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Current laser-interferometric gravitational wave detectors suffer from a fundamental limit to their
precision due to the displacement noise of optical elements contributed by various sources. Several
schemes for displacement noise-free interferometers (DFI) have been proposed to mitigate their effects.
The idea behind these schemes is similar to decoherence-free subspaces in quantum sensing; i.e., certain
modes contain information about the gravitational waves but are insensitive to the mirror motion
(displacement noise). We derive quantum precision limits for general DFI schemes, including optimal
measurement basis and optimal squeezing schemes. We introduce a triangular cavity DFI scheme and apply
our general bounds to it. Precision analysis of this scheme with different noise models shows that the DFI
property leads to interesting sensitivity profiles and improved precision due to noise mitigation and larger
gain from squeezing.
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Introduction.—Quantum metrology studies fundamental
precision limits in physical measurements imposed by quan-
tum physics. Recent progress in this field has led to formu-
lation of precision limits for a variety of sensing devices:
gravitational wave (GW) detectors [1–8], magnetome-
ters [9,10], atomic clocks [11–14], nano-NMR [15–19], etc.
We focus here on optomechanical sensors and laser

interferometers. These platforms have emerged as the
primary instruments for the detection of GWs, with suc-
cessful observations conducted by several of these detectors
[20–24]. They are, however, severely limited by noise
sources that displace the mirror positions in the interfer-
ometer: thermal noise, radiation pressure noise (RPN),
seismic noise, and Newtonian gravity noise [25–29].
These noises are, in particular, dominant in the low-
frequency regime (< 10 Hz), thus limiting the sensitivity
at this range and preventing detection of various signals
such as intermediate-mass black holes, young neutron stars,
extreme mass ratio inspirals, etc. Circumventing displace-
ment noise is thus an outstanding challenge for GW
detection and optomechanical sensors in general.
Interestingly, the coupling of light fields to GW signals is

different from their coupling to mirror displacement; i.e.,
GW information is accumulated along the optical path,
unlike displacement noise which is only introduced at the
mirrors. This observation has led to proposals of interfer-
ometers wherein displacement noise can be canceled while
not losing the GW signal [30]. This approach is referred to
as displacement noise-free interferometry (DFI).
DFI for laser interferometry was originally proposed

using a simplified system and later expanded to more

complex systems such as speed meters and 3D interfer-
ometers [31–36]. A similar approach for laser phase noise
cancellation has also been proposed for LISA using time
delay interferometry [37–39]. However, DFI systems with
requisite sensitivities remain elusive. Furthermore, a rig-
orous study of the quantum precision limits of these
interferometers has not been conducted.
In this Letter, we use quantum metrology techniques to

derive general precision limits, optimal measurements, and
optimal squeezing quadratures for DFI schemes. We
develop a triangular cavity DFI scheme, which combines
resonance power amplification and DFI, and apply our
results to analyze it. In addition to the improved sensitivity
at low frequencies, we observe interesting effects that
motivate the use of DFI and multichannel interferometers.
We identify pseudo-displacement-free subspaces, i.e., sub-
spaces that are displacement-free for a limited range of
frequencies. These subspaces lead to unexpected sensitivity
profiles and further noise suppression. Lastly, we study the
effect of squeezing and show that DFI increases the
sensitivity gain from squeezing in the high displacement
noise regime.
Formalism and model.—Previous DFI schemes used

several Mach-Zender interferometers [31,32]. However,
these interferometers did not incorporate cavity resonance
to amplify the power and sensitivity. Here, we propose a
scheme that combines DFI with cavity resonance gain: an
equilateral triangular cavity with three mirrors, six input
local-oscillator fields, and six outputs. The six fields
circulate inside the cavity—split between the clockwise
and anticlockwise directions. The scheme and suggested
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parameters are described in Fig. 1. This triangular cavity
yields power amplification: given identical mirrors trans-
missivities (T), the ratio between the intracavity power and
the total input power is T=½3ð1 − ffiffiffiffiffiffiffiffiffiffiffi

1 − T
p Þ2�.

We will show that this scheme is indeed a DFI. The
intuition for this is simple: the displacement noise is
generated by the three mirrors and induced on the six
output fields. Since the number of mirrors is smaller than
the number of output fields, we have modes that are
decoupled from this noise and enable the DFI. This
approach is formulated below.
We use a general formulation that holds for any system

with n mirrors and k fields, such that k > n. The system is
described using the input-output formalism [41,42], and we
denote the quadrature operators of the input and output
fields as

Q̂in ¼
�

â1
â2

�

; Q̂out¼
�

b̂1

b̂2

�

;

respectively. â1, b̂1 are the k-dimensional vectors of
amplitude quadratures, and â2, b̂2 are the k-dimensional
vectors of phase quadratures. These quadratures satisfy the
standard commutation relations: ½ðQ̂outÞl; ðQ̂outÞk� ¼ Jl;k
with

J ¼ i

�

0 1k
−1k 0

�

(same for Q̂in). The noisy displacement of the mirrors is
denoted as fΔxigni¼1, and the amplitude of the GW

polarization vector is given by h ¼ ðhþ; h×ÞT. The input-
output relations in the frequency domain are then

Q̂outðΩÞ¼MðΩÞQ̂inðΩÞþVðΩÞhðΩÞþAðΩÞΔxðΩÞ: ð1Þ

Ω ¼ 2πf is the angular frequency, hereafter this notation
will be suppressed, M, A, V are the transfer matrices of the
input modes, displacement noise, and the GW vector,
respectively. Accordingly, these are (2k × 2k)-, (2k × n)-,
and (2k × 2)-dimensional matrices, that take the following
general form (assuming carrier frequency is resonant with
the arm length):

M¼
�

Mint 0

M21 Mint

�

; A¼
�

0

Aph

�

;

V¼
�

0

Vph

�

¼
�

0 0

Vþ;ph V×;ph

�

: ð2Þ

Mint is a k × k unitary interferometer transfer matrix and
M21 is a k × k coupling matrix between the amplitude and
phase quadratures due to radiation pressure noise. A, V act
only on the phase quadratures, with their support being Aph

[(k × n) dimensional], Vph [(k × 2) dimensional]. Vph

consists of two column vectors: Vþ;ph;V×;ph; these are
k-dimensional transfer vectors of hþ; h×, respectively. A
detailed description of how to calculate these transfer
matrices can be found in Refs. [42,43].
We are now poised to define the displacement free

subspace (DFS): this is the space of phase quadratures
of the form u · b̂2, with u∈ kerðA†

phÞ. Since u†AphΔx ¼ 0,
these quadratures are decoupled from the displacement
noise term in Eq. (1) and thus resilient to this noise.
Thinking of the phase quadratures as k-dimensional col-
umn vectors, the DFS is then the kernel of A†

ph. We denote
this subspace and its projection operator asMDFS andΠDFS,
respectively. The orthogonal complement of the DFS is
the coupled subspace; it is the linear span of the column
vectors of Aph. This subspace and its projection operator

are denoted as MC and ΠC, respectively. Since A†
ph is an

(n × k)-dimensional matrix, a sufficient condition for the
existence of DFS is k > n, i.e., more fields than mirrors.
Quantum precision limits.—Our figure of merit is the

minimal detectable GW amplitude in any given polariza-
tion. With our interferometer, the dominant polarization is
approximately hþ, hence the figure of merit is the standard
deviation in estimating hþ; we denote it as σ and refer to it
as the standard deviation (SD) or the sensitivity. This
reduces the problem to a single parameter estimation of hþ,
where the sensitivity is calculated below using the Cramér-
Rao bound.
According to the Cramér-Rao bound, given a readout

scheme with outcomes distribution fpðxÞgx, the variance
σ2 of any unbiased estimator of hþ satisfy σ2 ≥ F−1, with

FIG. 1. Sketch of the DFI scheme. A symmetric triangular
cavity is formed by three mirrors and six input laser fields. Six
detectors are placed in the opposite direction of the input fields.
The configuration leads to both a clockwise and an anticlockwise
circulating field within the cavity. We used the following
parameters. Arm length, L ¼ 4 km; laser wavelength,
1064 nm (same as advanced LIGO [40]). Mirror’s mass, 5 kg;
intracavity power, 3.5 MW (to enhance RPN for illustrations).
Power transmissivity of the mirrors, T ¼ 0.1.
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F ¼ h½∂hþ lnðpÞ�2i being the Fisher information (FI). This
lower bound is asymptotically light [44].
In the quantum context, further optimization over the

detection schemes yields the quantum Fisher information
(QFI), denoted as I [45], such that for any readout
scheme σ2 ≥ I−1.
In our case theQFI has a particularly simple form[8,46,47],

I ¼ 2ð∂hþdqÞ†Σ−1
q ð∂hþdqÞ; ð3Þ

where dq and Σq are the mean vector and covariance matrix

of Q̂out, respectively:

dq¼hQ̂outi; ðΣqÞi;j¼hfQ̂out;i;Q̂
†
out;jgi− hQ̂out;iihQ̂†

out;ji:
ð4Þ

with f•; •g being the anti-commutator of the operators. This
simple form is because the outputmodes are inGaussian state,
and information about h is encoded only in the dq.
From Eqs. (1) and (2) we observe that ∂hþdq ¼ Vþ, with

Vþ ¼ ð0Vþ;phÞT , and that Σq ¼MΣiM†þAΣΔxA†, where
Σi, ΣΔx are the covariance matrices of the input quadratures
and the displacement noise Δx, respectively. Assuming the
input state is vacuum and the displacement noise is
Gaussian i.i.d., Δx ∼ Nð0; 1

2
δ21Þ, the covariance matrix

is then Σq ¼ 1
2
ðMM† þ δ2AA†Þ, and the QFI reads:

I ¼ 4V†
þðMM† þ δ2AA†Þ−1Vþ: ð5Þ

In Eq. (5), the RPN is included in the MM† term, and the
rest of the displacement noise is encoded by the additional
AA† term. The shot noise limit is obtained by nullifying the
RPN and the displacement noise, i.e., M is unitary and
δ ¼ 0, which yields I ¼ 4V†

þVþ. This limit serves as an
upper bound to any noisy QFI scenario.
The QFI [Eqs. (3) and (5)] is attainable with a homodyne

measurement of the quadrature ðΣ−1
q VþÞ · Q̂out [43,48].

Our sensitivity curves will therefore correspond to either
the QFI, i.e., the SD with an optimal measurement,
σ ¼ 1=

ffiffi

I
p

, or to the FI with a specific homodyne meas-
urement, σ ¼ 1=

ffiffiffiffi

F
p

.
Precision limits of the simplified model.—We begin with

a simplified model to develop an understanding of the DFI
method. The simplified model is devoid of RPN, i.e., M is
unitary, and the displacement noise is taken to be a white
noise, i.e., δðΩÞ is constant. The QFI is, therefore,

I ¼ 4V†
þð1þ δ2AA†Þ−1Vþ: ð6Þ

The sensitivity for different levels of δ, ranging from the
shot noise limit (δ ¼ 0) to infinite displacement noise
(δ → ∞), is presented in Fig. 2(a). The DFI property is
manifested in the fact that as δ → ∞, the standard deviation
remains finite, denoted by the black line in Fig. 2(a). We
thus have finite noise in GW detection even in the presence
of infinite displacement noise.

To understand the behavior of the sensitivity, we note
that the QFI can be decomposed as

I¼FCþFDFS

¼ 4V†
þΠCð1þδ2AA†Þ−1ΠCVþþ4V†

þΠDFSVþ: ð7Þ

The first term (FC) is the information from the coupled
subspace and the second term (FDFS) is the information
from the DFS.
In the infinite displacement noise limit (δ → ∞), the first

term FC vanishes and thus the QFI in this limit is

Iδ→∞ ¼ 4V†
þΠDFSVþ;

i.e., we get information only from the DFS. As f → 0, this
standard deviation diverges, indicating that in this regime

FIG. 2. (a) Precision limits with the simplifiedmodel. The SD, σ,
as a function of frequency for different levels of displacement noise
(δ) [Eq. (6)]. The DFI property is manifested in the fact that σ is
finite in the limit of infinite displacement noise (solid black curve).
(b) Precision limits with realistic noise profiles. Given RPN alone,
by measuring the optimal quadratures [Eq. (8)] the QFI (black
dashed line) coincides with the shot noise limit (solid yellow line).
On the other hand, measuring the (nonoptimal) phase quadratures
yields the solid blue (circles) line [Eq. (9)]. Similarly, given both
RPN and thermal noise, measuring the phase quadratures yields
the solid red (rectangles) line. Inset: comparison between the phase
quadratures FI (solid red line) and the QFI (black dashed line) in
the presence of thermal noise and RPN.
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ΠDFSVþ → 0. For finite δ [dashed lines in Fig. 2(a)], the
QFI converges to I ≈ ð4=δ2ÞV†

þðAA†Þ−1Vþ at low frequen-
cies, and thus σ grows as δ in this limit.
Furthermore, using Eq. (7) we can quantify the effec-

tiveness of the DFI with the following coefficient:
η ¼ ½FDFS=ðFDFS þ FCÞ�, i.e., the fraction of the informa-
tion that comes from the DFS. It will be shown that η has an
operational meaning as the gain from squeezing in the limit
of large displacement noise.
Precision limits with realistic noise profiles.—Let us

now consider the sensitivity with realistic thermal noise and
RPN. We begin by analyzing the effect of RPN alone and
then study the combination of the two noises.
The effect of RPN is given by a nonunitary M, i.e.,

nonzero M21 matrix [Eq. (2)]. We assume that the mirrors
are free masses; hence, M21 ∝ ð1=mΩ2Þ, where m is the
mass of the mirrors. This typically leads to a sensitivity
profile that scales as Ω−2 [7,8].
The QFI, in this case, saturates the shot noise limit [black

dashed line in Fig. 2(b)]; i.e., RPN is completely removed
by measuring an appropriate choice of quadratures. This is
a generalization of the optimal frequency-dependent read-
out introduced in Refs. [2,49]. Specifically, the k quad-
ratures given by the column vectors of the matrix

Tdec ¼
�

−MintM
†
21

1

�

ð8Þ

are decoupled from RPN, and homodyne measurement of
the corresponding k operators, T†

decQ̂out, saturates the QFI
and the shot noise limit.
Measuring these optimal quadratures is experimentally

challenging; the standard and simple readout quadratures
are the phase quadratures. Phase quadratures, however, are
not decoupled from RPN and measuring them yields the
following FI [43]:

F ¼ 4V†
þ;phð1þM21M

†
21Þ−1Vþ;ph: ð9Þ

This expression is analogous to the QFI of the simplified
model [Eq. (6)], where the termM21M

†
21 is the displacement

noise caused by RPN. It can be shown that M21¼AphDx,
whereDx is the transfer matrix of the amplitude quadratures
to the displacement of the mirrors [43]. TheDFS is therefore
decoupled from this noise. The corresponding sensitivity
is presented in the solid blue line (circles) of Fig. 2(b),
where we observe an interesting behavior: unlike the
conventional sensitivity curves, it does not diverge uni-
formly as 1=Ω2 [50], instead there is a range of frequencies
where the divergence stops. This plateau is due to a pseudo-
DFS, a subspace that is impervious to displacement noise in
this range of frequencies. Let us further elaborate on this.
In our triangular cavity scheme the phase quadratures

can be decomposed to three orthogonal eigenspaces of the

covariance matrix: Mmin ⊕ Mmax ⊕ MDFS, where Mmin ⊕
Mmax is a decomposition of MC to eigenspaces with
minimal and maximal eigenvalues, respectively. Since
these are eigenspaces of the covariance matrix, the FI is
a sum of the FIs achieved with each one of them separately;
i.e., F ¼ Fmin þ Fmax þ FDFS. For different frequencies,
different subspaces are dominant; this accounts for the
nonuniform divergence. The plateau appears when Fmin
becomes dominant. Mmin is immune to displacement noise
in this range of frequencies, i.e., it is an eigenspace of
M21M

†
21 with an eigenvalue that is much smaller than shot

noise, hence the plateau. This is discussed further in the
Supplemental Material [43].
Let us now consider thermal noise as well. The thermal

noise is modeled asΔx ∼ Nð0; 1
2
δ21Þ, where δ2ðfÞ ¼ 2.7 ×

10−30ð1=fÞ5m2=Hz [51]. Hence, the effect of thermal
displacement noise is similar to the simplified model with
a frequency-dependent δ.
In the presence of both RPN and thermal displacement

noise, the optimal measurement quadratures are the quad-
ratures of Eq. (8), which are decoupled from RPN. Hence
RPN is completely canceled and we are left only with the
thermal noise. The QFI thus takes the form of Eq. (6) with a
frequency-dependent δ. A plot of the corresponding sensi-
tivity is presented in the inset of Fig. 2(b).
Measuring the phase quadratures, RPN is not canceled

and the FI reads 4V†
þ;phð1þM21M

†
21 þ δ2AphA

†
phÞ−1Vþ;ph.

The plot of the corresponding sensitivity profile (red solid
line) and a comparison with the QFI (black dashed line) is
presented in the inset of Fig. 2(b). Three different regimes
can be observed in the plot, that correspond to three
eigenspaces of the covariance matrix. For low enough
frequencies, the DFS becomes dominant and the SD
diverges as f−2, instead of f−5=2. Before that, there is an
intermediate regime where Mmin is dominant and a short
plateau exists. The comparison in Fig. 2(b) (inset) between
the phase quadratures FI and the QFI shows that they
coincide at low frequencies where the thermal noise is
dominant, but the QFI outperforms the phase quadratures
FI at intermediate frequencies where RPN is dominant.
Effect of squeezing.—We summarize the optimal schemes

and sensitivities with squeezing. Given a squeezing factor of
e−r the optimal QFI is 4V†

þ;phðe−2r1þ δ2AphA
†
phÞ−1Vþ;ph; it

can be achieved with squeezing of the phase quadratures and
measuring the optimal quadratures of Eq. (8). For phase
quadraturesmeasurement, the optimal FI is 4V†

þ;ph½e−2rð1þ
M21M

†
21Þþδ2AphA

†
ph�−1Vþ;ph, achievable by squeezing the

optimal quadratures. These optimal squeezing quadratures
and sensitivity bounds are derived in the Supplemental
Material [43].
The performance of the squeezed schemes, and com-

parison with the unsqueezed case, is shown in Fig. 3.
Observe that the gain from squeezing is not uniform and
depends on the effectiveness of the DFI, i.e., on η. We can
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define the gain from squeezing as ηgain ¼ ½ðFsq=F − 1Þ=
ðe2r − 1Þ�, where FsqðFÞ is the FI with(out) squeezing.
Clearly 0 ≤ ηgain ≤ 1, where 0 corresponds to no gain
and 1 to maximal gain. We show in the Supplemental
Material [43] that in the limit of large displacement noise
ηgain ¼ η; hence ηgain equals the fraction of information
coming from the DFS. This is illustrated in the insets of
Figs. 3(a) and 3(b). DFI is therefore necessary to gain from
squeezing in the presence of large displacement noise. The
improvement introduced by DFI is summarized in Fig. 3(c)
where we compare the sensitivity with squeezed input
given different readout combinations: a combination that
maximizes the signal and the optimal combination that
saturates QFI. The sensitivity with optimal combination
considerably outperforms the sensitivity with maximal-
signal combination at low frequencies due to two DFI
properties: better scaling with f (f−2 compared to f−2.5),
and larger gain from squeezing.
Extensions and conclusions.—The Supplemental

Material contains extensions of this triangular scheme to
n-gons with n mirrors [43]. Such polygon schemes may
lead to further sensitivity improvement. The Supplemental
Material also contains an analysis of the Sagnac noise, i.e.,
a phase shift due to rotation. We show that the resulting
sensitivity loss is small.
To conclude, we developed new DFI schemes and

derived general quantum precision limits, optimal mea-
surements, and optimal squeezing quadratures.
There are still several challenges and open questions.

The main challenge is to incorporate suppression of laser
noise in this architecture. The laser noise must be
correlated between the different ports, and the challenge
is to engineer such correlation. Other challenges include
further optimization over the architecture and considering
also detuning.
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