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We propose a novel qubit architecture based on a planar c-axis Josephson junction between a thin flake
d-wave superconductor, such as a high-Tc cuprate Bi2Sr2CaCu2O8þx, and a conventional s-wave
superconductor. When operated in the transmon regime the device—that we call “d mon”—becomes
insensitive to offset charge fluctuations and, importantly, exhibits at the same time energy level spectrum
with strong anharmonicity that is widely tunable through the device geometry and applied magnetic flux.
Crucially, unlike previous qubit designs based on d-wave superconductors the proposed device operates in
a regime where quasiparticles are fully gapped and can be therefore expected to achieve long coherence
times.
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Introduction.—The transmon qubit, based on a super-
conducting Josephson junction shunted by a large capaci-
tance [1], is the workhorse component powering the
majority of intermediate scale quantum computers cur-
rently in operation. This includes the Google 54-qubit
Sycamore processor [2], IBM 127-qubit Eagle processor
[3], and 80-qubit Aspen-M-2 processor by Rigetti [4].
Transmon’s chief advantage over other superconducting
qubit architectures is the insensitivity of its active energy
levels to the fluctuations in the offset charge ng that are
typically difficult or impossible to control. This insensi-
tivity, however, comes at a price: the energy spectrum of the
transmon is only weakly anharmonic which imposes limits
on the speed of operation due to the possibility of escape
from the code space formed by the two lowest energy
eigenstates [5–7].
We propose here a transmon variant that retains the offset

charge insensitivity of the original device but has an
arbitrarily large and easily tunable energy level anharmo-
nicity. The key to this advance is the usage of a Josephson
junction between superconductors with orthogonal order
parameter symmetries. In this Letter we specifically con-
sider junctions comprised of a d-wave and an s-wave
superconductor, but the idea is applicable more generally.
As is well known ordinary Cooper pair tunneling is
symmetry prohibited across a c-axis d=s Josephson junc-
tion [8]. The leading process that enables passage of
supercurrent is cotunneling of two Cooper pairs that results
in the anomalous π-periodic current-phase relation (CPR),
IðφÞ ≃ Ic2 sin ð2φÞ. We will demonstrate below that the
underlying π-periodic Josephson free energy FðφÞ and its
two degenerate minima at φ ¼ �π=2 enable the above
mentioned key features of d-mon qubit.

The basic d-mon design is illustrated in Fig. 1(a)
and consists of a very thin (several monolayers) d-wave
flake resting on a large s-wave superconducting substrate.

(a)

(b)

(c) (d)

FIG. 1. Schematic of the proposed d-mon device. (a) Basic d-
mon architecture and its circuit representation with one s=d
junction and a capacitor C. (b) Split d mon: A large dSC flake
resting on top of an s-wave substrate. A small s-wave flake
bridges the gap threaded by magnetic fluxΦ. (c) Energy levels for
an ordinary transmon are close to those of a harmonic well. (d) In
d mon two sets of such levels belonging to separate wells of the
cos ð2φÞ potential weakly hybridize and produce a highly
anharmonic spectrum represented by red lines.
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High-Tc cuprate Bi2Sr2CaCu2O8þx (BSCCO) is a well
established d-wave superconductor (dSC) which has been
recently exfoliated down to a monolayer thickness (while
retaining its high critical temperature∼90 K) [9] and would
be a natural material for the flake. As a matter of principle
the s-wave substrate can be fabricated of any conventional
superconductor. However, as we discuss in more detail
below, a material compatible with BSCCO—in that it can
proximity induce a significant nodal gap—is required for
practical qubit operation.
The Ginzburg-Landau (GL) free energy of the system

depicted in Fig. 1(a) can be written as

F½ψ s;ψd� ¼ Fs½ψ s� þ Fd½ψd� þ Ajψ sj2jψdj2
þ Bðψ sψ

�
d þ c:c:Þ þDðψ2

sψ
�
d
2 þ c:c:Þ; ð1Þ

where ψ s=d are complex scalar order parameters and Fs=d

denote GL free energies of the individual superconductors.
If both superconductors obey tetragonal symmetry then,
importantly, the coefficient B is required to vanish. This is
because under C4 rotation ψ s → ψ s while ψd → −ψd. In
this situation the leading Josephson coupling arises from
the last term in Eq. (1), which is allowed by symmetry and
represents coherent tunneling of two Cooper pairs across
the junction. Denoting the phase difference between two
order parameters by φ the resulting Josephson free energy
becomes

FðφÞ ¼ F0 þ 2Djψ sj2jψdj2 cos 2φ; ð2Þ

where F0 contains terms independent of φ. We note that
although symmetry alone does not fix the sign of D many
microscopic models, including the standard weak-coupling
BCS theory, give D > 0 which leads to the free energy
landscape with two minima at φ ¼ �π=2. Figures 1(c) and
1(d) illustrate the origin of the highly anharmonic spectrum
in a junction with such π-periodic potential.
In reality BSCCO and other high-Tc cuprates, such as

YBa2Cu3O7−x (YBCO), are weakly orthorhombic (that is,
C4 is weakly broken down to C2 [10]). In this case
coefficient B in the free energy (1) will be nonzero, but
we expect it to be small such that the Josephson free energy
is still dominated by the cos 2φ term. The B term gives
conventional 2π periodic contribution to FðφÞ proportional
to cosφ. At the level of the Josephson free energy the
physics of d mon is therefore similar to the twisted bilayer
of d-wave flakes which has been predicted to form a T -
broken d� id0 phase at twist angles close to 45° [11].
Experimental evidence for such a state has been recently
reported in twisted BSCCO bilayers [12]. Some important
differences between the two setups include the fact the
relative strength of the cosφ in twisted d-wave bilayers can
be controlled by the twist angle θ. Also, the d� id0 phase is
topological (characterized by Chern number �2), and has
gapless topological edge modes that may act as a source of

decoherence for a qubit device. By contrast, the d� is
phase that is adiabatically connected to a pure s-wave
superconductor, is topologically trivial.
Anharmonicity from double-well free energy.—Taking

into account the junction charging energy the Hamiltonian
for the d mon can be written as

Hφ ¼ 4ECðn̂ − ngÞ2 þ EJ cos 2φþ δUðφÞ; ð3Þ

where EC ¼ e2=2C is the charging energy of the junction
with capacitance C, n̂ ¼ −i∂φ is the Cooper pair number
operator, EJ denotes the junction Josephson energy, and ng
is the offset charge. The potential δU is given by

δUðφÞ ¼ −ηEJðcosϕex cosφ − sinϕex sinφÞ: ð4Þ

The first term in δU represents the residual single-pair
tunneling caused, e.g., by weakly broken C4 symmetry
discussed above. The second term breaks T explicitly—it
makes the double-well asymmetric—and could arise from
external magnetic fluxΦ in the split d-mon design depicted
in Fig. 1(b) and discussed in more detail below. We are
interested in the transmon regime characterized by EJ ≫
EC and a situation when δU represents a small perturbation,
that is, jηj≲ 1.
Consider first the case η ¼ 0. In this limit it is easy to see

that the Hamiltonian (3) conserves the Cooper parity
P ¼ ð−1Þn̂. In each parity sector the eigenstates and energy
eigenvalues can be obtained analytically in terms of
Mathieu functions as originally discussed in Ref. [1]. In
the transmon regime EJ ≫ EC an accurate approximation
for the splitting between the two lowest energy levels can
be derived [13],

ΔE ≃ 16EC

ffiffiffi
2

π

r �
2EJ

EC

�
3=4

e−
ffiffiffiffiffiffiffiffiffiffiffiffi
2EJ=EC

p
cos ðπngÞ: ð5Þ

Band crossings at half-integer values of ng in Eq. (5) are
exact and follow from parity conservation.
We will be interested primarily in the case of nonzero η

when P conservation no longer applies. In this case
analytical results are not available, but it is possible to
solve the problem numerically by representing the
Hamiltonian (3) as a matrix in the Cooper pair number
basis jni ¼ einφ=

ffiffiffiffiffiffi
2π

p
with n integer. We truncate the

infinite Hamiltonian matrix Hnm ¼ hnjHjmi according to
jnj; jmj ≤ nmax and diagonalize the resulting matrix of size
2nmax þ 1. We find that calculations become fully con-
verged for nmax ≥ 15. As shown in Fig. 2(a) for η ¼ 0 the
energy levels behave in accord with the analytical result
[Eq. (5)]. Note that the relevant wave functions ψ jðφÞ with
j ¼ 0, 1 can be classified as symmetric and antisymmetric
with respect to the φ ¼ 0 origin only for integral ng. More
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generally they also contain an imaginary part that has
opposite symmetry [Fig. 2(c)].
When η ≠ 0 the parity-protected energy crossings are lifted

[Fig. 2(b)]. As a result, the low-lying energy bands flatten out
—the qubit becomes insensitive to the offset charge fluctua-
tions in the sameway as the original transmon. Importantly, in

d mon this feature does not come at the expense of
anharmonicity. This is illustrated in Fig. 3: Although the
detailed behavior depends on the relative amplitude of the two
terms comprising δU, in nearly all cases, one can achieve
large anharmonicity, while the energy levels remain essen-
tially independent of ng, as measured by the flatness indicator
f defined as f ¼ w1=ω10, wherewj denotes the bandwidth of
the jth band and ωij ¼ Ei − Ej. The anharmonicity is mea-
sured by parameter αr ¼ ðω21 − ω10Þ=ω20. An inspection of
Fig. 3(d) reveals that for EJ=EC ≳ 20 bands become
extremely flat, and by adjusting the flux ϕex one can always
achieve significant level anharmonicity. The limit of zero flux
is special: Here the bands become flat but remain nearly
degenerate. This is because, as discussed in the Supplemental
Material [14], hψ1j cosφjψ0i ¼ 0, and hence δU has no
effect to leading order in perturbation theory. On the other
hand hψ1j sinφjψ0i ≠ 0which implies that δU is muchmore
effective at splitting the bands at nonzero ϕex. Additional
results characterizing convergence and various parameter
regimes of the Hamiltonian (3) are given in the Supplemental
Material [14].
Quasiparticles.—Because of their reliance on ab-

plane junctions a significant drawback of some earlier
cuprate-based qubit designs [19–22] was the presence of
quasiparticles that survive in the vicinity of the Dirac nodes
in their d-wave order parameter down to arbitrarily low
energies [23,24]. As we now explain the thin dSC flake in
Fig. 1(a) becomes a d� is superconductor whose quasi-
particles are gapped everywhere on its Fermi surface.
The microscopic Hamiltonian for electrons near the

d=s interface can be written as Hel ¼
P

k Ψ
†
kHkΨk with

(a)

(b)

(c)

FIG. 2. Energy levels and wave functions of the d-mon
Hamiltonian (3) for EJ=EC ¼ 8. (a),(b) Lowest energy levels
as a function of offset charge ng. The color represents parity
hPi∈ ð−1; 1Þ. (c) Wave functions ψ0ðφÞ and ψ1ðφÞ belonging to
the two lowest energies for selected values of ng. Blue (orange)
lines represent real (imaginary) parts of ψ j.

(a) (b) (c) (d)

FIG. 3. Characteristic d-mon properties. (a)–(c) Lowest energy eigenvalues as a function of the offset charge ng for EJ=EC ¼ 32 and
representative values of parameters η and φex. (d) Band flatness f and relative level anharmonicity αr, both defined in the text. Large
values of − ln ðf=2Þ indicate very flat bands whereas values of αr away from 0 signal anharmonicity, which can be both positive or
negative. All results shown are for nmax ¼ 15 which corresponds to fully converged numerics.
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Ψk ¼ ðck↑; c†−k↓; sk↑; s†−k↓ÞT and

Hk ¼

0
BBB@

ξk Δk tk 0

Δk −ξk 0 −tk
tk 0 ξsk eiφΔs

0 −tk e−iφΔs −ξsk

1
CCCA: ð6Þ

Here c†kσ, s
†
kσ denote electron creation operators in d and s

layers, respectively, ξk, ξsk are the corresponding normal-
state dispersions referenced to the Fermi level μ, and
Δk ¼ Δd cosð2αkÞ is the d-wave gap function with αk
the polar angle of the momentum vector k; Δs denotes
the k-independent s-wave gap.
We now imagine integrating out the gapped fermion

degrees of freedom in the s-wave layer, assuming weak
interlayer coupling tk (see the Supplemental Material [14]
for the details of the procedure). The resulting effective
Hamiltonian for the remaining c fermions takes the form

Heff ¼
X
k

ψ†
k

�
ξ̃k Δk þ eiφms

Δk þ e−iφms −ξ̃k

�
ψk; ð7Þ

with ψk ¼ ðck↑; c†−k↓ÞT . The tilde on ξk means that the bare

dispersion has been modified whilems ≈ t2=Δs denotes the
proximity induced gap. For a fixed classical phase φ the
quasiparticle spectrum of Heff reads as

Ek ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ̃2k þ jΔk þ eiφmsj2

q
: ð8Þ

Classically, in the absence of fluctuations, the system will
reside in one of the minima of the free energy (2) with
φ ¼ �π=2. This results in the d� is superconductor with a
minimum gap ms to all quasiparticle excitations.
We see that at the mean-field level (that is, neglecting

fluctuations in the phase φ) d mon is protected from
quasiparticle poisoning by the proximity gap ms. Of course
in order for the device to function as a useful qubit we must
allow forφ to undergoquantum fluctuations.Mathematically,
we need to reintroduce the charging energyEC and permit the
phase variable to tunnel between the two potential minima.
An important question thus arises: Will the quasiparticle

gap survive in the presence of such quantum fluctuations?
We tackle this question in the Supplemental Material [14].
Employing two different methods (a perturbative treatment
and a more elaborate semiclassical dilute instanton approxi-
mation) we conclude that the quasiparticle gap survives
even though it is reduced to

m̃s ¼ msjhψ0j sinφjψ1ij ≃mse
−

ffiffiffiffiffiffiffiffiffiffiffiffi
EC=4EJ

p
; ð9Þ

where ψ jðφÞ are eigenstates of the phase Hamiltonian (3).
An evaluation of the matrix element shows that phase

fluctuations lead to a relatively modest gap suppression
(between 5% and 20%) in the transmon regime. Intuitively,
this can be understood by considering the structure of wave
functions ψ jðφÞ depicted in Fig. 2: Thinking semiclassi-
cally the phase particle spends most of its time in the
vicinity of the classical minima at �π=2 where the
quasiparticle gap is maximal and only makes short excur-
sions to the neighborhood of φ ¼ 0; π where the quasi-

particles are gapless. The e−
ffiffiffiffiffiffiffiffiffiffiffiffi
EC=4EJ

p
factor reflects small

quantum fluctuations about these minima. Larger values of
EJ=EC (likely relevant for practical implementations of the
d mon) suppress these fluctuations and concentrate the
phase wave functions near the minima, leaving a negligible
amplitude near φ ¼ 0; π.
Split d-mon.—In the basic d-mon realization depicted in

Fig. 1(a) it is possible to control some system parameters by
adjusting the flake size. This follows from the fact that
EJ ∼A, the interface area, A, while EC ∼A−1. On the
other hand, in the absence of explicit T breaking ϕex is
fixed to zero, and the η parameter is set by the material
properties of the junction and cannot be easily controlled.
Hence this basic design can access only a small portion of
the parameter space afforded by the Hamiltonian (3).
To gain more flexibility we take inspiration from the split

transmon architecture [1] and Ref. [20] and consider a
three-junction device depicted in Fig. 1(b). We assume that
the large s=d junction has negligible charging energy, and
its phase is therefore permanently locked to one of the T
breaking minima (hereafter we assume þπ=2 for concrete-
ness). The charging energy of the small s-wave flake is
non-negligible, and phases φ and φ0 are allowed to
fluctuate. In the small inductance limit the loop cannot
trap any self-induced flux, and the two phases are con-
strained by the single-valuedness of the wave function such
that φþ φ0 þ π=2 ¼ 2πΦ=Φ0, where Φ0 ¼ hc=2e denotes
the flux quantum. If we define ϕex ¼ 2πΦ=Φ0 − π=2 then
the total Josephson energy can be written as UðφÞ ¼
EJ cos 2φ − ES cosðϕex − φÞ where ES denotes the
Josephson energy of the s=s junction. By expanding
the second cosine one finds that UðφÞ coincides with
the potential in the Hamiltonian (3) if one identifies
η ¼ ES=EJ. We conclude that the split d-mon architecture
Fig. 1(b) is capable of realizing the entire range of
properties represented by the Hamiltonian [Eq. (3)].
Conclusions.—A Josephson junction formed at the

interface between d- and s-wave superconductors displays
anomalous π-periodic CPR which underlies its proposed
functionality as an improved transmon qubit. We demon-
strated that the resulting “d mon” is robust to offset charge
fluctuations while at the same time exhibits a large and
easily tunable level anharmonicity. Similar to the original
transmon [1], control and readout can be efficiently
performed using microwave pulses. Importantly, unlike
many previous proposals based on dSCs, we showed that
the d mon operates in the regime of fully gapped
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quasiparticles which is essential to prevent decoherence
effects. Several conditions on system parameters must be
met for the device to function as a practical qubit. At a
minimum, one requires a high-transparency d=s interface
that would facilitate a significant Cooper pair cotunneling
amplitude and proximity generate a sizeable nodal gap ms
to protect against quasiparticle poisoning. At temperature
scales much lower than ms, thermal fluctuations and
fluctuations in the amplitude of the order parameter will
also be negligible.
Even though c-axis junctions formed of various high-Tc

cuprates have been extensively studied [25]—culminating
in recent works on twisted BSCCO junctions [12,26–29]—
not much recent effort went into experimental studies of c-
axis d=s junctions. Early experiments on c-axis junctions
between cuprates (YBCO or BSCCO) and Pb [30–32]
showed only conventional 2π periodic CPR and were
interpreted as evidence for s-wave superconductivity in
cuprates. Given the obvious contradiction with the present-
day consensus on d-wave symmetry [33], and the techno-
logical potential of π-periodic junctions discussed here, it is
clearly important to revisit these results using modern
techniques designed for ultraclean junction preparation
[12,28,29]. An interesting possibility would be to explore
interfaces between high-Tc cuprates and iron-based super-
conductors such as LaFeAsO1−xFx or SmFeAsO1−xHx. The
latter are layered tetragonal materials with an s-wave
superconducting gap and critical temperatures of up to
50 K [34]. In addition they exhibit lattice constants (∼4 Å)
similar to cuprates thus potentially enabling fabrication of
atomically clean c-axis junctions by means of mechanical
exfoliation [9] or atomic layer-by-layer molecular beam
epitaxy [35].
We note in closing that the π-periodic CPR that lies at the

heart of our d-mon proposal can also be achieved in dSC
bilayers with a near-45° twist angle [36] or, using more
conventional ingredients [37,38], as recently implemented
in voltage-controlled semiconductor nanowire Josephson
junctions [39]. These platforms could also be harnessed to
produce an improved transmon with large anharmonicity.
The proposed s=d junction does not require precise twist-
angle control and could thus be fabricated using molecular
beam epitaxy. In the long term this may confer a techno-
logical advantage over twisted dSC bilayers which must
be prepared very near the 45° twist angle to exhibit
π-periodic CPR.
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