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Quantum many-body scars consist of a few low-entropy eigenstates in an otherwise chaotic many-body
spectrum, and can weakly break ergodicity resulting in robust oscillatory dynamics. The notion of quantum
many-body scars follows the original single-particle scars introduced within the context of quantum
billiards, where scarring manifests in the form of a quantum eigenstate concentrating around an underlying
classical unstable periodic orbit. A direct connection between these notions remains an outstanding
problem. Here, we study a many-body spinor condensate that, owing to its collective interactions, is
amenable to the diagnostics of scars. We characterize the system’s rich dynamics, spectrum, and phase
space, consisting of both regular and chaotic states. The former are low in entropy, violate the eigenstate
thermalization hypothesis, and can be traced back to integrable effective Hamiltonians, whereas most of the
latter are scarred by the underlying semiclassical unstable periodic orbits, while satisfying the eigenstate
thermalization hypothesis. We outline an experimental proposal to probe our theory in trapped spin-1 Bose-
Einstein condensates.
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Introduction.—Isolated many-body systems out of equi-
librium are typically expected to thermalize, meaning that
the expectation value of generic physical observables
reaches at long times the value predicted by a thermal
ensemble. In this context, thermalization can be understood
in terms of the eigenstate thermalization hypothesis (ETH)
[1–5], according to which most energy eigenstates are
expected to be thermal [6]. However, some systems escape
this paradigm with mechanisms such as integrability [7–9],
Hilbert space fragmentation [10,11], many-body localiza-
tion [12–14], and recently quantum many-body scars
(QMBS) [15–24]. The latter lead to a weak ergodicity
breaking phenomenon [19], whereby a few nonthermal
states largely overlap with the initial condition. This results
in robust oscillatory dynamics [17], as first experimentally
observed in a Rydberg atom array [16].
The notion of quantum scars originates from quantum

billiards [25,26]. There, “scars” manifest in the eigenstate
wave functions as a higher probability density in the
vicinity of unstable periodic orbits (UPO) of the underlying
chaotic classical motion [27]. Such an analysis cannot be
directly performed on many-body quantum systems lacking
a classical limit. Therein, QMBS are usually identified as
nonthermal states embedded in the bulk of the energy
spectrum [19]. A connection to single-particle quantum
scars was suggested for the PXP model in Ref. [28] and
further elaborated in Refs. [29,30], relying on variational
approaches to construct low-dimensional effective phase
spaces. It was found that the periodic revivals associated to
QMBS correspond to periodic orbits in the effective phase

space. The region of phase space surrounding these
periodic orbits is however regular (i.e., nonchaotic), unlike
in scars.To date, the relation of QMBS to scars and regular
states thus remains unclear [29].
Here, we address this problem from a fresh perspective,

namely that of many-body systems with all-to-all inter-
actions [31–38]. While interacting, these systems have a
well-defined classical limit, and thus allow one to unam-
biguously discern regular and scar states. More specifi-
cally, we introduce a chaotic model based on spinor
condensates [39,40] which are established experimental
platforms to probe quantum many-body physics out of
equilibrium [41–45]. We find that the majority of the
eigenstates are thermal, featuring close-to-maximal entropy
as expected for a chaotic system; see Fig. 1(a). Interestingly,
however, most of these thermal states are scarred by a UPO
in the underlying classical phase space [Figs. 1(c) and 1(d)],
to an extent that we quantify via a scarness figure of merit.
This ubiquity of scarring [27,46–48] stands in contrast to the
usual phenomenology of QMBS. On the other hand, a
smaller fraction of the Hilbert space consists of nonthermal
eigenstates, which feature low entanglement entropy, violate
ETH, and are as such strongly reminiscent of QMBS.
Furthermore, they are organized in “towers” and can be
approximately reproduced using a spectrum generating
algebra, a generic structure that underlies ergodicity break-
ing in a variety of situations, for instance in two-dimensional
quantum gases [49], in the Hubbard model [50], or in
various models hosting QMBS [17–19,22–24]. However,
in the mean-field phase space, these nonthermal states
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are associated to stable orbits forming regular regions
[Fig. 1(b)]. They are not affected by the UPOs, in contrast
to scars as defined in [27] and shown in Figs. 1(c) and 1(d).
Thus, in our model, QMBS properties are found in regular
states and not in quantum scars.
We conclude by investigating the dynamical signature of

regular and scarred eigenstates. While the former give rise
to robust oscillatory dynamics and prevent thermalization,
the latter does not, but can cause a finite revival of the time-
evolved state fidelity before thermalization. Our work
sheds light on the fundamental differences between two
notions of scars found in the single- and many-body
systems [18,19,24,27], and puts spinor condensates for-
ward as a prominent platform for the experimental inves-
tigation of scarring.
Model.—We consider N spin − 1 bosonic atoms tightly

confined in an optical trap, such that spin and spatial
degrees of freedom decouple, and condensation occurs in a
single spatial orbital [51–56]. This limit is achieved for a
strong trapping potential and small atom number [57], such
that the kinetic energy sets the largest energy scale, and the
cost of a spatial mode excitation is much larger than that of
a spin excitation. The low energy physics is therefore
governed by a spin Hamiltonian, reading

Ĥspin ¼
c1
N

X
i<j

ŝi · ŝj þ
X
i

ðpzŝz;i þ qŝ2z;i þ p⊥ðtÞ · ŝ⊥;iÞ:

ð1Þ

In Eq. (1), the first term describes an all-to-all Heisenberg
interaction with strength c1=N [39]. In the second sum, the
first two terms correspond to the linear (pz ∝ Bz) and
quadratic (q ∝ B2

z) Zeeman energies in the presence of a
large static magnetic field Bz along the z axis. The last term
is the linear Zeeman energy due to a sum of two weak fields
rotating in the ðxyÞ plane at the frequencies pz � q, thereby
driving the hyperfine transition 0 ↔ �1. Performing a
change of frame described in the Supplemental Material
(SM) [58], we obtain the time-independent Hamiltonian

Ĥ ¼ c1
N

�
N̂0ðN − N̂0Þ þ

1

2
ðN̂þ − N̂−Þ2

�
þ pðŴþ þ Ŵ−Þ;

ð2Þ
where N̂m ¼ â†mâm, with âm the annihilation operator for the
spin modem ¼ 0;�1, Ŵ� ¼ ð1= ffiffiffi

2
p Þðâ†�â0 þ H:c:Þ, and p

is the Larmor frequency associated with the rotating trans-
verse field. In the limit p ¼ 0 the populations N̂m are
conserved and the model is integrable, whereas a finite p
introduces tunneling between different modes m, breaks
integrability, and leads to richer dynamics. An interesting
feature of the interaction term in Eq. (2) is a logarithmic
divergence of the density of states in themiddle of the energy
spectrum [58]. In contrast to previous studies of chaotic
spinor condensates [35,56], this key feature allows for the
rapid emergence of quantum chaos, as commonly diagnosed
by energy level statistics and entanglement entropy [5], even
for p ≪ c1. For concreteness, we will focus on p ¼ 0.05,
near the onset of chaos, and set c1 ¼ ℏ ¼ 1 [69].
To gain insights into the dynamics, we begin by deriving

the corresponding semiclassical (mean-field) equations of
motion. To this end, we define a SU(3) coherent state jζi ¼
ð1= ffiffiffiffiffiffi

N!
p Þ½Pm ζmâ

†
m�N j0i with ζm ¼ ffiffiffiffiffiffi

nm
p

eiϕm , where
nm ≡ Nm=N. Enforcing normalization,

P
m nm ¼ 1, and

choosing the global phase such that ϕ0 ¼ 0, we can
parametrize the coherent states by four real numbers, n0,
θ ¼ ϕþ þ ϕ−, m ¼ nþ − n−, and η ¼ ϕþ − ϕ−, yielding
mean-field equations of motion,

ṅ0 ¼ p
ffiffiffiffiffiffiffi
2n0

p
½ ffiffiffiffiffiffi

nþ
p

sinϕþ þ ffiffiffiffiffiffi
n−

p
sinϕ−�;

θ̇ ¼ 2ð1− 2n0Þ þp

�
2nþ − n0ffiffiffiffiffiffiffiffiffiffiffiffiffi

2n0nþ
p cosϕþ þ 2n− − n0ffiffiffiffiffiffiffiffiffiffiffiffiffi

2n0n−
p cosϕ−

�
;

ṁ¼ p
ffiffiffiffiffiffiffi
2n0

p
½− ffiffiffiffiffiffi

nþ
p

sinϕþ þ ffiffiffiffiffiffi
n−

p
sinϕ−�;

η̇¼ −2m−p

ffiffiffiffiffi
n0
2

r �
cosϕþffiffiffiffiffiffi

nþ
p −

cosϕ−ffiffiffiffiffiffi
n−

p
�
; ð3Þ

where ϕ� and n� are functions of n0, m, θ, and η. The
respective classical trajectories are obtained through
numerical integration of these equations.
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FIG. 1. (a) The entanglement entropy Sð1Þ
n of the eigenvalues of

one-body reduced density matrix with respect to energy density

En=N. Sð1Þ
n distinguishes thermal eigenstates, which nearly

saturate the upper bound Sð1Þ
n ¼ ln 3 ≈ 1.1, from an array of

towers of regular eigenstates with lower entropy. (b)–(d) Phase
space distributions Pnðn0; θÞ of selected eigenstates, correspond-
ing to the purple circle, green triangle, and red square markers in
panel (a). Regular states (b) lie within a restricted region of the
phase space, whereas the scarred states (c),(d) concentrate around
the classical UPOs (white and red dashed lines) to some variable
degree [strong for (c), scarness Dn ≈ 2.1, and weak for (d),
Dn ≈ 1.2]. Here, we consider N ¼ 200 particles.
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Quantum scars and regular eigenstates.—The presence
of a clear classical limit in our model allows one to
visualize ergodicity breaking directly in phase space using
the Husimi-Q distribution QnðζÞ ¼ jhζjψnij2 of each
quantum eigenstate jψni, obtained through exact diagonal-
ization of Eq. (2) for N ¼ 200 atoms. As it will be argued
later, it is convenient for visualization purposes to focus on
the ðn0; θÞ plane, in which we define a projection function

Pnðn0; θÞ ¼
1

dðn0; θÞ
ZZ

dmdηQnðn0; θ; m; ηÞ; ð4Þ

where dðn0; θÞ ¼ ∬ dmdη δðEn − hζjĤjζiÞ is the density of
states at energy En in the classical phase space.
We present Pn for some characteristic eigenstates in

Figs. 1(b)–1(d). Remarkably, we find that most eigenstates
exhibit a structure in phase space [46–48], even those
[panels (c),(d)] with large entropy [see panel (a)]. Indeed,
the patterns observed in Pnðn0; θÞ can be associated with
periodic trajectories of the classical equations of motion,
Eq. (3). These lead to a mixed phase space with both
regular and chaotic regions, as can be seen from an analysis
based on Poincaré sections and Lyapunov exponents
[Fig. 2(a)]. Because of energy conservation, the motion
is constrained to a three-dimensional manifold, and a 2D
Poincaré section of equal-energy trajectories is thus
obtained by fixing one variable. We choose to display
ðn0; θÞ for those times t at which mðtÞ ¼ mð0Þ. For each
point on the Poincaré section, we extract the Lyapunov
exponent λ from the monodromy matrix [58], and imprint it
in the marker’s color. For small n0 we observe stable
regular trajectories (λ ¼ 0). The motion becomes chaotic
(λ > 0) for larger n0. Interestingly, it is seen from Eq. (3)
that a trajectory starting on the 2D plane defined by m ¼ 0
and η ¼ 0; 2π remains on the plane. Evolving with
Hamiltonian dynamics in 2D, these trajectories are peri-
odic. However, some of these in-plane periodic orbits are
unstable to out-of-plane perturbations, which is witnessed

by a positive Lyapunov exponent λ > 0. These UPOs are
responsible for scarring the eigenstates; see Fig. 1(c).
We emphasize that scarring is very different from the

correspondence between regular states and stable (quasi)
periodic orbits. This can be understood from semiclassical
arguments such as the Einstein-Brillouin-Keller quantiza-
tion method for integrable models. This method applies
when a volume in phase space is regular, but cannot explain
the scarring by UPOs that constitute a measure zero
set [25,70].
To quantify the scarring of the eigenstates jψni, we

define a “scarness” figure of merit (see also [48,71–73]),

Dn ¼
H
UPO dζjhψnjζij2H
UPO dζjhψejζij2

: ð5Þ

Here, the numerator (denominator) quantifies the overlap of
the UPO with an eigenstate jψni (ergodic state jψei) at
energy En. The ergodic state jψei is built as a superposition
of 104 coherent states taken along a randomly picked
classical chaotic trajectory at energy En. We thus expect
Dn ≈ 1 if jψni is not scarred, Dn > 1 if it is scarred by the
considered UPO, and Dn < 1 if jψni is scarred by another
UPO or if it is a regular state. In Fig. 2(b), we show the
histogram of Dn in the middle of the energy spectrum. The
peak at Dn ≈ 0 is due to the regular states, which fill a
region of phase space not explored by the UPO. Except for
this, the distribution of Dn is biased toward values Dn > 1
(excluding the regular states, the mean value ofDn is ≈1.3),
suggesting that most eigenstates are scarred by the UPOs
that we have previously identified. Finally, note that by
adding the term ∝ δzŜz to the Hamiltonian Eq. (2) (experi-
mentally realized by detuning the frequency of the rotating
fields), the m ¼ η ¼ 0 plane no longer hosts UPOs, and
consequently, the Husimi distributions of the eigenstates do
not show any scars.
QMBS feature low entropy and violate ETH, two key

properties that we now investigate for our scarred and
regular states. Unlike QMBS, we could not find an entro-
pic measure that is significantly affected by the scarring.

First, we inspect the von Neumann entropy Sð1Þ
n ¼

−Tr½ρð1Þn ln ρð1Þn � of the one-body density matrix ½ρð1Þn �jk ¼
hψnjâ†j âkjψni, which quantifies the entanglement between
one atom and the rest of the ensemble [74]. This entropy is
large for all scarred states, c.f., Fig. 1, with no appreciable
dependence on Dn. We have also checked the mode
entanglement entropy [75], which is similarly large, while
slightly anticorrelated with Dn (see SM [58]).
Let us now focus on the thermalization properties and

energy level statistics. Figure 3(a) shows the expectation
values of n̂0 ¼ N̂0=N for each eigenstate jψni, where hn̂0i
is a commonly measured quantity in spinor experiments
[55,56,76] (similar behaviors are found for other few-body
observables). Across the range 0.22 < E=N < 0.32, there
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eigenstates at energy E ¼ 0.24 N.
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is a band of thermal states where hn̂0i is a smooth function
of energy, in agreement with the ETH [33] (see SM [58] for
details). By contrast, hn̂0i is organized in towers for the
regular states and violates the ETH [58]. Consistently, in
Figs. 3(b) and 3(c) we demonstrate that the level spacing
statistics is close to the Wigner-Dyson and Poisson dis-
tributions for thermal and regular states, respectively.
These findings suggest that the regular states can be

obtained from an underlying integrable model. Indeed, we
are able to unravel it with the following reasoning: when
there is a significant imbalance Nþ ≫ N−, we expect
bosonic amplification of the mixing between m ¼ 0 and
m ¼ þ1, leaving m ¼ −1 as a background mode. In this
case Ŵ− can be neglected, the conservation of N̂− is
restored, and the eigenstates are Fock states for them ¼ −1
mode. We can thus replace the operator N̂− by its
eigenvalue N−, and obtain the following integrable
Hamiltonian for the remaining m ¼ 0;þ1 modes:

ĤeffðN−Þ ¼ −
N̂2

0

2N
þ 2N−

N
N̂0 þ pŴþ þ C; ð6Þ

where C is a constant [58]. For a fixed N− we diagonalize
numerically ĤeffðN−Þ, and find eigenstate expectation
values that match remarkably well those of a given tower.
Considering awide range ofN−we are able to reconstruct all
the towers seen in Fig. 3(a). Note that, to mitigate finite size
effects, we diagonalize he Hamiltonian of Eq. (6) for
N ¼ 2000 (instead of N ¼ 200), and examine one eigen-
state in every ten (details in SM [58]). There are ∝ N towers

of∝ N states, yielding a total number of regular states∝ N2,
which constitutes a finite fraction of the Hilbert space (with
dimension ∝ N2), even in the thermodynamic limit.
In the limit N0 ≪ Nþ, Eq. (6) can be linearized and

diagonalized via a Bogoliubov transformation. Hence the
regular states can be constructed analytically from a set of
two spectrum generating algebras, a common tool to
construct QMBS [17–19] (although these algebras here
are approximate and only capture some regular states, see
SM [58]). Within this approximation, the towers of regular
eigenstates can be seen as independent harmonic oscilla-
tors, explaining the Poisson energy level statistics. Finally,
note that another set of regular states is obtained upon
inverting the role of the m ¼ �1 modes, leading to nearly
degenerate doublets of regular states.
Dynamics.—We now investigate the dynamics of the

system; see Fig. 4. We consider three initial states at
the energy E ¼ 0.24 N: (i) a coherent state jζci with
n0 ¼ ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4E=N
p Þ=2, η ¼ π, and m ¼ θ ¼ 0, such

that ζc overlaps with the chaotic region of the phase space;
(ii) a coherent state jζsi with n0 ¼ ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4E=N
p Þ=2,

m ¼ η ¼ 0, and θ ¼ π, such that ζs lies on the UPO; and
(iii) a Fock state jψ regi with N0 ¼ 0 and Nþ − N− ¼ffiffiffiffiffiffiffiffiffiffi
2NE

p
, chosen to have a large overlap with one

tower of regular states. We focus on the observable hn̂0i,
though we observe similar behavior for other few-body
observables.
Regular states display long-lived oscillations in the time

evolution of both hn̂0i and the state fidelity F ðtÞ ¼
jhψð0ÞjψðtÞij2, independently of the system size; see
Figs. 4(a) and 4(b), respectively. On the other hand, when
the system is initiated at the two coherent states jζci and
jζsi [57], which overlap with eigenstates satisfying ETH, n̂0
rapidly thermalizes to the microcanonical ensemble pre-
diction (excluding the regular states). The role of scarring
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becomes evident at the level of the fidelity F ðtÞ [Fig. 4(b)]:
its first revival is stable in the N ≫ 1 limit for the initial
state jζsi, whereas it vanishes for the initial state jζci. This
can be better appreciated from the scaling analysis in
Fig. 4(c).
Discussion and outlook.—We have studied a chaotic

spinor condensate in which a semiclassical limit allows one
to unambiguously discern coexisting quantum scars and
regular eigenstates. We recover the properties of chaotic
many-body systems with ETH-obeying and high-entropy
eigenstates, and Wigner-Dyson energy spacing distribu-
tion. Remarkably, these features arise despite the fact that
most eigenstates are scarred [48], instead of random as
expected for a chaotic system [5]. These results also
highlight the difference between quantum scars [27] and
QMBS, which are often defined as nonthermal eigenstates
[18,19,24]—a definition that in our system would point
toward regular states. An interesting open question remains
regarding the fate of regular and scar states upon breaking
the all-to-all nature of the model, e.g., when loading the
spinor condensate in an optical lattice [77].
Our model’s main ingredients are readily available in

state-of-the-art experimental setups, which is an exciting
prospect given the scarcity of experimental observations of
quantum scars [26,78] in a many-body setting. It could
provide an ideal test bed to investigate the relation between
scarring and decoherence in a physical system with a weak
coupling to the environment [22].
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