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The composition of cellular metabolism is different across species. Empirical data reveal that bacterial
species contain similar numbers of metabolic reactions but that the cross-species popularity of reactions is
so heterogenous that some reactions are found in all the species while others are in just few species,
characterized by a power-law distribution with the exponent one. Introducing an evolutionary model
concretizing the stochastic recruitment of chemical reactions into the metabolism of different species at
different times and their inheritance to descendants, we demonstrate that the exponential growth of the
number of species containing a reaction and the saturated recruitment rate of brand-new reactions lead to
the empirically identified power-law popularity distribution. Furthermore, the structural characteristics of
metabolic networks and the species’ phylogeny in our simulations agree well with empirical observations.
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The orchestration of biochemical reactions to generate and
consume matter and energy in cellular metabolism is essen-
tial for living organisms [1,2]. Recently, thousands of species
have had their genomes sequenced and annotated [3],
enabling their reactions and biosynthetic and degradation
pathways to be inferred computationally and databased [4,5].
The comparative and statistical analyses of the metabolic
networks of such a larger number of different species disclose
the current landscape of the cellular metabolism, enabling,
e.g., the phylogenetic analysis of metabolic pathway organ-
izations [6,7] and the analysis of different frequencies
of individual reactions participating in the metabolism of
species [8–10].
How many species contain a given reaction in their

metabolism, which we call popularity, represents how
universally it is demanded. Some reactions execute crucial
functions for most species and thus should be very popular,
but others may be so only for a few species in special
habitats. Therefore a difference in reactions’ popularity
may not be strange or surprising. Yet, as noted in [10] and
will be investigated in detail here, the distribution of the
reaction popularity exhibits a remarkable characteristic: it
follows a power-law distribution with the exponent close
to 1. This suggests that the reaction popularity is more
broadly distributed than expected by chance and that, more
importantly, it may be determined in a principled way—for
instance, intrinsically by its biochemical importance for life
on earth or extrinsically built up over time under random-
ness. A plausible model that can reproduce this empirical
finding can advance our understanding of the organiza-
tional principles of the cellular metabolism.
Here, we show that such heterogeneous popularity can

be understood by studying the co-evolution of metabolism
of individual species and the species tree. Previous studies

on the metabolism evolution have considered a single
abstracted metabolic network with new reactions and
their catalytic enzymes added by some plausible mecha-
nisms [11–15]. We consider a phylogeny of species and
explore the possibility that a reaction is dominantly found
in the descendants of the ancestor species that first recruited
it, and thus different first-recruitment times of reactions will
result in different popularity in the contemporary species.
To be specific, we consider a growing species network
where every node (species) contains a growing bipartite
network of reactions and compounds, representing its
metabolism, and such nodes may give birth to new nodes.
In this model motivated by the recent study on the evolution
of ecological networks [16], we reveal the core mechanism
of diversifying the reaction popularity during metabolism
evolution. We use the BioCyc database [5] to predetermine
the model parameters as much as possible. Simulating the
model, we first obtain the popularity distribution that agrees
excellently with the empirical one. Figuring out the time-
dependent behaviors of key variables, we formulate the
popularity distribution depending on the growing numbers
of species and reactions. Moreover, this model not only
explains reactions’ heterogeneous popularity but also
reproduces well the distribution of the distance between
species, measured by the similarity of the set of reactions
they have, and the degree distribution of individual meta-
bolic networks, suggesting that it can play the role of a
basic model for metabolism evolution.
Empirical results and a toy model.—From the version

19.1 of the BioCyc database [5], we obtain the cellular
metabolism of 5470 bacterial species including a total of
R ¼ 11058 chemical reactions. The number of reactions
contained in a species is narrowly distributed following the
Gaussian distribution with the mean 1354 and standard
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deviation 436 [Fig. 1(a)]. This implies that most species
adopt a similar size of metabolism although different
environments may impose different constraints and
demands that can be fulfilled by different pathways and
reactions. Next, we define the popularity fr of a reaction r
as the fraction of species containing the reaction r [9,10]
and find that remarkably, its distribution is a power law
with the exponent 1 [Fig. 1(b)]

PpopðfÞ≡ 1

R

X
r

δðfr − fÞ ∼ f−1; ð1Þ

noting the higher abundance of popular reactions than
expected under other distributions like an exponential one.
We investigate how such strong heterogeneity and clear-cut
power-law distribution emerge.
The depletion of resources and variation of environments

can impose an evolutionary pressure facilitating the appear-
ance of new enzymes catalyzing new reactions [11–13].
Those new reactions will be utilized by the species that first
recruits them and by their descendants. These evolutionary
processes can bring a power-law popularity distribution, as
shown by the following toy model.
Each species has a set of reactions for its metabolism.

From time t to tþ 1, every species s gives birth to a
daughter species s0, which inherits all the reactions of s and
additionally recruits a new reaction r1. Simultaneously s
expands its metabolism by recruiting a new reaction r2.
Therefore the number of species increases with time t as
SðtÞ ¼ 2t and the number of distinct reactions RðtÞ as
Rðtþ 1Þ − RðtÞ ¼ 2SðtÞ, giving RðtÞ ¼ 2tþ1 − 1.
Suppose that a reaction r is recruited by a species sr at

time τr for the first time. It is found exclusively in sr and its
descendants in this toy model. Therefore, SrðtÞ ¼ 2t−τr

species contain the reaction r at time t, allowing us
to compute its popularity frðtÞ ¼ ½SrðtÞ=SðtÞ� ¼ 2−τr.

Notice that fr decays exponentially with the first-recruit-
ment time τr but independent of the current time t. Among
the RðtÞ ¼ 2tþ1 − 1 reactions present at time t, the fraction
of reactions first recruited at τð≤ tÞ is given by Precðτ; tÞ≡
½1=RðtÞ�Pr δðτr − τÞ ¼ f½RðτÞ− Rðτ − 1Þ�=½RðtÞ�g ¼ ½2τ=
ð2tþ1 − 1Þ�. Therefore, the reaction-popularity distribu-
tion Ppopðf; tÞ at time t can be obtained from Precðτ; tÞ
and frðtÞ as

Ppopðf; tÞ ¼
���� dfrðtÞdτr

����
−1
Precðτr; tÞjfrðtÞ¼f: ð2Þ

For our toy model, ðdfr=dτrÞjfr¼f ¼ −f logð2Þ and
Precðτr; tÞjfr¼f ¼ ½f−1=ð2tþ1− 1Þ�, yielding PpopðfÞ ∼ f−2.
Copying all reactions to the daughter species and recruiting
a new reaction by every species at every step bring this
power law. Yet the exponent 2 is different from the
empirical value 1 [Eq. (1)], raising the need to improve
the toy model. We use t to denote the simulation time and τ
to denote the first-recruitment time of a reaction. We will
drop t in Ppopðf; tÞ and Precðτ; tÞ for simplicity.
Network evolution model.—Differently from the toy

model, the pool of reactions to recruit is finite, and the
same reaction can be recruited by more than one species.
Only the reactions that could be activated, i.e., maintain a
nonzero flux, are recruited by a species [16–18]. Therefore,
we need to consider the connection of the recruited
reactions in each species. The birth rate of a new species
by mutation, replacing a current reaction by a similar but
more competent reaction, may be different from the
expansion rate of individual metabolism.
To incorporate these aspects, we consider a growing

species tree with each species possessing a growing
bipartite network of reactions and compounds [20] as
shown in Fig. 2. Initially (t ¼ 0), a single species is born,
possessing a bipartite network of a single stand-alone
reaction and its compounds. A stand-alone reaction is one
that takes in externally available compounds and therefore
can be activated independently without requiring the
activation of other reactions, and we have 440 such
stand-alone reactions [18]. From t to tþ 1, for each species
s, a potential new reaction rnew is selected from the reaction
pool, which takes in the compounds already included in s
or externally available compounds. Then we investigate
whether there is a reaction rsim in s similar to rnew, sharing
the same set of substrates or products [18]. If there is no
such similar reaction, then s recruits rnew (expansion).
Otherwise, the species s either gives birth to a new species
or does nothing as follows. If the competence ϕrnew of the
potential new reaction, assigned randomly to each reaction,
is higher than that of the similar reaction ϕrsim , then a new
species snew is born with probability μ, inheriting the active
connected components of s formed after replacing rsim by
rnew in s (speciation). Otherwise, nothing happens (rest).
These procedures are sketched in Fig. 2(a). Here, a
connected component is considered active if it contains

FIG. 1. Statistics of the species-reaction association in empiri-
cal data and the network evolution model with μ ¼ 0.02.
(a) Standardized distributions of the number of reactions Rs in
a species s. The standardized variable zs ¼ ½ðRs −mRsÞ=ðσRsÞ� is
used with the mean mRs and standard deviation σRs from
empirical data (triangle) and from the model (circle). The solid
line shows the Gaussian distribution ð1= ffiffiffiffiffi

2π
p Þ exp ½−ðz2=2Þ�.

(b) Distributions of the reaction popularity. The solid line fits
the empirical data for f > 10−3, and the dashed-dotted and
dashed lines fit the simulation results for 10−3 < f < 0.4 and
f > 0.4, respectively.
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at least one stand-alone reaction so that it can maintain a
nonzero flux.
We simulated this model until tmax when the number of

species exceeds the empirical value, i.e., SðtmaxÞ ≥ 5470.
Figure 2(b) shows the obtained tree of metabolic net-
works. The parameter μ controls the rate of speciation.
Furthermore, with increasing μ, the simulation time tmax
and the mean number of reactions per species decrease
[Fig. 3(a)]. The empirical value 1354 is expected at
μ ¼ μðempiricalÞ ≃ 0.013, while the computing time and
resource constraints limit our simulation to μ ≥ 0.02.
The popularity distribution PðfÞ from the model takes a

power law with the exponent close to one in a wide range of
f in agreement with the empirical result [Fig. 1(b)].
Interestingly, a crossover to faster decay with the exponent
close to 2 is observed for large f as

PpopðfÞ ∼
�
f−η1 for f < f�;

f−η2 for f > f�;
ð3Þ

with ðη1; η2Þ ¼ ð0.757; 2.08Þ and the crossover scale f� ≃
0.42 for μ ¼ 0.02. The large-f regime, characterized by the
exponent 2 of the toy model, is narrow and shrinks as μ
decreases; f� is 0.56 at μðempiricalÞ. The power-law expo-
nents vary rarely with μ [18]. Below we investigate the time
dependence of the key quantities and various results from
this network model to understand how it reproduces the
empirical findings better than the toy model and why it
displays the crossover behavior.
Structure of species tree and metabolic networks.—The

total number of species grows as hSðtþ 1Þi − hSðtÞi≃

1
2
μαðtÞhSðtÞi, where h� � �i is the ensemble average, αðtÞ is

the probability that a potential new reaction rnew has a
similar reaction rsim in a species, and 1=2 is the probability
of ϕrnew > ϕrsim . αðtÞ grows very weakly (logarithmically),
and therefore hSi ∼ expð1

2
μᾱtÞ. We estimate ᾱ ¼ 0.40 and

0.55 for t̃ < t̃� and t̃ > t̃�, respectively, with the bar
meaning time average, the normalized time t̃≡ ðt=tmaxÞ,
and the normalized crossover time t̃� ¼ 0.40 (for μ ¼ 0.02)
distinguishing the early- and late-time regimes showing
different behaviors of SðtÞ and related to f� [18].
The structure of the metabolic networks of individual

species agrees with the empirical data. In Fig. 3(c), the
degree distribution of compounds from simulations is
shown to coincide with the empirical one, both taking a
power law with the exponent close to 2. To compare the
simulated phylogeny with the real-world one, we introduce
the metabolic distance ds1;s2 between two species defined as
1− (the relative size of the intersection with respect to the
union of their sets of reactions) [18] and obtain its
distribution. When μ ¼ 0.02, the obtained distance distri-
bution agrees well with the empirical one [Fig. 3(d)]. A
reasonable agreement is expected also at μðempiricalÞ ≃ 0.013
given the reduced decrease of the Kullback-Leibler diver-
gence and the 1-Wasserstein distance [18,21] with decreas-
ing μ around μ ¼ 0.02.

FIG. 3. Growth of the species tree. (a) Simulation time tmax to
generate S ≥ 5470 species, the mean number of reactions in a
species mRsðtmaxÞ, and the crossover scale of popularity f� versus
the speciation rate μ. Dashed lines fit the data, respectively. The

empirical value mðempiricalÞ
Rs ¼ 1353.5 is expected at μðempiricalÞ ≃

0.0134. (b) The number of species S versus the normalized time
t̃ ¼ ðt=tmaxÞ for μ ¼ 0.02. Inset: the probability α that a potential
reaction finds a similar reaction in a species versus t̃. The solid
and dashed lines fit the data for t̃ ≤ t̃� ≃ 0.4 and t̃ > t̃�,
respectively. (c) Distributions of the degree of the compounds
from the empirical data and simulations with μ ¼ 0.02. (d) Dis-
tributions of the metabolic distance of two species from the
empirical data and simulations with different μ’s. Inset: Kullback-
Leibler divergence and 1-Wasserstein distance versus μ.

FIG. 2. Network evolution model. (a) A bipartite network of
reactions (rectangles) and compounds (circles) represents each
species. At every time step, each species may do nothing (rest) or
evolve by either gaining a new reaction (expansion) or giving
birth to a daughter species inheriting active components formed
by a new reaction replacing an old one (speciation). (b) The
species tree from a simulation with μ ¼ 1 is shown, where nodes
represent 5660 species and links represent the parent-daughter
relationship. Node size and color vary with the birth time of the
corresponding species. The metabolic network of the oldest
species is shown in the left box.
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First recruitment and popularity of reactions.—A reac-
tion just recruited by a species may not be brand-new
but has already been recruited by some other species. The
union of the sets of the reactions recruited by all the present
species, the size of which we denote by RðtÞ, expands
only when a species recruits a brand-new reaction. Let us
consider βðτÞ the probability that the reaction recruited at
time τ by a species is brand-new. Among all the reactions
present at time tmax, the fraction of the reactions first
recruited at τ, or the distribution of the first-recruitment
time of a reaction, is given by PrecðτÞ ≃ ½1 − αðτÞ þ
1
2
μαðτÞ�βðτÞhSðτÞi=hRðtmaxÞi, where 1 − αþ ð1=2Þμα is

the probability of expansion or speciation. If βðτÞ varies
weakly, PrecðτÞ will grow exponentially with τ.
Simulations show that PrecðτÞ first grows exponentially

with τ and then saturates or decreases weakly with τ as
shown in Fig. 4(a). With μ ¼ 0.02, we find

PrecðτÞ ∼
� expð2.86τ̃Þ for τ̃≡ τ

tmax
≲ t̃� ¼ 0.40;

varying weakly for τ̃ ≳ t̃�:
ð4Þ

Consequently, RðtÞ ¼ RðtmaxÞ
P

τ<t Precðτ; tmaxÞ grows
first exponentially and then linearly with time t, distin-
guishing the two time regimes. For τ̃ > t̃�, despite the
exponentially growing SðτÞ and as much frequent

expansion of individual metabolic networks, most recruited
reactions are not brand-new; the brand-new probability
βðτÞ scales inversely with SðτÞ as

βðτÞ ∼
�
SðτÞ−0.233 for τ̃ ≲ t̃�
SðτÞ−1.04 for τ̃ ≳ t̃�;

ð5Þ

as shown in the inset of Fig. 4(a). Therefore, βðτÞSðτÞ is
almost independent of τ, allowing us to understand the
saturation of PrecðτÞ in the late-time regime. Underlying
these phenomena is that the ever-recruited reactions and
their compounds form the giant (percolating) component in
the universal reaction-compound network. The portion of
reactions in the component mðgcÞ is of order 1 in the late-
time regime [Fig. 4(b)], and thus a potential new reaction
for each species is increasingly likely to overlap with the
giant component, resulting in the decaying β.
A reaction r recruited first by a species sr at time τr can be

found at later times in the descendants of sr inheriting r and
also in other species recruiting r later than sr. The number

Sð0Þr ðtÞ of the descendants of sr containing r is a lower bound
for SrðtÞ and analyzed as follows. Let ωðtÞ denote the
probability that a reaction belongs to an active component

after a reaction is replaced by another. Then, Sð0Þr ðtÞ satisfies
hSð0Þr ðtþ 1Þi − hSð0Þr ðtÞi ¼ 1

2
μαðtÞωðtÞhSð0Þr ðtÞi, leading to

hSð0Þr ðtÞi ∼ exp½1
2
ðt − τrÞμᾱ ω̄� and fð0Þr ðtmaxÞ ¼ hSð0Þr ðtmaxÞi

SðtmaxÞ ∝
exp½− 1

2
μᾱ ω̄ τr�. In a reasonable agreement with this pre-

diction, fr behaves approximately as [Fig. 4(c)]

fr ∼
� expð−2.49τ̃rÞ for τ̃r ≡ τr

tmax
≲ t̃�;

expð−11.2τ̃rÞ for τ̃r ≳ t̃�;
ð6Þ

where the faster decay is related to the larger value of α
and ω̄.
These results and the formula in Eq. (2) enable us to see

that the power-law decay of PpopðfÞ is mainly attributed to
the exponential decayoffrwith τr inEq. (6) and its crossover
originates inPrecðτrÞ ∼ f−1r andPrecðτrÞ ∼ const in the early-
and late-time regimes, respectively. The results for the late-
time regime apply to almost all reactions and species and
therefore its agreement with the empirical data is remarkable.
The region of f displaying the faster decay PpopðfÞ ∼ f−2,
absent in the empirical data, shrinks with decreasing μ, and
can be further diminished by, e.g., allowing earlier-born
species to recruit a larger number of reactions, which can
make PrecðτÞ vary weakly with τ in the whole time regime.
More improvements toward reality can be pursued.
Discussion.—We have studied the origin of the power-

law distribution of the metabolic reaction popularity by
investigating a network co-evolution model. The birth of a
new species inheriting the metabolic network of its parent
species and its expansion by recruiting reactions can
generate such heterogeneity in the reaction popularity as
observed empirically. We investigated the time dependence

FIG. 4. First-recruitment and popularity of reactions in the
network evolution model. (a) Distribution of the normalized first-
recruitment time τ̃r ¼ ðτr=tmaxÞ of a reaction r with different μ’s.
Inset: plot of the probability βðτÞ that a reaction recruited at time τ
is brand-new versus the total number of species SðτÞ with
μ ¼ 0.02. (b) Time evolution of the fraction of distinct recruited
reactions in the largest component mðgcÞ in the universal reaction-
compound network. Also shown are the largest components at
t̃ ≃ 0.18 and t̃ ≃ 0.69, respectively. (c) The popularity fr versus τ̃r
with μ ¼ 0.02. Inset: plot of jðdfr=dτrÞj−1 versus fr. Dashed and
solid lines fit the data for fr < f� and fr > f�, respectively.
(d) First-recruitment time distributions for μ ¼ 1 and different
probabilities of nonmetabolic speciation pnm.
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of the numbers of species and distinct reactions, and the
popularity of individual reactions. Contrary to the toy
model, the reaction pool is finite, and the total number
of distinct recruited reactions grows linearly with time in
the late-time regime, which brings the popularity distribu-
tion with the exponent one in agreement with the empirical
distribution. In addition, the structure of individual species’
metabolic networks and the phylogeny of the species from
the model simulations agree well with the empirical data,
demonstrating the potential of our model to be an elemen-
tary model for the metabolism evolution.
Varying the size of the reaction pool or the composition

of the stand-alone reaction set does not change the main
results. While a new species can be born by nonmetabolic
pressure, the inclusion of a nonmetabolic speciation with
probability pnm in our model, by which a new species is
born with the same metabolic network as its parent, does
not change the results qualitatively [Fig. 4(d)]. Our model
considers only the growth mechanism, but to be more
realistic, the retirement of existing reactions and species
extinction may be considered. It will be interesting to study
the statistics of the traits hitchhiking in the metabolism
evolution in our model.
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