses the black hole,
which is not necessarily the spatial infinity. In realistic
calculations, all the terms dependent on r will cancel out
precisely in the final result, as a distinctive feature of the
covariant formalism. Thus we do not have to worry about
the potential divergent behaviors caused by r → ∞, par-
ticularly in the context of AdS black holes.
An extension of the Iyer-Wald formalism.—Let us con-

sider a general diffeomorphism invariant gravitational
theory with the Lagrangian

L ¼ 1

16π
ðR − 2ΛÞ þ

X
m

αmFm½gμν;∇ρ; Rμνρσ�; ð8Þ

where Fm represents the higher curvature term. In the spirit
of effective field theory, it is permissible to add all possible
diffeomorphism invariant curvature terms to the Einstein-
Hilbert action [16,25]. Without confusion, we also use the
subscript m to count the number of the curvatures and half
of the number of∇ρ ’s in Fm, so that the coupling parameter
αm has the dimension ½L�2ðm−1Þ. We neglect the matter field
sectors; thus ϕ ¼ gμν is the only dynamical field.
The operator δ̃ allows for variations in the cosmological

constant Λ and other couplings αm, in contrast to the
conventional variation δ. Technically, we define δ̃gμν ¼
δgμν þ ð∂gμν=∂ΛÞδ̃ΛþP

mð∂gμν=∂αmÞδ̃αm, which natu-
rally arises in analyzing δ̃Lðgμν;Λ; αmÞ. First, δ̃L includes
a term ð∂L=∂gμνÞδgμν induced by varying gμν while
fixing Λ and αm’s. Second, it includes the terms
ð∂L=∂gμνÞð∂gμν=∂ΛÞδ̃Λþ ð∂L=∂ΛÞδ̃Λ induced by varying
Λ, either from the explicit dependence of L on Λ, or from
an implicit dependence ofL on Λ through gμν. And δ̃L also
includes similar terms caused by varying δ̃αm. Adding
them together, one easily identifies the presence of
ð∂L=∂gμνÞδ̃gμν. Accordingly, the complete variation is

δ̃L ¼ ∂L
∂gμν

δ̃gμν þ
∂L
∂Λ

δ̃Λþ
X
m

∂L
∂αm

δ̃αm

¼ Eϕδ̃ϕþ dΘ½δ̃ϕ� − δ̃Λ
8π

ϵþ
X
m

Fmϵδ̃αm: ð9Þ

Utilizing this expression of δ̃L, we reexamine the deriva-
tion of Eq. (4) as given in the Supplemental Material [21]. It
leads to
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dðδ̃Qξ − ξ ·Θ½δ̃ϕ�Þ ¼
�
δ̃Λ
8π

−
X
m

Fmδ̃αm

�
ξ · ϵ: ð10Þ

By applying the horizon Killing vector ξH and integrating it
over Vr, we obtain

Z
Sr

�
δ̃QξH − ξH ·Θ½δ̃ϕ�

�
−
Z
Sh

δ̃QξH

¼ δ̃Λ
8π

Z
Vr

ξH · ϵ −
X
m

δ̃ αm

Z
Vr

FmξH · ϵ: ð11Þ

This formula yields the extended first law of black hole
thermodynamics, similar to how Eq. (6) produces the
conventional first law. As mentioned, in realistic calcula-
tions all the terms dependent on r (including potentially
divergent terms) precisely cancel out, producing the
desired result.
Since we are mainly concerned about the AdS black

holes, we also introduce an alternative method to regularize
the divergences, which involves subtracting the contribu-
tion of the pure AdS as the regulator. For a pure AdS
background, Eq. (11) still holds by omitting the horizon
term. By subtracting it from Eq. (11), the divergent terms
can be eliminated. Then taking the limit r → ∞ removes
the other r-dependent terms. This procedure defines the
regularized integral

R ðregÞ ≡ R ðBHÞ −
R ðAdSÞ and leads to the

regularized version of Eq. (11) as

Z ðregÞ

S∞

�
δ̃QξH −ξH ·Θ½δ̃ϕ�

�
−Tδ̃S¼Vδ̃Pþ

X
m

Vmδ̃αm;

ð12Þ

where P≡ −ðΛ=8πÞ, the horizon term
R
Sh
δ̃QξH has been

formally identified as Tδ̃S, and the geometric volume V and
its generalizations Vm are defined respectively as

V ≡ −
Z ðregÞ

V∞

ξH · ϵ; ð13Þ

Vm ≡ −
Z ðregÞ

V∞

FmξH · ϵ: ð14Þ

Amazingly, Eq. (12) has almost been the form of the
extended first law. We only need to evaluate the first term of
Eq. (12). Notice that the background subtraction can also be
applied in the analysis of conventional thermodynamics,
which can be viewed as a special case of the extended
formalism with δ̃P ¼ 0 and δ̃αm ¼ 0.
From our derivation, it is clear that the term Vδ̃P in

Eq. (12) comes from the explicit dependence of the
Lagrangian on Λ. Meanwhile, during the evaluation ofR ðregÞ
S∞

�
δ̃QξH − ξH ·Θ½δ̃ϕ��, additional terms proportional to

δ̃P, denoted by ΔVδ̃P, may also arise due to the depend-
ence of the dynamical fields ϕ on Λ. Combining them
together, we will get the thermodynamic volume
V th ¼ V þ ΔV, which is consistent with the long-lasting
experience that the thermodynamic volume V th is not
necessarily equal to the geometric volume V. From this
perspective, Vδ̃P is just a normal term, while the additional
terms are the truly interesting ones, as they explain the
distinction between V th and V. In a similar manner, the
conjugate quantities V th

m ¼ Vm þ ΔVm of αm ’s can also be
deduced.
As before, the Smarr relation can be derived from

Eq. (7). This formula remains unchanged in the discussion
of the extended black hole thermodynamics, since it is
evaluated on a given metric and has nothing to do with the
variations. However, a scaling argument combined with the
extended first law is sufficient to deduce the Smarr relation.
Therefore, we can make use of Eq. (7) for cross-checking.
AdS-Schwarzschild black hole.—Now we start to study

some concrete examples, which are limited to four dimen-
sions for simplicity. In Einstein gravity with a negative
cosmological constant Λ, the Lagrangian is L ¼ ð1=16πÞ
ðR − 2ΛÞ. From the variation δð ffiffiffiffiffiffi−gp

LÞ ¼ ffiffiffiffiffiffi−gp
Eμνδgμν þffiffiffiffiffiffi−gp ∇μΘμ, one can read off

Θμ½δgμν�≡ 1

16π
ðgμα∇νδgαν − gαβ∇μδgαβÞ; ð15Þ

and construct the Noether charge as

Qμν
ξ ≡ −

1

16π
ð∇μξν −∇νξμÞ: ð16Þ

Their differential forms are given by Θ≡ð1=3!Þ
Θμϵμναβdxν∧dxα∧dxβ, and Qξ¼ð1=2!2!ÞQμν

ξ ϵμναβdxα ∧
dxβ.
For the AdS-Schwarzschild black hole, the horizon

Killing vector is ξH ¼ ð∂=∂tÞ, and the horizon radius is
denoted by rh. Substituting Eqs. (15) and (16) into the
unregularized formula (11), we get

δ̃M þ =r3
6
δ̃Λ − Tδ̃S ¼ =4πr3

3

δ̃Λ
8π

−
4πr3h
3

δ̃Λ
8π

: ð17Þ

Alternatively, the regularized formula (12) also yields

δ̃M ¼ Tδ̃Sþ Vδ̃P; ð18Þ

with V ¼ ð4π=3Þr3h. Both approaches produce the same
final result, but the latter approach is more straightforward.
So we will mainly employ the regularized formulas. Note
that there are no additional terms proportional to δ̃P in
this case; thus the geometrical volume V and the thermo-
dynamic volume V th coincide with each other.
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The extended first law, together with a scaling argument,
can lead to the Smarr relation. Here the scaling behavior is
given by ηMðS; PÞ ¼ Mðη2S; η−2PÞ. Taking the derivative
with respect to η, one gets M ¼ 2ð∂M=∂SÞS−
2ð∂M=∂PÞP. By virtue of Eq. (18), it becomes

M ¼ 2TS − 2PV: ð19Þ

Note this Smarr relation can also be derived from Eq. (7).
AdS-Kerr black hole.—The AdS-Kerr black hole is a

nontrivial example that deserves detailed inspection. The
metric is listed in the Supplemental Material [21], para-
metrized by the mass parameter m, rotational parameter a,
and AdS radius l. In fact, there were some controversies
even around the conventional first law of thermodynamics
for the AdS-Kerr case; see [26,27] for details. Nevertheless,
both the conventional first law and its extension can be
naturally derived in the present formalism.
Here, the horizon Killing vector is ξH ¼ ð∂=∂tÞ þ

ΩHð∂=∂ϕÞ. The AdS-Kerr space-time has a nonvanishing
angular velocity at infinity: Ω∞ ¼ −ða=l2Þ. Thus, we can
make the decomposition ξH ¼ ξt þΩξϕ, where ξt ≡
ð∂=∂tÞ þΩ∞ð∂=∂ϕÞ, ξϕ ≡ ð∂=∂ϕÞ, and Ω≡ΩH −Ω∞.
By the linearity property of the formalism, the two
parts of ξH can be analyzed separately. First, we

have
R ðregÞ
S∞

ðδQξt − ξt ·Θ½δϕ�Þ ¼ δM, whereM ¼ fm=½1−
ða2=l2Þ�2g. Second, by noticing ξϕ is tangential to the

integrating surface, there is
R ðregÞ
S∞

ðδQξϕ − ξϕ ·Θ½δϕ�Þ ¼
δ
R ðregÞ
S∞

Qξϕ ¼ −δJ, where J¼fma=½1−ða2=l2Þ�2g. There-
fore we get the conventional first law

δM −ΩδJ − TδS ¼ 0: ð20Þ

Notably, the angular velocity that appears in the black hole
thermodynamics is Ω rather than ΩH.
Next we derive the extended black hole thermodynamics

from the formula (12). When evaluating
R ðregÞ
S∞

�
δ̃Qξϕ−

ξϕ ·Θ½δ̃ϕ��, because ξϕ is tangential to the integrating
surface, its second term vanishes. This leads to a total

variation δ̃
R ðregÞ
S∞

Qξϕ , which is identified as −δ̃J by defi-

nition. Then we have to explicitly calculate
R ðregÞ
S∞

�
δ̃Qξt −

ξt ·Θ½δ̃ϕ�� associated with ξt, which gives

l4

ðl2 − a2Þ2 δ̃mþ 4al4m
ðl2 − a2Þ3 δ̃a −

a2lmða2 þ 3l2Þ
ðl2 − a2Þ3 δ̃l: ð21Þ

Unlike the conventional case analyzed above, now the
expression is nonintegrable. By the knowledge of calculus,
if extracting a total variation δ̃M from the nonintegrable
expression, there inevitably remains an additional term.
Indeed, Eq. (21) turns out to be δ̃M − ð4π=3ÞMa2δ̃P,
where P≡ −ðΛ=8πÞ ¼ ð3=8πÞð1=l2Þ. Accordingly, we

find the extended first law

δ̃M ¼ Tδ̃Sþ Ωδ̃J þ
�
V þ 4π

3
Ma2

�
δ̃P: ð22Þ

Thus, in the AdS-Kerr case, the thermodynamic volume
V th ¼ V þ ð4π=3ÞMa2 is not equal to the geometric
volume V. This result (22) coincides with that given
in [5], which was determined from thermodynamic rela-
tions. In stark contrast, in our formalism, the thermody-
namic volume V th and the first law are deduced even
without resorting to the specific expressions of T, S, Ω, J,
and V.
Taking the derivative of the scaling behavior

ηMðS; J; PÞ ¼ Mðη2S; η2J; η−2PÞ with respect to η, one
gets M¼ 2ð∂M=∂SÞSþ2ð∂M=∂JÞJ−2ð∂M=∂PÞP. Using
the extended first law (22), one can read off the Smarr
relation

M ¼ 2TSþ 2ΩJ − 2

�
V þ 4π

3
Ma2

�
P: ð23Þ

Now let us rederive this Smarr relation from Eq. (7) for
cross-checking. Applying ξH ¼ ξt þ Ωξϕ, the regularized
version of Eq. (7) can be put into the form

2

Z ðregÞ

S∞

Qξt þ2Ω
Z ðregÞ

S∞

Qξϕ −2

Z
Sh

QξH ¼−2
Z ðregÞ

V∞

ξH ·L:

ð24Þ

We have multiplied a factor of 2, because now the first term
is just the standard Komar mass formula, which is regu-
larized for the case of the AdS black hole. By explicit
calculation, we find

MK ≡ 2

Z ðregÞ

S∞

Qξt ¼ M þ 8π

3
Ma2P; ð25Þ

and −2
R ðregÞ
V∞

ξH ·L ¼ −2PV. Substituting them into
Eq. (24), it reduces to ½M þ ð8π=3ÞMa2P� − 2ΩJ − 2TS ¼
−2PV, which surely recovers the Smarr relation (23).
Now we can identify the presence of additional termsΔV

in the first law (22) and ΔM in the Smarr relation (23).
Specifically, ΔM≡M −MK is defined as the difference
between the canonical energy and the Komar energy, while
ΔV ≡ V th − V is defined as the difference between the
thermal volume and the geometric volume. They play an
essential role in the extended thermodynamics, i.e., unless
ΔM and ΔV have been appropriately taken into account, a
well-defined Smarr relation and extended first law cannot
be achieved.
We notice that there have been some efforts to

address the extended first law from some general formal-
isms [8,28–30]. But, as far as we know, there was no similar
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analysis for the AdS-Kerr case that accurately reproduces
Eq. (22). As we stressed earlier, the additional terms are
truly nontrivial and interesting. Therefore, to distinguish
our approach from others, below we make further dis-
cussions about how these terms could emerge within our
formalism.
Firstly, below Eq. (21), we have exemplified how the

additional term ΔV arises from a reexamination about the
integrability condition. Acting δ̃ on a physical quantity
such as M requires an extra derivative term ð∂M=∂ΛÞδ̃Λ,
compared to δM. One must take this into account in
constructing the total variation δ̃M. Even if the conven-

tional expression
R ðregÞ
S∞

ðδQξt − ξt ·Θ½δϕ�Þ can be identified
as δM under the integrability condition, the extended

expression
R ðregÞ
S∞

�
δ̃Qξt − ξt ·Θ½δ̃ϕ�� may become nonin-

tegrable; thus it cannot be naively identified as δ̃M. This
point is very crucial, yet it can be easily ignored.
Secondly, the additional terms ΔV and ΔM reflect the

nontrivial asymptotic behaviors of the AdS-Kerr case.
These additional terms are actually the terms that survive
in the limit r → ∞, when evaluating the corresponding
formulas such as Eqs. (12) and (24), in addition to the
regular terms. Moreover, our analysis reveals a close corre-
lation between ΔM and ΔV, given by ΔM ¼ −2PΔV.
Soon we will see that it can be viewed as a special case of
Eq. (30) with n ¼ 0. Interestingly, although the situation
ΔM ≠ 0 may appear problematic for someone attempting
to calculate the canonical energy M from the Komar mass
formula, the difference is essential in the context of the
extended black hole thermodynamics.
Asymptotically-AdS black hole in higher curvature

gravity.—The extended formalism is equally applicable
to higher curvature theories of gravity, where the coupling
parameters αm are treated as thermodynamic variables. We
introduce a new subscript n ¼ f0; mg and denote
P ¼ −ðΛ=8πÞ ¼ α0, F0 ¼ 1 as well as V0 ¼ V, so that
our results could be put into a unified form. We make a
general analysis, and then study a concrete example.
The variation of the Lagrangian (8) results in modifica-

tions to the Einstein field equation, which could be rather
complicated to solve. However, it is common practice to
treat the couplings of the higher curvature terms as small
quantities and solve for black hole solutions perturbatively
and iteratively [25].
For simplicity, we restrict our analysis to the static and

spherically symmetric black hole solutions, where the
horizon Killing vector is simply ξt ¼ ð∂=∂tÞ. The expres-
sions of Θμ and Qμν for the higher curvature theory can be
obtained using standard techniques [23]. Subsequently, we

evaluate the integral
R ðregÞ
S∞

�
δ̃Qξt − ξt ·Θ½δ̃ϕ�� in Eq. (12).

In general, we expect it reduces to the form δ̃M −P
n ΔVnδ̃αn, where ΔVnδ̃αn represents the additional term

proportional to δ̃αn. Accordingly, Eq. (12) simplifies to a
general form of the extended first law

δ̃M ¼ Tδ̃Sþ
X
n

ðVn þ ΔVnÞδ̃αn: ð26Þ

From the extended first law and the scaling behavior
ηMðS;…; αnÞ ¼ Mðη2S;…; η2ðn−1ÞanÞ, we deduce the
Smarr relation

M ¼ 2TSþ 2
X
n

ðn − 1ÞðVn þ ΔVnÞαn: ð27Þ

Let us rederive the Smarr relation from Eq. (23) with

Ω ¼ 0. It reduces to MK − 2TS ¼ −2
R ðregÞ
V∞

ξt · L. Because
MK is not necessarily equal to the canonical energy M, we
represent it as MK ¼ M − ΔM. Next, we handle with

−2
R ðregÞ
V∞

ξt · L ¼ −2
R ðregÞ
V∞

d3x
ffiffiffiffiffiffi−gp ½ðR=16πÞ þP

n αnFn�,
which involves the sum of the on shell integrals of the
Einstein–Hilbert term and the higher curvature terms.
Interestingly, there exists a formula that establishes a
relationship among such integrals [31]. For an asymptoti-
cally AdS black hole, the formula can be generalized as

Z
R
16π

¼
X
n

ðn − 2Þ
Z

αnFn; ð28Þ

where
R

is an abbreviation of
R ðregÞ
V∞

d3x
ffiffiffiffiffiffi−gp

[32].

Thus we have −2
R ðregÞ
V∞

ξt ·L ¼ −2
P

nðn − 1Þ R αnFn ¼
2
P

nðn − 1ÞαnVn. This leads to

M ¼ 2TSþ ΔM þ 2
X
n

ðn − 1ÞαnVn: ð29Þ

Comparing with Eq. (27), we find there must be

ΔM ¼ 2
X
n

ðn − 1ÞαnΔVn: ð30Þ

Once again, there exists a close correlation between the
additional terms ΔVn and ΔM.
As an example, consider a model described by the

Lagrangian

L ¼ 1

16π
ðR − 2ΛÞ þ α2RμνRμν þ α3R

ρσ
μνR

αβ
ρσR

μν
αβ: ð31Þ

We have solved the black hole solution perturbatively
around the AdS-Schwarzschild metric, up to second order
in the couplings, as given in the Supplemental Material
[21]. Evaluating Eq. (12), we get the extended first law
δ̃M ¼ Tδ̃S þ Vδ̃P þ ðV2 þ ΔV2Þδ̃α2 þ ðV3 þ ΔV3Þδ̃α3,
where
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ΔV2 ¼
32

3
πMΛþ α3

8192

27
π2MΛ3; ð32Þ

ΔV3 ¼
32

3
πMΛ2 þ α3

10240

27
π2MΛ4: ð33Þ

On the other hand, we obtain ΔM ≡ M − MK ¼ ð64=3Þ
πMΛðα2 þ 2α3ΛÞ þ ð8192=27Þπ2Λ3Mð2α2α3 þ 5α23ΛÞ.
One can easily verify the equality ΔM ¼ 2α2ΔV2 þ
4α3ΔV3, as alluded to in Eq. (30).
Notice that, when the equation of motion has been

modified by the higher curvature terms, the pure AdS
solution may possess an effective cosmological constant Λe
that deviates from Λ. In view of some motivation, one may
prefer to utilize Λe instead of Λ as the thermodynamic
variable [16]. It is straightforward to change the variables
by substituting the relation Λ ¼ ΛðΛe; α2;α3Þ into the
extended first law at hand.
Concluding remarks.—In this Letter, we have fulfilled an

elegant derivation of extended thermodynamics from the
extended Iyer-Wald formalism, thereby establishing a
robust foundation for the extended thermodynamics.
In extended black hole thermodynamics, an interesting

observation is that the thermodynamic volume V th may not
necessarily be equal to the geometric volume V. This
observation is naturally explained within our formalism.
We have shown that Vδ̃P comes from the explicit depend-
ence of the Lagrangian on Λ, while the evaluation ofR ðregÞ
S∞

�
δ̃Qξt − ξt ·Θ½δ̃ϕ�� yields additional terms ΔVδ̃P by

a careful reexamination of the integrability condition. This
contributes a novel way to determine ΔV and V th, in
contrast to those approaches relying on manipulating the
thermodynamic relations. The argument applies equally
well to the conjugate quantities V th

m ¼ Vm þ ΔVm for other
couplings αm in the theory.
In addition, we uncover a connection between the

additional terms ΔVn and ΔM, as indicated in Eq. (30).
As explained, these terms capture the nontrivial asymptotic
behaviors of the bulk theory. Through dual thermodynam-
ics, these terms and the relation among them may also be
important on the CFT side, which is worthy of deep study
in the future.
We have only analyzed a limited number of examples in

this Letter. However, the formalism is flexible and can be
readily applied to more complex scenarios. This includes
gravitational theories coupled with diverse matter fields, as
well as gravitational theories in higher dimensions, such as
Lovelock gravity [17–20]. In the SupplementalMaterial [21],
we present an analysis for Gauss-Bonnet gravity as a specific
case of Lovelock gravity inD ¼ 5 dimensions [33].We have
demonstrated that our extended formalism successfully
derives the extended thermodynamics for this theory, which
yields accurate expressions for all the thermodynamic quan-
tities. This example is particularly valuable, as it highlights
the effectiveness of our formalism in obtaining extended

thermodynamics and its applicability at any order in the
couplings of higher curvature theories.
Given that our formalism offers an efficient approach

for calculating physical quantities in extended thermo-
dynamics, it can potentially aid in analyzing the reverse
isoperimetric inequality in different scenarios. The inequal-
ity and its refined version suggest a connection between
the thermodynamic volume and black hole entropy [5,34].
It would be interesting to explore the inequality and
address the intricacies beyond the domain of Einstein
gravity.
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