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During the growth of a cell collective, such as proliferating microbial colonies and epithelial tissues, the
local cell growth increases the local pressure, which in turn suppresses cell growth. How this pressure-
growth coupling affects the growth of a cell collective remains unclear. Here, we answer this question using
a continuum model of a cell collective. We find that a fast-growing leading front and a slow-growing
interior of the cell collective emerge due to the pressure-dependent growth rate. The leading front can
exhibit fingering instability, and we confirm the predicted instability criteria numerically with the leading
front explicitly simulated. Intriguingly, we find that fingering instability is not only a consequence of local
cell growth but also enhances the entire population’s growth rate as positive feedback. Our work unveils the
fitness advantage of fingering formation and suggests that the ability to form protrusions can be
evolutionarily selected.
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Summary for biologists.—Proliferating cell collectives,
such as tumors and microbial colonies, are ubiquitous in
biology. For the cells at the interior of the collective to
grow, they need to push the cells at the outside, which
generates a higher pressure at the interior. Meanwhile,
experiments showed that high pressure reduces cancer cell
proliferation and drives apoptosis. In microorganisms,
several experiments have suggested that high pressure
may trigger a glass transition (an amorphous liquid
becomes solid) of the cytoplasm, above which the mobility
of biomolecules virtually stops. This crowding effect slows
down the intracellular reaction rates and the growth rate.
How does the interconnected feedback between growth and
pressure affect the proliferation of cell collectives? In this
work, we aim to answer this question using a physical
approach.
During our research, we realized that the instability of

the cell collective interface plays a key role, which can
occur during epithelial spreading, biofilm pattern forma-
tion, and embryonic development. Knowledge from phys-
ics tells us that the flat interface between a cell collective
and the environment can be susceptible to mechanical
instability and develop finger-shaped morphologies.
Instability can be triggered by purely physical mechanisms,
such as the Saffman-Taylor instability. This type of
instability triggers the fingering formation of the interface
between two fluids with different friction coefficients
against the substrate in two dimensions. In our work, we
extend the traditional Saffman-Taylor instability to actively
proliferating cell collectives. Interestingly, we find that
interface instability of a proliferating cell collective can be
triggered not only by its low friction coefficient against the
substrate but also by its active growth. When a protrusion of

the interface occurs, the pressure and velocity inside the
protrusion surpass the outside passive fluid, leading to
further enlargement of the protrusion.
Our key finding is that protrusions resulting from inter-

face instability are not merely consequences of active
cellular growth; they also alleviate the pressure, boost
local growth rates in the protrusions, and consequently
speed up the population growth rate of the entire cell
collective. Our findings unveil the evolutionary signifi-
cance of protrusion formation. Selective pressures on faster
growth may affect the physical properties of cells so that
protrusion formation is more prone to occur. For example,
cells may express more lubricant to lower the friction
coefficient or modify the surface properties to reduce the
surface tension. Another related example is the epithelial-
mesenchymal transition in cancer, where the tissue changes
from an epithelium to a mesenchymal phenotype with
facilitated cell motility.
Introduction.—Growing cell collectives are ubiquitous,

e.g., developing microbial colonies, wound healing, and
tumor growth [1–6]. During the growth, the local pressure
and single-cell growth rate can be spatially heterogeneous
across the cell collective. For example, a growing cell
collective often displays a leading front underneath which
cells actively grow and divide, followed by a crowded
interior where cells grow slowly [4,5,7–12]. Experiments
demonstrated that the low growth rates of interior cells
could result from high pressure because a high confining
pressure can slow or even completely halt the cell cycle
progression [13–17]. On the other hand, the pressure itself
is generated by active cell growth as a high cell density due
to cell division inevitably increases the local pressure.
Therefore, the temporal and spatial patterns of pressure and
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local growth rate are intimately coupled. However, how the
interconnection between pressure and cell growth affects
the growth of a cell collective is not understood. In the
meantime, the leading front of the cell collective often
exhibits protrusions due to fingering instability [1,18–22].
While the conditions of fingering instability and morphol-
ogies of interfaces have been widely studied in different
contexts [9,23–34], it is unclear whether the protrusion can
speed up the invasion of a cell collective to its environment
relative to a collective without protrusions.
This work combines theoretical analysis and computer

simulations to study a continuum model of a cell collective
in two dimensions. We show that a fast-growing leading
front and a slow-growing interior of the cell collective
emerge as an outcome of the pressure-dependent growth
rate. The leading front can exhibit fingering instability due
to active cellular growth and the different friction coef-
ficients between the cell collective and passive fluid. To
corroborate with our theory, we simulate a numerical model
in which the interface separating the cell collective and the
environment is explicitly simulated. Surprisingly, the for-
mation of protrusions due to fingering instability enhances
the population growth rate by relaxing the pressure and
increasing the local growth rate relative to a collective
without protrusions under the same parameters. We show
that the population growth rate of the collective increases as
the surface tension constant decreases. Thus, our work
provides a minimal model of a proliferating cell that
accounts for the interplay between pressure and growth
rate, as well as a quantitative measure for the fitness
advantage of fingering instability.
The cell collective growth model.—We study the growth

of a two-dimensional cell collective surrounded by a
passive fluid (Fig. 1). The system we consider is half of
a cell collective expanding in both directions of x. Owing to
the symmetry with respect to x ¼ 0, only the cell collective
within 0 ≤ x ≤ L is considered, where L is the total length
in the x direction. The boundary condition is periodic in the
y direction with length Ly. In this section, we ignore the

possibility of fingering instability, and the flat interface
separating the cell collective and the passive fluid is labeled
by its x coordinate xI . The velocity field satisfies Darcy’s
law,

v ¼ −∇p=ζ1; ∇ · v ¼ λðpÞ for x < xI; ð1Þ

v ¼ −∇p=ζ2; ∇ · v ¼ 0 for x ≥ xI; ð2Þ

where ζ1 and ζ2 are the friction coefficients of the cell
collective and the passive fluid over the substrate,
which can depend on the substrate stiffness [35] and the
cell-substrate ligand properties [36]. We set the pressure
at the rightmost side of the system to be zero, pjx¼L ¼ 0,
without losing generality since only the pressure gradient
matters in Eqs. (1) and (2). Since the velocity vanishes at
x ¼ 0 by symmetry, the pressure gradient at x ¼ 0 is zero,
∂pðxÞ=∂xjx¼0 ¼ 0. Owing to the overdamped nature of the
dynamics described by Eqs. (1) and (2), given an interface
morphology, the pressure and velocity fields are fully
determined.
In using Darcy’s law to describe the dynamics of the

velocity field, we have assumed that the dissipation due
to internal viscosity is much smaller than that due to
friction [37,38], which is valid for systems with their sizes
above the hydrodynamic screening length, which is around
0.5 mm for epithelial tissues [5,31]. We have also neglected
the elastic property of the cell collective because the
timescale of the population growth, typically around hours,
is much longer than the protein turnover times in cell-cell
junctions [39]. For simplicity, we assume that both the cell
collective and the surrounding fluid are incompressible.
Therefore, the divergence of the velocity field located
inside and outside the cell collective is equal to the local
growth rate λðpÞ and 0, respectively.
Given the pressure dependence of the growth rate, the

analytical form of the pressure can be determined, assum-
ing a homogeneity along the y direction. In our model, we
set the growth rate to be a linear function of the pressure to
gain analytical insights: λ ¼ λ0ð1 − p=pcÞ where pc is the
threshold pressure (also called homeostatic pressure),
above which the growth rate can be negative [30,40–42].
In our model, however, the growth rate must be positive
everywhere for a proliferating cell collective (see the
detailed proof in the Supplemental Material [43]), in
agreement with our numerical simulations, as we show
later. In the Supplemental Material [43], we also extend our
model to the case of compressible cell collectives and find
that our main conclusions from the incompressible model
also apply to the compressible case even if the bulk
modulus of the collective is comparable to the threshold
pressure pc.
In contrast to a bumpy interface where surface

tension γ causes a pressure jump across it, a flat interface
maintains continuity in both velocity and pressure fields.
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FIG. 1. A schematic of a cell collective growing in the x
direction. In the continuum model, the velocity field under active
cell growth is described as Eqs. (1) and (2). In numerical
simulations, we use a level-set function ϕ to distinguish the cell
collective from the passive fluid, where ϕ ¼ 0 corresponds to the
interface.
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Together with the boundary conditions pjx¼L ¼ 0 and
∂pðxÞ=∂xjx¼0 ¼ 0, the pressure profile is exactly solvable:

p ¼ pc − A cosh

�
x
xc

�
for x < xI; ð3Þ

p ¼ vIðL − xÞ for x ≥ xI: ð4Þ

Here, A is a constant, and vI is the interface velocity (see
detailed expressions in the Supplemental Material [43]).
xc ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pc=ζ1λ0

p
is the characteristic length scale of the

pressure fields (Fig. 2). Given Eq. (3), the local growth rate
becomes

λ ¼ λ0
A
pc

cosh

�
x
xc

�
; ð5Þ

which exhibits a slow-growing region in the collective
interior with the characteristic width xc (Fig. 2). In this
work, we nondimensionalize our model with length unit L,
time unit 1=λ0, pressure unit λ0ζ2L2, and surface tension
unit λ0ζ2L3. We define the ratio of friction coefficients
α≡ ζ1=ζ2. In the following, all variables are dimensionless
unless specifically mentioned. We compute the advancing
speed of the flat interface vIðxIÞ, and find that the cell
collective grows faster when the friction coefficient of the
cell collective becomes smaller (Fig. S1).
Criteria of fingering instability.—In the case of tradi-

tional fingering instability, i.e., the Saffman-Taylor insta-
bility, the moving interface separating two fluids is pushed
by a constant velocity from the infinity [48]. Therefore,
only the pressure gradient exhibits a jump across the
interface. For a growing cell collective, the moving inter-
face is pushed by active cell growth. Because of the finite
growth rate, the velocity gradient also exhibits a jump
across the interface (Fig. 2). To test whether both two
gradient jumps contribute to interface instability, we

introduce a periodic perturbation ξkðtÞ expðikyÞ to a flat
interface and derive the time dependence of the perturba-
tion amplitude (Supplemental Material [43]),

ξ̇k
ξk

¼ kvIð1 − αÞ − γk3 þ α k
k̃
λð0ÞðxIÞ cothðk̃xIÞ

α k
k̃
cothðk̃xIÞ þ expð2kÞ−expð2kxIÞ

expð2kÞþexpð2kxIÞ
: ð6Þ

Here, λð0ÞðxIÞ is the local growth rate at the leading front in
the absence of instability, and k̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1=x2c

p
. For each

flat interface at a given position xI, the perturbation is
unstable within a certain range of wave number [Fig. 3(a)],
and we define kc as the critical wave number below which
the interface is unstable against perturbation.
When the friction coefficient of the cell collective is

smaller than the passive fluid, the pressure gradients are
different across the interface, corresponding to the first term
in the numerator of Eq. (6). The different velocity gradients
across the interface are due to active cell growth, corre-
sponding to the third term in the numerator of Eq. (6).
Because k cothðk̃xIÞ=k̃ → 1 as k → þ∞, one can always
find a k so that αλð0ÞðxIÞk cothðk̃xIÞ=k̃ ≪ kvIð1 − αÞ. Thus,
the instability is mainly driven by the pressure gradient
difference for a small surface tension constant γ ≪ 1.
We plot the phase boundaries from the full prediction
(solid line) and from the prediction after neglecting the
velocity gradient, which is kc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vIð1 − αÞ=γp

(dashed
line) in the phase diagram of interface stability [Fig. 3(c)].
Agreement in these two curves supports our prediction that
instability is mainly driven by a pressure gradient differ-
ence for small γ.
Interestingly, in the case of an proliferating cell collec-

tive, instability can be driven by active growth alone [29].
In the following, we discuss the case of α ¼ 1, where the
interface instability is purely driven by active growth, and
focus on a particular asymptotic regime, xI ≫ 1=kc ≫ xc.
In this regime, the small threshold pressure pc imposes
a strong constraint on the growth rate, and most cell
growth occurs near the interface. The growth rate at the
interface satisfies λI ¼ xc=ð1 − xIÞ, with cothðk̃cxIÞ ≈ 1,
and k̃c ≈ 1=xc (see the Supplemental Material [43]).
Therefore, the critical wave number satisfies kc≈
xc=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γð1 − xIÞ

p
, which matches the full prediction (solid

line) pretty well [Fig. 3(d)]. Discussions of another asymp-
totic regime for α ¼ 1 are included in the Supplemental
Material [43], where the value of pc has a negligible effect
on the growth rate (Fig. S2). We also include discussions
for the case of α > 1 wherein active growth can induce
fingering instability by exceeding the stabilizing effect
from the surface tension and the pressure gradient (see the
Supplemental Material [43] and Fig. S3).
Simulations of the cell collective growth.—We simulate

the growth of a cell collective by explicitly simulating the
interface using the level set method [44–46]. The key idea
is to define a level set function ϕðxÞ as the signed distance

Cell Collective Fluid

FIG. 2. Theoretical predictions (dashed lines) in the absence of
fingering instability are compared with numerical simulations
(solid lines) at two threshold pressures pc.

PHYSICAL REVIEW LETTERS 132, 018402 (2024)

018402-3



to the interface satisfying the constraint j∇ϕj ¼ 1. In our
notation, positive ϕ represents the cell collective, while
negative ϕ is for the passive fluid. The interface is the
contour line with ϕ ¼ 0 (Fig. 1).
Equations (1) and (2) are unified using the following

equation:

∇pþ ζðϕÞv − γκδðϕ; ϵÞn ¼ 0: ð7Þ

Here, n ¼ −∇ϕ is the unit vector normal to the interface,
and κ ¼ ∇ · n is the local curvature of the inter-
face. Therefore, γκδðϕ; ϵÞn in Eq. (7) corresponds to the
surface tension. Different friction coefficients between the
two phases are characterized by a Heaviside function
with a finite width 2ϵ, ζðϕÞ ¼ ζ2 þ ðζ1 − ζ2ÞHðϕ; ϵÞ. Its
corresponding delta function is defined as δðϕ; ϵÞ≡
dHðϕ; ϵÞ=dϕ. As the interface moves, ϕ is convected with
the velocity field to capture the movement of the interface,
ϕ̇þ v ·∇ϕ ¼ 0 (see simulation details in the Supplemental
Material [43]). The simulated pressure and velocity profiles
agree well with the theoretical predictions (Fig. 2).

Fingering instability accelerates population growth.—
We verify the instability criteria numerically by adding a
prescribed perturbation with wave vector k along the y
direction. The perturbation grows if the original perturba-
tion and its following change have a zero phase shift and
shrinks if the phase shift is π [Fig. 3(b)]. We find that
Eq. (6) accurately predicts whether the interface is stable or
not [Figs. 3(c) and 3(d)].
We compare two growing cell collectives with identical

α and pc but different surface tension constants γ to unveil
the evolutionary advantage due to fingering instability.
In the cell collective with a small γ, we apply a small
perturbation to the initial flat interface to trigger fingering
instability [Eq. (S31) and Movie S1 in the Supplemental
Material [43] ]. In the other collective with a large γ,
we do not add noise to ensure the interface is flat
throughout the simulation [Figs. 4(a) and 4(b), and
Movie S2). Interestingly, after the same duration since
the initial condition, the cell collective exhibiting instability
appears to grow faster. In particular, the local growth rate
and velocity magnitude are much higher in the fingers than
in the bulk [Fig. 4(c)]. Furthermore, the bulk pressure of the
unstable cell collective is significantly lower than the stable
one [Figs. 4(b) and 4(d)]. These results suggest that the
protrusions can relax the pressure and increase the local
growth rate. In the cases of small surface tension constants,
we can even observe bubbles disconnected from the
bulk (Fig. S7).
To quantify the advantage of instability, we compute the

population growth rate, defined as Λp ¼ ðdVcell=dtÞ=Vcell
where Vcell is the volume of the cell collective. According
to the length unit we use for normalization, the system size
in the x direction is 1 and 0.5 in the y direction; therefore,
the maximum value of Vcell is 0.5. According to Eq. (6), a
smaller surface tension constant triggers the instability at an
earlier stage, resulting in more pronounced protrusions.
Therefore, we expect cell collectives with smaller γ to
grow faster. Indeed, the population growth rate increases
as the surface tension constant decreases given the
same total volume [Figs. 4(e) and 4(g)]. Meanwhile, a
stable cell collective always exhibits a smaller population
growth rate than the unstable one [the dot-dashed line in
Fig. 4(e)].
We find that the interface velocity is often a convex

function of the interface position for a stable collective (see
Fig. S1 and the proof in the Supplemental Material [43]),
which provides an intuitive way to understand the enhance-
ment of the population growth rate. We compare two cell
collectives: one with a bumpy interface xIðyÞ and one with
a flat interface at the position xI. They have the same total

volume so that Vcell ¼
R Ly

0 xIðyÞdy ¼ x̄ILy ¼ V̄cell. Using
Jensen’s inequality, we find dV̄cell=dt ¼ LyvIðx̄IÞ ≤R Ly

0 vI½xIðyÞ�dy ≈ dVcell=dt. Here, we have approximated
the advancing speed at each point on a bumpy interface to
be that of a flat interface at the same position, which is valid

(a) (b)

(c) (d)

FIG. 3. Conditions of fingering instability and numerical
verifications. (a) In the linear instability analysis, instability
occurs when ξ̇k=ξk > 0. Circles mark the critical wave numbers
where ξ̇k=ξk ¼ 0. Triangles mark the wave numbers with the
maximum ξ̇k=ξk. (b) A sinusoidal perturbation is applied to the
flat interface in the numerical simulations. A negative correlation
between the perturbation and the interface velocity change leads
to a stable interface and vice versa for an unstable interface. The
unstable example corresponds to xI ¼ 0.7, k ¼ 12π in (c), and
the stable example corresponds to xI ¼ 0.7, k ¼ 16π in (c). (c),
(d) Phase diagram for the interface stability. The solid line
represents the theoretical result of the linear instability analysis.
According to simulations, stable interfaces are marked as green
dots, while unstable ones are marked as red crosses. In (c), the
interface instability is dominated by the pressure gradient differ-
ence across the interface, and the dashed line is the prediction
merely considering the effects of the pressure gradient. In (d), the
interface instability is purely induced by active cell growth since
α≡ ζ1=ζ2 ¼ 1. The dashed line represents the asymptotic result
in the limit xI ≫ 1=kc ≫ xc.
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if the wavelength of the bumpy interface is long enough.
Therefore, the cell collective with a bumpy interface has a
larger population growth rate. As the protrusions grow, they
further relax the pressure and enhance the population
growth rate.
Given the linear pressure dependence of the local growth

rate, the population growth rate turns out to be a linear
function of the average pressure inside the collective,
Λp ¼ λ0ð1 − hpi=pcÞ. Two factors determine the average
pressure: the amount of passive fluid pushed by the cell
collective and the speed at which the passive fluid is
pushed. With a smaller cell collective, a larger amount of
passive fluid is being pushed, but at a lower speed, whereas
for a large cell collective, a smaller amount of passive fluid
is being pushed at a higher speed. These two counter factors
result in a nonmonotonic curve of Λp vs Vcell [Fig. 4(e)]. In
the presence of fingering instability, Λp is a function of
both the relative friction coefficient α and surface tension
constant γ [Fig. 4(g)], while in the absence of instability,Λp

is only a function of α (Fig. S8).
We speculate that the acceleration of population growth

due to the protrusion formation results from the pressure-
growth coupling. To confirm this, we also simulate a
modified model in which the growth rate is strictly constant
(λ ¼ const) and find that, in this case, the population
growth rate is always equal to λ regardless of the surface
tension constant and the morphologies of the cell collective
[Figs. 4(f) and S9].
Discussions.—In this Letter, we demonstrate that finger-

ing instability can relieve the pressure confinement on cell
growth and accelerate the collective growth. Our work
suggests that selection pressures on the formation of
protrusions may affect the physical properties of cells.
For example, the cell surface can be more hydrophilic in an
aqueous environment to reduce the surface tension con-
stant. Meanwhile, significant fingering instability may also
be suppressed during evolution because it might lead to a
breakup of the cell collective, which can impair the ability
of the population to sense gradients of stimuli collec-
tively [49].
In Ref. [30], the authors studied the stability of an

interface separating two proliferating tissues with different
homeostatic pressures and active motility forces. They
demonstrated that the motility force can also lead to
instability, and mechanical feedback can help preserve
reproducibility at the tissue scale when subjected to cell-
level stochasticity. In this work, we go beyond the linear
analysis and directly simulate a proliferating cell collective
with a protruding interface, which allows us to unveil the
fitness advantage of fingering instability. It will be inter-
esting to extend our results by incorporating more biologi-
cal complexities into our model, such as internal viscosity,
active motility force [30,31], activity at interface [50],
nutrient or chemoattractant consumption [49,51], and
leader-follower cell interaction [52].

We propose that our model predictions are particularly
relevant for expanding bacterial colonies and epithelial
tissues surrounded by a viscous medium. To trigger a more
significant instability, one can lower the friction coefficient
of the cell collective, e.g., by the lubricant excreted by
bacteria [53] or by modifying the adhesion ligands of
epithelial cells through genetic or biochemical approaches
[54,55]. Replacing the viscous mediumwith nongrowing or
slow-growing cells is also possible, as previous experi-
ments suggested that the friction coefficient can increase
after cell death [56]. We remark that our conclusions
regarding the enhancement of population growth by

(a) (b)

(c) (d)

(e)

(f)

(g)

FIG. 4. Fingering instability accelerates population growth.
(a) The local growth rate of a cell collective at a specific time,
free of instability, is displayed with a color bar on the left.
The arrows represent the velocity field, and its magnitude is
displayed in the color bar on the right. Here, α ¼ 9.35 × 10−2,
γ ¼ 1 × 10−3. The interface is highlighted as the gray curve.
(b) The pressure pattern of the same simulation as (a). The
contour lines of the pressure field are shown with the pressure
values on the right. The pressure value decreases from left to
right. (c) In contrast to (a), we use a small γ ¼ 3.73 × 10−6 and
apply a perturbation to the initial flat interface so that the cell
collective exhibits fingering instability. In this case, cells in the
fingers have higher growth rates and larger velocity magnitudes
than in the bulk. (d) The pressure pattern of the same simulation
as (c), which is significantly lower than the case without
instability, as shown in (a). (e) The population growth rate of
the cell collective Λp as a function of the current volume Vcell

given different surface tension constants. The curves stop when
any part of the collective reaches the boundary in simulations.
(f) The population growth rate of a cell collective without
pressure-growth coupling does not depend on γ and is always
equal to the local cell growth rate Λp ¼ 1. (g) Heat map
of the population growth rate Λp at a given total cell volume
Vcell ¼ 0.232 as a function of α and γ.
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instability are valid even if the friction coefficient of the cell
collective is larger than that of the passive fluid (Fig. S10).
It will be interesting to test our theories with experimental
data quantitatively in the future, which has been done for
other types of instability in epithelial tissues [21].
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