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Recent studies have found that fluctuations of magnetization transfer in integrable spin chains violate the
central limit property. Here, we revisit the problem of anomalous counting statistics in the Landau-Lifshitz
field theory by specializing to two distinct anomalous regimes featuring a dynamical critical point. By
performing optimized numerical simulations using an integrable space-time discretization, we extract the
algebraic growth exponents of time-dependent cumulants which attain their threshold values. The distinctly
non-Gaussian statistics of magnetization transfer in the easy-axis regime is found to converge toward the
universal distribution of charged single-file systems. At the isotropic point, we infer a weakly non-Gaussian
distribution, corroborating the view that superdiffusive spin transport in integrable spin chains does not
belong to any known dynamical universality class.
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Introduction.—Complete characterization of universal
equilibrium phenomena is one of the crowning achieve-
ments of statistical physics [1,2]. On the other hand, the
rich diversity of dynamical and nonequilibrium phenomena
is much harder to describe within a common general
mathematical framework. Nevertheless, dynamical univer-
sality has been established in certain domains such as, for
example, noisy classical systems describing interface
growth [3–6] or, more generally, in the context of mode-
coupling theory of nonlinear fluctuating hydrodynamics
(NLFHD) [7–10].
The study of exotic dynamical properties has been at the

forefront of theoretical [11–13] and experiment [14–18]
research in recent years. Anomalous dynamical behavior is
commonly associated with a lack of ergodicity. Most
prominent examples include singular diffusion constants
[12,19–23], anomalous transport in kinetically constrained
models [24] and multipole conserving systems [25–27],
and Hilbert-space fragmentation [27–34]. The focus of
attention has recently shifted to the study of full counting
statistics and anomalous fluctuations [35–39]. For instance,
classical fragmentation occurs in so-called charged single-
file systems [38] (including the solvable charged hardcore
lattice gas [40] and the semiclassical low-energy regime of
the sine-Gordon model [39,41]), displaying a host of
unorthodox dynamical properties such as, most promi-
nently, a universal non-Gaussian typical distribution of net
charge transfer.
Regarding anomalous spin transport in integrable spin

chains, there are currently two elusive problems of funda-
mental significance that remain unresolved. The first one
concerns a first-principle microscopic justification of the
Kardar-Parisi-Zhang (KPZ) scaling function [42] found

in integrable spin chains with isotropic interactions
[12,21,43,44], recently also observed experimentally
[15,17]. The second problem concerns anomalous fluctua-
tions associated with conserved U(1) charges in such
models [35,37,45], leading to a breakdown of the central
limit property [35]. Lacking analytical tools suitable for
tackling these problems, pushing the limits of numerical
simulations is imperative to access the hydrodynamic
regime. Classical systems are particularly suitable for this
task, sidestepping the issue of rapid entanglement growth
affecting their quantum counterparts.
In this Letter, we present a large-scale numerical study of

an anisotropic classical integrable spin chain by computing
the full counting statistics of cumulative spin current in
thermal equilibrium. Building upon our previous Letter
[35], an optimized numerical implementation enables
us to reach longer simulation times, improving upon
Refs. [35,37] by 3 orders of magnitude. Specializing to
both critical regimes, we compute the time-dependent
probability distribution of the cumulative spin current
and extract the scaling exponents quantifying the temporal
growth of cumulants. The main findings of our study are
(i) in the easy-axis regime, the time-dependent typical
distribution slowly converges toward the universal non-
Gaussian distribution characteristic of charged single-file
systems [38]; and (ii) at the isotropic point, we infer a
weakly non-Gaussian distribution and quantify small but
systematic deviations from Gaussianity.
Regarding (ii), our data do not comply with a “quasi-

Gaussian” distribution recently predicted in Ref. [45]
within the domain of quantum spin chains. There remains
the possibility that quantum fluctuations could play a
pivotal role, as already alluded to in [45]. However,
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anticipating that the “quantum-classical correspondence”
[12,46–49] persists at the level of fluctuations, a plausible
consequence of our findings, including simulations of
higher-rank models, is that superdiffusion in integrable
isotropic chains does not admit a universal description in
terms of an effective theory of nonlinear hydrodynamics.
Model.—We consider the anisotropic Landau-Lifshitz

magnet in thermal equilibrium at high temperature. The time
evolution of a classical spin field S≡ ðS1; S2; S3ÞT ∈S2 is
governed by

∂tS ¼ S × ∂
2
xSþ S × JS; ð1Þ

with anisotropy tensor J ¼ diagð0; 0; δÞ parametrized
by δ∈R.
Equation (1) is a prime example of a completely

integrable partial differential equation [50–53]. It possesses
infinitely many local conserved quantities, including the
third component of total spin Q ¼ R

dxS3ðx; tÞ with the
spin density S3 obeying the continuity equation ∂tS3ðx; tÞ þ
∂xjðx; tÞ ¼ 0, where jðx; tÞ denotes the spin-current den-
sity. By tuning δ, one can access three distinct dynamical
regimes: (ea) the easy-axis regime (δ > 0), (iso) the iso-
tropic point (δ ¼ 0), and (ep) the easy-plane regime
(δ < 0).
Anomalous statistics of magnetization transfer.—Our

study mainly concerns the time-dependent distribution
PðJjtÞ of the cumulative current JðtÞ ¼ R

t
0 dt

0jð0; t0Þ pass-
ing through the origin in a finite time interval of length t.
Defining the moment generating function (MGF)
GðλjtÞ≡ heλJðtÞi ¼ R

dJPðJjtÞeλJ, where the average h•i
is computed in a maximum entropy or infinite temperature
ensemble, we characterize PðJjtÞ by its cumulants, cnðtÞ≡
ðdn=dλnÞ logGðλjtÞjλ¼0. We assume that cnðtÞ grow
asymptotically with time as

cnðtÞ ≍ cntνn ; ð2Þ

with algebraic growth exponents νn. Moreover, time-
reversal symmetry in equilibrium ensembles implies detai-
led balance, reflected in the symmetry PðJjtÞ ¼ Pð−JjtÞ.
Accordingly, all odd cumulants vanish.
The growth of variance (second cumulant) c2ðtÞ deter-

mines the typical timescale of magnetization transfer with
exponent ν2 ¼ 1=z, given by the dynamical exponent z,
governing the hydrodynamic relaxation of the density two-
point function. By accordingly rescaling the cumulative
current, J ðtÞ≡ t−1=2zJðtÞ, the t → ∞ limit of the rescaled
distribution P1=2zðJ jtÞ≡ t1=2zPðJ jtÞ yields the typical
distribution PtypðjÞ≡ limt→∞P1=2zðJ ¼ jjtÞ. The second
and higher cumulants of the finite-time typical distribution
κnðtÞ≡ h½J ðtÞ�nic are directly related to cnðtÞ by a simple
rescaling: κnðtÞ ¼ t−n=2zcnðtÞ.
Time-dependent cumulants cnðtÞ generically exhibit

linear asymptotic growth, cnðtÞ ∼ t for all even n. In such
a regular scenario, the central limit property follows from
formal analytic properties of the MGF (see Refs. [35,36] for
a detailed discussion), implying that typical fluctuations are
normally distributed, Ptyp ¼ N ð0; κ2Þ. By contrast, in a
dynamically critical scenario, GðλjtÞ experiences an equi-
librium dynamical phase transition at the critical counting
field λc ¼ 0, causing in effect a superlinear growth of
higher cumulants, namely, limt→∞ cmðtÞ=t → ∞ for some
m > 2. Such dynamical criticality can be quantified by the
algebraic growth exponents νn; see Eq. (2). If the exponents
take the threshold values νthrn ¼ n=2z, Ptyp will be non-
Gaussian (exactly solvable examples are discussed in
Refs. [36,38]).
Methods.—In the present work, we find clear signatures

of dynamical criticality in the easy-axis and isotropic
regimes of the anisotropic Landau-Lifshitz theory (1),
thereby corroborating the earlier results of Ref. [35]. In
addition, we here numerically extract the growth exponents
νn and quantify the emergent typical distributions Ptyp in
both critical regimes (δ ≥ 0).

(a) (b)

FIG. 1. Temporal growth of cumulant estimates ĉnðtÞ for n∈ f2; 4; 6g (colored dots) with three standard deviation neighborhoods
(shaded regions): (a) easy-axis regime (ϱ ¼ 1) and (b) isotropic point (ϱ ¼ 0). Dashed black lines show algebraic scalings (2) with fitted
exponents (a) νean , given by Eq. (3), and (b) νison , given by Eq. (5). Finite-sample exponents ν̂n are estimated from finite-time data in the
time interval t∈ ½216; 220�. Simulation parameters: τ ¼ 1, L ¼ 221, and N ¼ 5 × 103 (see Ref. [54]).

PHYSICAL REVIEW LETTERS 132, 017101 (2024)

017101-2



To enhance efficiency and to avoid potential artifacts
stemming from naive discretizations of Eq. (1), we perform
our simulations using a two-parameter integrable symplec-
tic discretization of Eq. (1) developed in Ref. [54], depend-
ing on anisotropy parameter ϱ and time-step parameter τ
(definitions and further details can be found in [54] and
Supplemental Material in Ref. [35]). Simulations were
performed on periodic systems of length L ¼ 221 ≥ 2tmax

with maximal time tmax ¼ 220, to exclude finite-size effects.
We subsequently use hatted symbols b• to denote finite-
sample estimates of ensemble-averaged quantities. The
time-dependent moments mnðtÞ≡ ðd=dλÞnGðλjtÞjλ¼0 of
the discrete cumulative current Jtl were estimated as
m̂nðtÞ ¼ ðLNÞ−1PN

s¼1

P
L
l¼1 ðJtl½s�Þn, using [s] to denote

the sth trajectory taken from an ensemble of N samples,
such that limN→∞m̂nðtÞ ¼ mnðtÞ, while the inner sum
exploits translational invariance to improve sampling sta-
tistics. The estimated cumulants ĉn are computed directly
from m̂n using Faà di Bruno’s formula. To quantify the
proximity between a continuous distribution P and a target
distribution Q we utilize the Kullback-Leibler (KL) diver-
gence DKLðPkQÞ≡ R∞

−∞ dxPðxÞ log ½PðxÞ=QðxÞ�. The
unknown estimated widths of the asymptotic target dis-
tributions, denoted by σ̂, are extracted by means of a
nonlinear least squares fit to the finite-time distributions
at tmax.
Easy-axis regime.—In the easy-axis regime (δ > 0), we

confirm the anticipated critical behavior of cnðtÞ across 4
orders of magnitude in time. Temporal growth of the few
lowest even cumulants cnðtÞ is shown in Fig. 1(a), from
where we deduce the growth exponents

νea2n ¼ n=2: ð3Þ

This readily implies nonzero cumulants of the typical
distribution, κn ¼ limt→∞limN→∞κ̂

ea
2nðtÞ ≠ 0. As shown in

Fig. 2, the finite-time typical distributions P̂1=4ðJ jtÞ are
discernibly non-Gaussian, converging at late times toward
the M-Wright distribution MσðjÞ≡ σ−1=2M1=4ð2jjj=σ1=2Þ
[55], given by the following explicit integral representation
[35,38]:

MσðjÞ ¼
Z

∞

−∞

du

2πσjuj1=2 exp
�
−

u2

2σ2
−

j2

2juj
�
: ð4Þ

Convergence of P̂1=4 toward Mσ̂ea near the origin is

displayed in Fig. 2 (left inset). The KL divergence KeaðtÞ≡
DKLðP̂1=4kMσ̂eaÞ decays approximately as KeaðtÞ ∼ t−0.55

with KeaðtmaxÞ ≈ 2.0 × 10−4; see Fig. 2 (right inset).
The probability distribution (4) of charge fluctuations in

(unbiased) equilibrium states has been recently established
in [38] as one of the defining universal properties of
classical charged single-file systems. While our data
empirically demonstrate convergence toward MσðjÞ, it is
important to emphasize that the single-file constraint is not
(at least manifestly) present in the easy-axis regime of our
model. In other words, the emergence of MσðjÞ is not a
direct corollary of a kinetic constraint. Nonetheless,
Ref. [37] explains how (4) arises from a simple phenom-
enological hydrodynamic picture based on elastic scatter-
ing of magnons off immobile domain walls describing the
large-anisotropy regime of the gapped Heisenberg spin

FIG. 2. Convergence of the estimated time-dependent distri-
butions P̂1=4ðJ jtÞ (colored points) in the easy-axis regime
(ϱ ¼ 1) toward the conjectured target distribution Mσ̂ea (4), with
σ̂ea ≈ 0.3595 (solid black curve), with an enlargement near the
origin (left inset). Right inset: relaxation of KL divergence KeaðtÞ
(blue line), with an estimated asymptotic decay ∼t−0.55 (dashed
black line) fitted for t ≥ 215. Simulation parameters: τ ¼ 1,
L ¼ 221, and N ¼ 4 × 103.

FIG. 3. Convergence of the estimated time-dependent distri-
butions P̂1=3ðJ jtÞ (colored points) at the isotropic point (ϱ ¼ 0),
compared against the Gaussian distribution N σiso with σ̂iso ≈
0.522 (solid black curve) in logarithmic scale (left inset). Right
inset: relaxation of KL divergence KisoðtÞ (blue line), with
approximate algebraic decay ∼t−0.74 (black dashed line), fitted
in the window t∈ ½23; 214�. Simulation parameters: τ ¼ 1,
L ¼ 221, and N ¼ 4 × 103.
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chain, suggesting that (4) is not exclusive to single-file
systems but also allows for a finite transmission rate. While
this viewpoint is also alluded to in [39], a systematic or
rigorous derivation is currently still lacking.
Isotropic point.—As shown in Fig. 1(b), dynamical

criticality persists at the isotropic point (δ ¼ 0). Once
again, the numerically extracted first few growth exponents
match the threshold values

νiso2n ¼ 2n=3; ð5Þ

implying that the typical distribution acquires nonzero cu-
mulants κiso2n ¼ limt→∞limN→∞κ̂

iso
2n ðtÞ≠0, signaling a break-

down of the central limit property.
We next quantify how much Piso

typ deviates from
Gaussianity. A direct quantitative comparison between the
estimated time-dependent typical distribution P̂1=3 and a
normal distribution N σ̂iso ≡N ð0; σ̂2isoÞ with the estimated
variance σ̂iso ≈ 0.522, shown in Fig. 3, is rather nuanced: The
distance between distributions clearly decreases with time
across 6 orders of magnitude [see Fig. 3 (left inset)], and the
KL divergence KisoðtÞ≡DKLðP̂1=3kN σ̂isoÞ decays approxi-
mately as KisoðtÞ ≃ t−0.74 at large intermediate times before
crossing over to a plateau around t ≈ 217 [KisoðtmaxÞ≈
1.7 × 10−5; see the right inset in Fig. 3]. It is unclear if such
behavior persists for times beyond tmax.
Unlike in the easy-axis regime, the difference primarily

builds up in the tails. To discriminate between the estimated
and target distribution, we, compute the excess kurtosis
γ̂ðtÞ ¼ ĉ4ðtÞ=ĉ22ðtÞ and the standardized first absolute

moment μ̂j1jðtÞ ¼ m̂j1jðtÞ=ĉ1=22 ðtÞ of P̂1=3. In addition, we
compare the results of our simulations with the recent
prediction of Ref. [45] which reports the (approximate)
asymptotic value γ̃ ≈ 0.14. In our simulations (see Fig. 4),
we instead obtain γ̂ðtmaxÞ ≈ 0.02 and μ̂j1jðtmaxÞ ≈ 0.7972;
see the inset in Fig. 4. The estimated kurtosis γ̂ agrees with
values obtained from experiments on quantum simulators
[18]. Most glaringly, we find no decay toward the Gaussian
values γN ¼ 0 and μNj1j ¼

ffiffiffiffiffiffiffiffi
2=π

p
≈ 0.7979.

To check whether the small value of kurtosis is universal,
we also consider Noether charge fluctuations in a (gener-
alized) SUðNÞ Landau-Lifshitz model on the complex
projective space CPN−1 (specializing to N ¼ 3) (see
Refs. [21,56]). We find dynamically critical cumulants
(not shown) with threshold exponents identical to those in
Eq. (5). The corresponding standardized first absolute
moment and excess kurtosis (orange crosses in Fig. 4 with

tð3Þmax ¼ 218) are again nonzero but distinct from those in the
CP1 model and substantially closer to Gaussian values

μ̂ð3Þj1j ðtð3ÞmaxÞ ≈ 0.7977 and γ̂ð3Þðtð3ÞmaxÞ ≈ −4 × 10−3.
Easy-plane regime.—In the easy-plane regime (with

ballistic exponent zep ¼ 1), even cumulants grow linearly

with time on intermediate timescales, νep2n ¼ 1. This behav-
ior is consistent with regularity, and, thus, the analytical
prediction of ballistic macroscopic fluctuation theory [57–
59] is expected to be valid in this regime. However, a reliable
extraction of scaled cumulants sn ¼ limt→∞ t−1cnðtÞ is
difficult in practice due to the required exact cancellation
of n − 1 leading orders.
Conclusion and discussion.—In this Letter, we studied

statistical properties of magnetization transfer in the
Landau-Lifshitz field theory, focusing on unbiased equi-
librium states. Using an efficient implementation of an
integrable space-time discretization, we numerically esti-
mated a few lowest cumulants and extracted the algebraic
exponents quantifying their temporal growth. In the easy-
axis regime and at the isotropic point, the onset of
dynamical criticality causes superlinear growth of higher
cumulants. In both cases, the estimated growth exponents
coincide with threshold values, suggesting a violation of the
central limit property.
In the easy-axis regime, typical fluctuations are distinctly

non-Gaussian, and our data convincingly demonstrate
convergence toward the M-Wright distribution featured
in charged single-file systems. This finding conforms with
the prediction of the phenomenological model in Ref. [37]
describing the large-anisotropy limit of the gapped
Heisenberg quantum spin chain. At the isotropic point,
the lowest standardized moments of the time-dependent
typical distribution are found to converge close to Gaussian
values, but we still detect systematic deviations that persist
at late times.

FIG. 4. Numerically estimated excess kurtosis γ̂ðtτÞ and stand-
ardized first absolute moment μ̂j1jðtτÞ (inset) at the isotropic point
(ϱ ¼ 0) with three standard deviation neighborhoods (shaded
regions), shown for different τ (blue points) and for CP2 (see the
main text) with τ ¼ 1 (orange crosses). Solid black lines indicate
Gaussian values γN ¼ 0 and μNj1j ¼

ffiffiffiffiffiffiffiffi
2=π

p
(inset), while a dashed

black line marks γ̃ ≈ 0.14 of Ref. [45]. Simulation parameters:
τ∈ f0.01; 0.25; 1; 2g, L ¼ 221, and N ∈ ½103; 5 × 103�, with more
samples for larger τ.
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A commonly used classification of dynamical universal-
ity within the framework of NLFHD [10,60–62] is based on
the asymptotic form of dynamical two-point functions
(dynamical structure factors), characterized by an algebraic
decay exponent and stationary scaling profiles. Such a
classification is, however, not exhaustive, as different
processes may be distinguishable only at the level of
higher-order dynamical correlation functions such as,
e.g., the full counting statistics of charge transfer studied
in this Letter. A subclass of ballistic charged single-file
systems provides an illustrative example [36]: While mag-
netization transport in unbiased equilibrium states yields
diffusive (i.e., Gaussian) scaling profiles [63], statistics of
magnetization transfer is anomalous and described by the
distribution (4), ruling out normal diffusion.
A similar pitfall arises when classifying superdiffusive

transport of non-Abelian charges in integrable systems
[12,21,43,64]. There is by now ample numerical evidence
[19–23,43,44,65] that the asymptotic structure factors yield
the Prähofer-Spohn scaling function [42] of the KPZ
universality class, referring to a unified coarse-grained
description of the fluctuating height field in a scaling
regime of interface growth models [5,66,67].
However, as originally pointed out in Ref. [35], the KPZ

equation initialized in the stationary ensemble [66,68,69]
generates inherently asymmetric fluctuations [70,71] due to
broken detailed balance, contrasting with the situation in
integrable spin chains. While hydrodynamic equations
involving two coupled KPZ modes [45] resolve this
shortcoming, our numerical simulations reveal systematic
deviations from both the Gaussian values and the two-mode
quasi-Gaussian distribution.
The nonuniversal estimated values of kurtosis at the

isotropic point plausibly suggest either (i) that fluctuations
(i.e., higher-point temporal correlations of current densities)
in integrable spin chains with non-Abelian symmetries are,
unlike the dynamical structure factor, dependent on the
symmetry group, or (ii) that higher standardized moments
eventually relax to (presumably Gaussian) values on
extremely long timescales inaccessible to current numerical
simulations, indicating nonalgebraic (e.g., logarithmic)
corrections to critical cumulant scaling (2).
Our Letter raises several important questions. It remains

to be examined whether quantum corrections alter the
observed classical phenomenology and how symmetries
are reflected in higher-point correlations. It likewise
remains unclear whether integrable systems featuring
infinitely many local conserved quantities permit a reduc-
tion to effective mode-coupling equations with finitely
many modes. Another important question to be explored
concerns the structure of large-deviation rate functions in
both dynamically critical regimes and whether first- and
second-order dynamical phase transitions found in charged
single-file systems [38] manifest themselves in the easy-
axis or isotropic regimes away from equilibrium.

We close by highlighting the fact that many problems
concerning the counting statistics of charge transfer in
quantum systems are now finally within reach of contem-
porary experimental techniques, as recently exemplified in
[18]. We are, hopeful that quantum simulators can provide
valuable insights.
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