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We numerically model a two-dimensional active nematic confined by a periodic array of fixed obstacles.
Even in the passive nematic, the appearance of topological defects is unavoidable due to planar anchoring
by the obstacle surfaces. We show that a vortex lattice state emerges as activity is increased, and that this
lattice may be tuned from “ferromagnetic” to “antiferromagnetic” by varying the gap size between
obstacles. We map the rich variety of states exhibited by the system as a function of distance between
obstacles and activity, including a pinned defect state, motile defects, the vortex lattice, and active
turbulence. We demonstrate that the flows in the active turbulent phase can be tuned by the presence of
obstacles, and explore the effects of a frustrated lattice geometry on the vortex lattice phase.
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Active nematics are a class of active fluids whose
microscopic constituents are anisotropic and exert dipolar
forces [1,2]. Examples of such systems include cytoskeletal
filaments with molecular motors [3], cellular tissues [4],
suspensions of bacteria in nematic liquid crystals [5,6], and
soil bacteria [7]. One of the key features of active nematics
is that in many cases the dynamics can be described by
the motion of defects with different topological charges
[3,8–10]. There is growing interest in developing methods
to control active nematic defect dynamics and flows, such
as by applying external fields [11], introducing anisotropic
substrates [12,13], or imposing a geometric confinement of
the material [14,15].
In systems with well-defined length scales such as the

average distance between topological defects, new ordered
phases can arise upon coupling to a periodic substrate [16],
as observed for vortices in superconductors [17] and Bose-
Einstein condensates [18], ordering of surfaces [19], cold
atoms [20], and colloids [21,22]. Active nematics are
another system in which commensuration effects can arise;
however, due to their nonequilibrium nature, it should be
possible for dynamical commensuration effects to appear as
well. Here, we examine the effects of geometric confine-
ment on active nematics induced by a periodic array of
fixed obstacles for varied activity levels and obstacle sizes.
Previous theoretical and experimental studies of active
nematic confinement typically employed an external boun-
dary as a confining structure, resulting in a channel, circular
disk, or annular geometry [14,23–30]. As the system size
and active force magnitude are varied, such systems can
exhibit anomalous flow states such as dancing topological
defects or systemwide circulation [14,24–26]. Relatively
few studies have addressed the effects of fixed, embedded
obstacles on the active nematic flow state; however, recent
experiments have successfully produced active nematics in
obstacle laden environments [31,32].

Motivated by the recent experimental work, we use a
minimal, active nematic continuum model to simulate an
array of obstacles that separates the system into interacting
circular domains where the obstacle shape makes the
formation of topological defects unavoidable. We show
that a variety of phases appear, including a low active force
state where the defects remain pinned to the obstacles, a
motile defect state, and an intermediate activity state where
the flow organizes into a lattice of vortices. By varying the
obstacle size, we can tune the vortex lattice from “ferro-
magnetic,” in which all vortices have the same chirality, to
“antiferromagnetic,” in which each nearest neighbor vortex
pair is of opposite chirality. To our knowledge, this is the
first report of a ferromagnetic vortex lattice state in active
nematics. We compare the active turbulent phase in systems
with and without obstacles and find that the fluid flow
slows as the obstacles increase in size, while the directional
distribution of the fluid velocity becomes peaked along
diagonal lattice directions. Finally, we explore the effects of
lattice frustration by simulating the active nematic on a
triangular lattice. Our findings provide an experimentally
viable method for controlling and tuning vortex lattices and
flows in active nematics.
We model a two-dimensional active nematic using a

well-documented continuum model that has been shown to
capture the key features of experimental active nematics
[2,33]. In our dimensionless equations [34], the units of
length and time are the nematic correlation length ξ and the
nematic relaxation time σ. The nematic state is captured by
the tensor order parameter Q ¼ S½n ⊗ n − ð1=2ÞI� where
S is the scalar order parameter indicating the local degree of
alignment and n is the director, giving the local direction of
orientation. The evolution of Q is given by

∂Q
∂t

þ ðv ·∇ÞQ − S ¼ −
δF
δQ

; ð1Þ
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where F is the Landau-de Gennes free energy with one
elastic constant [35], S is a generalized tensor advection
with flow alignment parameter λ ¼ 1 [36], and v is the fluid
velocity. The free energy is such that the passive liquid
crystal is in the nematic phase. We assume low Reynolds
number flow, so the fluid velocity is given by the Stokes
equation:

∇2v ¼ ∇pþ α∇ ·Q; ∇ · v ¼ 0; ð2Þ

where p is the fluid pressure, and the last term is an addition
to the usual Stokes equation that models an active force of
dimensionless strength α. The divergence free condition
models incompressible flows.
Equations (1) and (2) are discretized in space and time

and solved using the MATLAB/C++ package FELICITY

[34,37]. We consider domains with an array of astroid
shaped obstacles, as shown in Fig. 1(a). The obstacles

effectively create circular domains that overlap over a
distance d between obstacles. We vary d from 1 to 10
while fixing the distance between obstacle centers to
a ¼ 14 so that the overall system size remains constant.
The limit d ¼ 0 gives individual, noninteracting circular
domains. We employ periodic boundary conditions on the
side edges of the domain, while for the obstacles we impose
strong planar anchoring for Q and no-slip conditions for v.
The shape of the inclusions and the strong planar anchoring
necessitate the formation of topological defects, or points
where the nematic director is singular. Specifically, there
must be a total topological charge (winding number) ofþN
forN obstacles because each obstacle carries a charge of−1.
In the limit d ¼ a the obstacles no longer exist and the total
topological charge must be zero. Therefore, when d < a,
topological defects inherently exist in the system even in the
passive state with α ¼ 0. We discuss the role of obstacle
shape in the Supplemental Material [34] and note that our
results should hold as long as the anchoring is strong enough
to induce formation of topological defects [34].
Upon increasing α for various obstacle sizes, we typi-

cally find three qualitative transitions. At zero and small
activity, the topological defects are pinned to the obstacles.
As the activity is increased, the defects begin to unpin and
move from obstacle to obstacle with little to no unbinding
of new defects. When activity is further increased, a central
vortex forms in each circular domain with two þ1=2
topological charge defects encircling one another, as has
been shown previously for individual circular domains
[14,26,30]. At higher activities the þ1=2 defects merge,
and a stable þ1 spiral defect forms in the domain center.
The stability of the spiral defect is due to the flow aligning
nature of the nematic, and if λ ¼ 0 the spirals and vortices
are no longer stable [34,38]. Figures 1(b)–1(e) show
examples of the nematic order parameter and velocity field
in the vortex lattice state, which can have either ferromag-
netic or antiferromagnetic order. At still higher activities the
central vortex in each domain is no longer stable, and an
active turbulent phase persists in which defects are con-
stantly unbinding and annihilating.
To better quantify the transitions, we map our system to a

lattice of vortex “spins” by measuring the average vorticity
in a circle of diameter a=2 at the center of each circular
domain. The spins are then indexed by their lattice position
si. Figures 2(a)–2(c) show plots of hjsijii;t, where h·ii;t
denotes an average over lattice sites and time, as a function
of activity for obstacle gaps d ¼ 4, d ¼ 6, and d ¼ 8. The
transition to the vortex lattice state is marked by a jump
followed by a linear increase in hjsijii;t. A second transition
is marked by an abrupt decrease in hjsijii;t which remains
roughly constant. This is the active turbulent phase.
We first focus on the vortex lattice phase, which can have

either “ferromagnetic” or “antiferromagnetic” order that we
quantify with the spin-spin correlation function

FIG. 1. (a) Schematic of the computational domain with a
periodic array of astroid shaped obstacles summarizing the
boundary conditions on the obstacles and domain edges. (b),
(c) “Ferromagnetic” vortex lattice state at d ¼ 2 and α ¼ 1.8.
(b) Nematic scalar order parameter S where white lines indicate
the director n. The points where S ¼ 0 are topological defects.
(c) Fluid vorticity with black arrows showing the velocity field.
(d) S and (e) ω=ωmax for an “antiferromagnetic” vortex lattice
state at d ¼ 6 and α ¼ 1.5 [34].
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χ ¼
P

hi;jisisjP
hi;jijsisjj

; ð3Þ

where
P

hi;ji denotes a sum over nearest neighbor pairs. For
perfectly ferromagnetic (antiferromagnetic) order χ ¼ 1
(χ ¼ −1). In Fig. 2(d) we plot the phase boundaries as
well as hχit as a function of activity and obstacle gap in
both the vortex lattice and active turbulence regimes. We do
not define χ for small activities since the central vortices,
and hence spins, are not well-established in the pinned
defect and motile defect phases. As the obstacle gap
increases, there is a window of activity values where the
vortex lattice abruptly transitions from ferromagnetic to
antiferromagnetic. In this window, the obstacle size can be
used to tune the vortex lattice state. To check the ferro-
magnetic-antiferromagnetic transition for hysteresis we fix
d ¼ 6 and sweep the activity up and down between α ¼ 0.8
and α ¼ 1.4, finding minimal hysteresis as indicated by the
plot of χðtÞ in Fig. SX.
For large obstacle gaps the vortex lattice phase disap-

pears, and only active turbulence occurs. At the transition
from vortex lattice to active turbulence, hχit decreases in
size but typically maintains the same sign, indicating that
vestigial ferromagnetic or antiferromagnetic order persists
until α becomes large enough that hχit → 0.
In previous work on active nematics, a one-dimensional

antiferromagnetic vortex lattice was observed in channel
confinement geometries [24], while numerical predictions
indicate that a two-dimensional antiferromagnetic vortex
lattice should appear in systems with large enough substrate
friction [39,40]. In our system, we assume zero substrate
friction so the vortices are stabilized purely by geometric

confinement, but we show in the Supplemental Material
[34] that the vortex lattice phase is stable against moderate
degrees of substrate friction, consistent with recent work on
circularly confined systems [30,34]. We find both ferro-
magnetic and antiferromagnetic vortex lattices depending
on the values of d and α, and to our knowledge, a
ferromagnetic vortex lattice has not previously been
observed or predicted in active nematics.
Vortex lattices can also form in bacterial suspensions

confined by pillar arrays, but in that system, hydrodynamic
interactions are the dominant ordering mechanism, and
therefore the vortex lattice typically has antiferromagnetic
ordering [41,42]. In contrast, in the active nematic consid-
ered here, a competition between elastic and active forces
determines the vortex lattice structure. The nematic elastic
force favors uniform alignment of the director, so domains
with opposite chirality incur an elastic energy penalty since
the director changes at the domain boundary. Thus, elastic
interactions promote ferromagnetic order.
The transitions to antiferromagnetic order and active

turbulence may be explained by the competition between
elastic and active forces and a hierarchy of length scales.
The active nematic length scale ξa ∝ 1=

ffiffiffi
α

p
sets the defect

density of a bulk active nematic system [2]. For a given
obstacle size, there is an effective length scale associated
with the circular domains Reff . If ξa ≲ Reff , there is enough
space to nucleate defects and reach the optimal defect
density, so the system transitions to an active turbulent
state, but there is also a gap length scale d associated with
the obstacles. In Fig. 1(d) the antiferromagnetic vortex
lattice contains extra �1=2 defect pairs that sit in the
obstacle gaps and mediate the change in chirality between
central vortices. If ξa ≳ d, the active force is too weak to
stabilize a defect pair in the gap. On the other hand, if
d≳ ξa ≳ Reff , the vortex lattice phase is stable since an
extra defect pair can nucleate in the gaps to mediate the
antiferromagnetic vortex order. When d < Reff , this hier-
archy of length scales cannot occur, explaining why
antiferromagnetic vortex order is absent for small d. By
measuring both the elastic energy and the active energy
injected per simulated time step, we find that at the
ferromagnetic to antiferromagnetic transition, the active
energy becomes dominant and stabilizes the opposing
chiralities of neighboring domains, as shown in Fig. S2.
The active turbulent phase that occurs for large α is

associated with a sharp decrease in hjsijii;t (Fig. 2). We can
also measure the average number of defects hNDit to
detect the transition (see the Supplemental Material for
details on how this and other measures are computed
[34,43,44]). In the vortex lattice phase, hNDit is roughly
constant, while in active turbulence hNDit grows linearly
with α (Fig. S3). Both measures are consistent with one
another, and we use them to determine the boundary
shown in Fig. 2 between the motile defect phase and active
turbulence for large d.

FIG. 2. (a)–(c) Average vortex “spin” hjsijii;t as a function of
activity α for obstacle gaps (a) d ¼ 4, (b) d ¼ 6, and (c) d ¼ 8.
Colors indicate the phase identity. (d) Phase diagram as a function
of d vs α, where dot color indicates the value of the time-averaged
spin-spin correlation function hχit. hχit is not well-defined in the
pinned defect or motile defect phases.

PHYSICAL REVIEW LETTERS 132, 018301 (2024)

018301-3



It is instructive to compare the active turbulent phase of
the obstacle array system with the d ¼ a bulk system free
of obstacles. While the flows in all systems become
decorrelated over long timescales (Fig. S4), the flow
velocity distributions pðjvjÞ vary. In Figs. 3(a)–3(c) we
plot pðjvjÞ for systems with α ¼ 1.5 at d ¼ 14 (the bulk
system), d ¼ 10, and d ¼ 4. Figure 3(a) indicates that
pðjvjÞ has a two-dimensional Maxwell-Boltzmann distri-
bution with a maximum weight that shifts toward jvj ¼ 0 as
the obstacle size increases and d becomes smaller. This is a
natural consequence of the fact that the obstacles have no-
slip conditions and their surface area increases as d
decreases. The corresponding velocity direction distribu-
tions pðθvÞ in Figs. 3(d)–3(f), where θv ¼ tan−1ðvy=vxÞ,
show an isotropic distribution for small obstacles (d ¼ 10)
that is nearly identical to pðθvÞ for the bulk system. For
larger obstacles, pðθvÞ becomes anisotropic and peaks
along the lattice diagonals. These velocity statistics suggest

that immersed obstacles can provide control over the flows
even in the active turbulent phase, which could contribute
to the development of novel microfluidic devices composed
of active fluids.
Finally, we simulate the active nematic in a domain

constrained by a honeycomb lattice of concave, triangular
obstacles similar to those used in recent experiments [31].
Here, the obstacles introduce a triangular lattice of circular
domains. An example nematic configuration and flow
profile is shown in Figs. 4(a) and 4(b). In order to promote
antiferromagnetic ordering, we place the system just out-
side the ferromagnetic vortex lattice phase for this geom-
etry: a ¼ 8, d ¼ 4, and α ¼ 2; however, a triangular lattice
is frustrated, and the checkerboard pattern that occurs in
square lattices is not possible, but is replaced by many
degenerate ground states [45,46]. As a result we find a
primarily ferromagnetic state in which the competition
between elastic and active forces results in constantly
flipping spins and the formation of a dynamical state
similar to active turbulence. In Fig. 4(c) we plot χðtÞ over
the course of a simulation. There are multiple time intervals
where χ ¼ 1, indicating a perfectly ferromagnetic vortex
lattice; however, spin flips generated by the unbinding of
new defects constantly reduce χ, which sometimes
becomes negative. While the dynamics resemble active
turbulence, we argue that they are actually closer to those of
the vortex lattice state in the square lattice with d ¼ 6 and
α ¼ 0.9, in which the underlying vortex lattice order is
ferromagnetic, but defect unbinding pushes the system

FIG. 3. Flow velocity distributions in the active turbulent phase
with α ¼ 1.5 and various obstacle gap sizes. (a)–(c) Distributions
of jvj for (a) a bulk system with no obstacles, (b) obstacle gap
d ¼ 10, and (c) obstacle gap d ¼ 4. (d)–(e) Velocity direction
distributions pðθvÞ for (d) a bulk system with no obstacles,
(e) obstacle gap d ¼ 10, and (f) obstacle gap d ¼ 4.

FIG. 4. Active nematic system in a honeycomb lattice of
concave triangular obstacles. (a) Time snapshot of the nematic
configuration at a ¼ 8, d ¼ 4, and α ¼ 2 with color given by the
scalar order parameter S and white lines indicating the nematic
director n. (b) The corresponding vorticity (color) and flow
velocity (black arrows). (c) Spin-spin correlation function χ vs
time t. (d) Velocity direction distribution pðθvÞ.
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toward antiferromagnetic order. We show in Fig. S5 that the
χ-χ temporal autocorrelation function for the frustrated
triangular lattice is similar to that of the square lattice with
d ¼ 6 and α ¼ 0.9. In both systems, but unlike an active
turbulent system, χ is correlated over long times, indicating
that spins and spin flips are also correlated over time. In
Fig. 4(d) we show that pðθvÞ peaks at the six diagonals of
the lattice. We expect the peaks to become more prominent
as the obstacle size increases.
Conclusion.—We have numerically studied the effects

on active nematics of fixed periodic astroid shaped
obstacles with planar nematic anchoring. As a function
of activity and obstacle size, we find a wide variety of
phases, including a pinned defect phase, motile defect
regime, and a vortex lattice phase that can be tuned from
ferromagnetic to antiferromagnetic. There is an active
turbulent phase that displays unique anisotropic velocity
distributions at high activities, suggesting a new method to
control active turbulence with obstacles. We also find that
an antiferromagnetic vortex lattice on a triangular lattice
exhibits an active frustrated state. Our system should be
experimentally realizable using existing approaches for
creating obstacles in active nematic systems [31,32].
Future directions are to consider obstacle shapes that
stabilize other kinds of topological defects (see the
Supplemental Material and Fig. S6 [34]). Also, different
lattices may yield even more exotic flow states, which
opens the prospect of flow control in active nematics using
obstacles.
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