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A simple geometric constraint often leads to novel, complex crystalline phases distinct from the bulk.
Using thin-film charge colloidal crystals, a model system with tunable interactions, we study the effects of
geometric constraints. Through a combination of experiments and simulations, we systematically explore
phase reentrances and solid deformation modes concerning geometrical confinement strength, identifying
two distinct categories of phase reentrances below a characteristic layer number, Nc: one for bcc bulk-stable
and another for fcc bulk-stable systems. We further verify that the dominant thermodynamic origin is the
nonmonotonic dependence of solids’ free energy on the degree of spatial confinement. Moreover, we
discover transitions in solid deformation modes between interface-energy and bulk-energy dominance:
below a specific layer number, Nk, geometric constraints generate unique soft deformation modes adaptive
to confinement. These findings on the N-dependent thermodynamic and kinetic behaviors offer fresh
insights into understanding and manipulating thin-film crystal structures.
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Phase reentrances denote the recurrent emergence of
phases in specific sequences as thermodynamic conditions,
such as density or temperature, vary. This phenomenon is
observed across various material classes, ranging from hard
ceramics to soft hydrogels, proving to be a reliable method
for finely controlling phase behaviors [1]. Besides density
and temperature, geometrical constraints significantly alter
phase behaviors [2–5]. For instance, a thin crystalline film
between two parallel flat substrates undergoes a transition in
crystalline order and physical properties between three-
dimensional (3D) and two-dimensional (2D) limits [6]. This
transition can lead to exotic crystalline phases distinct from
those observed in bulk materials. Thus, when geometric
constraints induce phase reentrances, intriguing material
properties are expected, spanning many classes of thin-film
solids and nanocrystalline particles with unique structures
and properties. Despite the technological importance of
these phenomena, the rules governing reentrance and the
transition point from bulk to constrained states still remain
elusive due to their inherent complexity and diversity.
The simplest example of such confinement is one-dimen-

sional (1D) confinement within a 3D system. For example,
when a hard-sphere colloidal crystal is confined between
two parallel flat walls, cascades of thin-film crystals, such as
multilayer square and hexagonal structures, may repeatedly
emerge. The activation of phase-reentrance behavior occurs

below a characteristic number of particle layers, Nc,
signifying the transition from quasi-two-dimensional
(quasi-2D) to bulk 3D behaviors [7–13]. This behavior in
hard-sphere systems has been comprehensively explained
by an entropic effect [7–10].
Furthermore, in systems with soft, anisotropic, or long-

range interactions, complex solid structures induced by
confinement have been robustly observed [13–20]. These
studies indicate that constraint-induced multiple reentrances
are a universal phenomenon. Thus, the presence or absence
of phase reentrances can be conceptualized as a thermo-
dynamic “magic layer number” phenomenon. However, a
systematic experimental study on the impact of interparticle
interaction nature on this phenomenon is still lacking.
In addition to producing complex phase reentrances,

the constraint also induces transitions in the kinetics of
phase transitions from bulk to constrained conditions.
The kinetic behavior dependent on the layer number (N)
was observed in geometrically constrained thin-film
systems: the pathways of melting, crystallization, and
solid-to-solid transitions critically depend on the layer
number N [21–27]. Moreover, these studies indicate that
the thermal and mechanical response of a thin-film state,
adaptive to confinement, is distinct from both the 2D and
3D cases. It exhibits a unique character sensitive to the
strength of the constraint. This behavior can be attributed
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to a dimensionality specific effect in 2D, arising from the
impact of thermal fluctuations on ordering, known as the
Mermin-Wagner effect [28]. Despite the significance of
phase transition kinetics in understanding the magic layer
number puzzles, the dynamic behaviors of constrained
thin films—specifically, how the solids deform adaptively
to the constraint—and the possible underlying mechanism
remain a significant mystery.
To address these fundamental issues, we employ

charged colloidal systems with tunable interaction poten-
tials. Colloidal systems provide a means to observe
dynamic responses at the single-particle level under spatial
confinement, offering a microscopic understanding of
various phase behaviors such as crystallization [29–32],
melting [22,23], premelting [21,25], and solid-solid tran-
sitions [24,27]. Through a combination of experiments and
simulations on charged colloidal thin-film systems, we have
identified two categories of phase reentrances induced by
geometric constraints below a characteristic layer number,
Nc: one for bcc bulk-stable and another for fcc bulk-stable
systems. More importantly, we have identified transitions in
solid deformation modes, termed constraint-to-bulk transi-
tions, between interface-energy and bulk-energy dominance
in thin-film states: below a critical layer number Nk,
geometric constraints give rise to unique soft deformation
modes that adapt to the confinement.
We use a density- and refractive-index-matched colloi-

dal suspension with a particle volume fraction, ϕ ≈ 17%,
confined within a sealed wedge-shaped glass cell (wedge
angle ≈0.16°; see Fig. S1(a) in the Supplemental Material
(SM) [33]). The colloidal particles and glass walls are
negatively charged in the solvent, interacting approxi-
mately via a hard-core repulsive Yukawa potential
described by uðrÞ ¼ α exp½−κσðr=σ − 1Þ�=ðr=σÞ for
r > σ, where r is the interparticle distance, and σ is the
colloid diameter (1.5 μm). The range and strength of the
repulsive interaction depend on the Debye screening
length, 1=κ, and a parameter, α, respectively, which are
experimentally controlled by adding tetrabutylammonium
bromide salt or applying ultrasonication to the solvent
[5,36]. Here α ¼ fQ2=σ½1þ ðκσ=2Þ�2ϵsg, where Q is the
colloidal particles’ surface charges, and ϵs is the dielectric
constant of solvent [30,36,37]. The phase diagram of the
bulk system measured in our experiments is shown in
Fig. S1(b) in SM [33].
To observe the 3D structure of thin films and precisely

determine each particle’s position and movement, we use a
Leica-SP8 fast confocal microscope coupled with particle
tracking methods [38,39]. We use the 3D bond orientational
order parameters, Ql and Wl (see SM [33] for their
definitions), to identify possible 3D crystalline structures
(bcc type, fcc type, and hcp type) [31,32,40–43]. The
criteria for identifying these structures are as follows: bcc
type (Q6 > 0.3, W6 > 0), fcc type (Q6 > 0.3, W6 < 0,
W4 < 0), and hcp type (Q6 > 0.3, W6 < 0, W4 > 0).

When κσ ≈ 2.0, the bcc crystal exhibits stability in 3D
bulk configurations. As expected, when N > 13, we
observe the prevalence of the bcc-type structure, where
the ð1; 1; 0Þbcc plane is parallel to the smooth wall. This
orientation is favored due to entropy constraints imposed
by wall-induced layering [31,32]. Intriguingly, stronger
confinement leads to crystalline symmetries that differ from
the bulk bcc structure. For 2 ≤ N ≤ 13, we observed three
types of multilayered structures: stacked rhombic layers
(2 ≤ N ≤ 4), fcc type [ð1; 1; 1Þfcck wall] or N△ structure
(2 ≤ N ≤ 13), and the standard bcc-type structure [N ≥ 4,
ð1; 1; 0Þbcck wall], illustrated in Figs. 1(a)–1(c) and 1(g).
The rhombic layer features a rhombus angle ranging from
80° to 90°, while the ð1; 1; 1Þfcc layer and the ð1; 1; 0Þbcc
layer exhibit characteristic rhombus angles of 60° and 70°,
respectively [Fig. S1(e) in SM [33] ]. The Nrhombic
structure possesses W6 > 0 and closely resembles a bcc
form with a deformed ð1; 0; 0Þbcc plane parallel to the wall
[Fig. S2(a) in SM [33] ].
Interestingly, with an increase in the wall-wall separation,

Z, three distinct phase reentrance behaviors emerge among
these thin-film solids: ðN − 1Þ△ → Nrhombic → N△ for
2 ≤ N ≤ 3 [Fig. 1(a)], Nrhombic → Nbcc → Nfcc →
ðN þ 1Þbcc for N ¼ 4 [Fig. 1(b)], and Nfcc →
ðN þ 1Þbcc → ðN þ 1Þfcc for 5 ≤ N < 13 [Fig. 1(c)],
as shown in Fig. 1(g). Note that theN ¼ 5 rhombic structure
is not robustly found in experiments. The reentrances
observed for N ≤ 4 mirror those found in previous studies
of charged colloids at lower density [19]. Notably, the
reentrances for N ≥ 5 represent a novel experimental result
for confined colloidal thin films.
To validate these reentrance behaviors, we conducted

Monte Carlo simulations in the NPT ensembles [44].
Remarkably, at comparable effective temperatures in units
of the melting temperature Tm of bulk samples, our
simulation results at κσ ¼ 2.0 closely align with experi-
mental observations, evident in the comparable 2D struc-
tures [Figs. 1(a)–1(c)] and gðrÞ2D profiles [Figs. 1(d)–1(f)].
Consistent with previous studies [10,13], we find the
noselike phase boundary of these reentrance structures
using kBT=α and Z as the control parameters (Fig. S3(a)
in SM [33]). The confinement induces a nonmonotonic
modulation in the Z-dependent Gibbs free energy (Np

particles), enthalpy (H=NpkBT), and entropy (S=NpkB),
with GðZÞ exhibiting local minima and maxima, as shown
by a typical 3rhombic → 3△ transition [see Fig. S3(c) in
SM [33] ] and a typical 5fcc → 6bcc → 6fcc reentrance
[see Fig. S3(d) in SM [33] ].
We explore the κσ dependence of reentrance behaviors

within our accessible range, κσ ≥ 2.0. As κσ increases up to
κσ ≈ 5.0, the fcc crystal becomes 3D bulk-stable in our
low-density samples (ϕ ≈ 0.17), and we begin to observe
N□ [ð100Þfcckwall] structures [Fig. S3(b) in SM [33] ]. We
characterize the confinement-induced phase reentrances

PHYSICAL REVIEW LETTERS 132, 018202 (2024)

018202-2



using two parameters, Z=N and N [refer to Figs. 2(a)
and 2(b)]. D ¼ Z=N denotes the average lattice spacing
along the z direction [refer to Figs. 2(c) and 2(h)]. Here, we
note that these parameters, N and D, do not serve as
experimental control parameters; instead, they characterize
the crystal formed under confinement.
Notably, we can classify the κσ-dependent reentrance

behaviors into two categories: (1) the Nfcc →
ðN þ 1Þbcc → ðN þ 1Þfcc class (2 ≤ N < 13) when
bcc is 3D bulk-stable (see also Fig. 1), e.g., at κσ ≈ 2.0
[see Fig. 2(a)], and (2) the N□ → N△ → ðN þ 1Þ□ class

(2 ≤ N < 11) when fcc is 3D bulk-stable, e.g., at κσ ≈ 5.0
[see Fig. 2(b) and Fig. S1(d) in SM [33] ].
The phase reentrance behavior of our low-density

samples shown in Fig. 2(b) is similar to that observed in
dense hard-sphere systems [7–10], which is fcc bulk-
stable. With the increase of N, the variation of Z=N
diminishes, and the above two reentrance behaviors vanish
around N ≈ 13 [Fig. 2(a) and Fig. S1(d) in SM [33] ] and
N ≈ 11 [Fig. 2(b) and Fig. S1(d) in SM [33] ], respectively.
Moreover, the Nrhombic structure in Fig. 2(a) (κσ ≈ 2.0)
with W6 > 0 suggests that its 3D structure belongs to the
bcc class. In contrast, the N□ structure in Fig. 2(b)
(κσ ≈ 5.0) as W6 < 0, indicating that its 3D structure
belongs to the fcc class [see Fig. S2(d) in SM [33] ].
For N < 10, the presence of fcc-type structure at κσ ≈

2.0 and the absence of bcc-type structure at κσ ≈ 5.0
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FIG. 2. Phase diagrams for the two categories of constraint-
induced reentrances and the distinct 3D characters of reentrance
structures. (a) The phase diagram for bcc bulk-stable systems
(κσ ≈ 2.0) in the (Z=N, N) parameter space. (b) The phase
diagram for fcc bulk-stable systems (κσ ≈ 5.0) in the (Z=N,
N) parameter space. Experiments agree well with simulations in
(a) and (b). (c) 3D view of the bcc-type constrained structure and
illustration of its geometric parameters, D, b, and a. Note that
D ¼ Z=N. b and a are the unit vector lengths of the rectangle cell
regarding the deformed ð110Þbcc plane. (d)–(g) Illustration of the
continuous structural transformation from bcc type to fcc type at
κσ ≈ 2.0 andN ¼ 4. Scatter plots (gray clouds) are 2D projections
of the solid phase’s 3D structure under thermal fluctuation. Note
that the upper and lower layers deform in opposite directions.
(h) 3D view of the N□-type structures at κσ ≈ 5.0. (i),(j) Illus-
tration of the sharp structural transition from N□ to N△.
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FIG. 1. Phase reentrance behaviors induced by confining low-
density charged colloidal samples. (a)–(c) Illustration of typical
layered structures parallel to the wall with an increase in the wall-
wall separation Z. These layered structures are categorized based
on the rhombus angle θ of the particle layer’s 2D lattice structure:
fcc type (θ ¼ 60°, N△, or Nfcc with ð111Þfcckwall), bcc
type (θ ¼ 70°, Nbcc with ð110Þbcckwall), and rhombic type
(80° < θ < 90° and W6 > 0, deformed bcc type with
ð100Þbcckwall). Note that the particle positions fluctuate, and
we draw white dashed rhombus with specified angle to facilitate
comparison. Three types of reentrance behaviors are observed:
ðN − 1Þ△ → Nrhombic → N△ when 2 ≤ N ≤ 3 in (a),
Nrhombic → Nbcc → Nfcc → ðN þ 1Þbcc when N ¼ 4 in
(b), and Nfcc → ðN þ 1Þbcc → ðN þ 1Þfcc when 5 ≤ N <
13 in (c). Simulation results (bottom panels) agree well with
experiments (top panels). (d)–(f) gðrÞ2D corresponding to each
structure shown in (a)–(c), respectively. The simulation results
(dashed lines) also agree well with the experiment ones (solid
lines). (g) Z-dependent reentrance behaviors in experiments at
κσ ≈ 2.0. Rhombic and bcc-type structures have positive W6.
fcc-type structures have negativeW6. Different symbols are used
for N and N þ 1 layers due to the possible coexistence.
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suggest that a strong geometric constraint promotes fcc-
type structure. Stronger confinement could also lead to a
larger magnitude of the 3D structure variation, as indicated
by the significant abnormal variation of Z=N at the low N
in Figs. 2(a) and 2(b). This observation suggests the larger
lattice deformation along the z direction for a stronger
geometric constraint, for instance, smaller N.
Adaptive to a geometric variation, the 3D structure of

these thin-film states deviates from the stable crystalline
structure in the bulk [5,31]. These deviations may influence
the stability of reentrance structures and the transformation
pathways among them. However, systematic experimental
measurements of these deviations have not been performed
previously. We use a projection method to precisely
determine the 3D structures of the thin films [26,32].
This method generates a 3D probability distribution of
the solid structure under thermal fluctuations. The core of
each distribution patch is identified as the average lattice
position of the crystalline structure.
For the bcc-type structure at κσ ≈ 2.0 [Fig. 2(c)], we

observe an elongation and a bidirectional slip of the
ð110Þbcc plane parallel to the wall. This is evident in the
characterization of the ratio, b=a, with respect to Z=N
(N ¼ 4) in Figs. 2(d)–2(g), where b and a are the unit vector
lengths of the rectangular cell concerning the deformed
ð110Þbcc plane. An ideal ð110Þbcc plane has b=a ¼ ffiffiffi

2
p

,
whereas an ideal hexagonal plane has b=a ¼ ffiffiffi

3
p

. This
continuous structural variation from bcc type to fcc type in
thin-film systems could provide the lattice structure with a
broad adjustment range. In contrast, the fourfold symmetry
is well maintained in the □ phase at κσ ≈ 5.0 [Fig. 2(h)],
resulting in a sharp transition from□ to△ as Z=N increases
[Figs. 2(i) and 2(j)].
The constraint-induced reentrance behaviors disappear

around N ≈ 13 and N ≈ 11 in bcc bulk-stable and fcc

bulk-stable systems, respectively. These values can be
considered as thermodynamic “magic layer numbers,”
denoted as Nc, distinguishing “thin” and “thick” film
regimes. Beyond these thresholds, the amplitude of the
free-energy oscillation induced by the confinement becomes
too small to induce a phase change. Next, we explore
another N-dependent behavior observed in thin-film sys-
tems, focusing on soft mechanical (kinetic) responses to
confinement. Through an examination of the solids’ defor-
mation modes in relation to confinement, we identify a
constraint-to-bulk transition at a characteristic layer number,
denoted as Nk.
In bcc bulk-stable systems (κσ ≈ 2.0), we observe two

distinct lattice deformation modes below and above N ≈ 11,
clearly distinguished in the parameter space (b=a, Z=N), as
depicted in Fig. 3(a). Under intense confinement (N < 11),
there is a pronounced increase in b=a with a slight rise in
Z=N in the bcc-type range (red open symbols), followed by
a comparatively modest increase in the fcc-type range (red
filled symbols), as indicated by the two dashed red arrows in
Fig. 3(a). The initial bcc regime confirms that the elonga-
tion of the ð110Þbcc plane parallel to the wall is highly
sensitive to gap variations [also evident in Figs. 2(d)–2(g)],
revealing a mechanically unstable mode along specific
directions. Conversely, within the fcc regime, a layered
structure resembling the ð111Þfcc plane remains relatively
stable against gap changes due to layering-induced stabi-
lization [28,45,46], suggesting a predominant influence of
interface energy.
In contrast, we find the opposite trend of the structure

variation for N ≥ 11, as illustrated by the other two dashed
green arrows in Fig. 3(a). For N ≥ 11, the first regime,
characterized by a small slope, suggests enhanced stability
of the ð110Þbcc plane against gap changes. On the other
hand, the second regime, characterized by a steeper slope,
indicates a mechanically unstable mode of the ð111Þfcc
plane governing the fcc-to-bcc transition. The emergence
of the bulk transition mode is further substantiated by the
onset of an ideal bcc structure at N ≥ 11, as evidenced by
the convergence of ρðW6Þ peak positions with respect to
the variations in Z=N and N in Figs. S2(b) and (c),
respectively. Thus, these two distinct modes reflect two
regimes with interface-energy-dominated stability and
bulk elastic-energy-dominated stability.
In fcc bulk-stable systems (κσ ≈ 5.0), the □-to-△

transition is pronounced. To illustrate structural deforma-
tions due to confinement, we employ the (Z=Na, Z=N)
parameter space. Interestingly, two distinct deformation
modes persist, as illustrated by the green-dashed and red-
dashed arrows in Fig. 3(b) when N < 12, and the orange-
dashed arrow when N ≥ 12. Examining the variation of
Z=N at N < 12, we observe that Z=Na ∝ Z=N for both
□-type (green symbols) and △-type (red symbols) struc-
tures, indicating that a remains approximately constant
regardless of the phase reentrances. In contrast, for N ≥ 12

)b()a(
b/

a

1.7 1.8 1.9 2.0 2.1 2.2

1.3

1.4

1.5

1.6

1.7

1.8

Z/N ( m)

N <11

N ≥11

bcc

fcc

1.5 1.6 1.7 1.8 1.9
0.72

0.76

0.80

0.84

0.88

0.92

Z/N ( m)

Z/
aN

N <12

N ≥12

squaretriangle

fcc

FIG. 3. Illustration of the distinct modes of structure variation
adaptive to the confinement. (a) Two different modes adaptive to
the confinement operative when N < 11 and N ≥ 11 in bcc bulk-
stable system (κσ ≈ 2.0). We use the (b=a, Z=N) parameter space
to illustrate the differences. Note the different trends of b=a with
an increase in Z=N for the two modes are schematically
illustrated by red-dashed and green-dashed arrows. (b) Another
two modes adaptive to the confinement operative when N ≤ 12
and N > 12 in fcc bulk-stable system (κσ ≈ 5.0). Besides the
Z=Na ∝ Z=N response, we can see that a new Z=Na ≈ 0.84
branch emerges when N ≥ 12.
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(orange symbols), besides the Z=Na ∝ Z=N response, a
Z=Na ≈ 0.84 branch emerges around Z=N ≈ 1.73 μm, as
indicated by the two-sloped orange-dashed arrows in
Fig. 3(b). The initiation of a Z=Na ¼ 0.84 branch for
N ≥ 12 suggests the conservation of an ideal 3D fcc-type
orientational order against a slight change in the lattice
constant. This behavior is absent under stronger confine-
ment, as supported by the convergence of ρðW6Þ peak
positions atN ≥ 12 concerning the variation of Z=N andN,
as shown in Figs. S2(e) and (f) in SM [33], respectively.
Therefore, these two mechanical (kinetic) responses here
reflect the distinctive characteristics of strongly confined
and weakly confined systems.
In summary, combining experiments and simulations in

charged colloidal systems, we have revealed two categories
of phase-reentrance behaviors induced by geometric con-
straints below a characteristic layer number, Nc. These
categories include one characteristic of bcc bulk-stable
systems and another characteristic for fcc bulk-stable
systems. Indeed, the exact reentrance behaviors should
be determined by the free-energy landscape of the system,
such as free energies of multiple solid structures besides the
stable one [10,13,19]. When the long-range interaction
dominates (e.g., κσ ≤ 1.0, kBT=α ¼ 0.01, and ϕ ¼ 0.17),
the fcc-type reentrance structures are absent [Fig. S3(b) in
SM [33] ]. When the long-range interaction competes with
the entropic effect due to the hard-core interaction (e.g.,
κσ ¼ 2.0, kBT=α ≪ 0.01, and ϕ ¼ 0.5), we may expect the
reentrance of bcc-type structure even though fcc is bulk-
stable. Note that these two cases are usually inaccessible in
colloidal experiments. More importantly, we have identi-
fied a transition in the solid deformation mode of a thin-
film state between interface-energy and bulk-energy
dominance: below a critical layer number Nk, geometric
constraints generate unique soft deformation modes adap-
tive to the confinement. These characteristics under strong
confinement set them apart from the 3D bulk response. For
example, in bcc bulk-stable systems, a strong geometric
constraint makes a thin-film bcc state more deformable,
whereas the surface layering effect enhances stability in a
thin-film fcc state. In contrast, in fcc bulk-stable systems,
a strong geometric constraint induces significant configu-
rational change but with only slight density variation.
These diverse observations suggest that unexpected phase
behaviors, leading to novel applications, can emerge in
strongly confined systems, such as nanoscale architectures.
Therefore, the adjustment of such structures—unattainable
in bulk—through soft or long-range interactions represents
a new paradigm for exploration in nanoscience.
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