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Unidirectional Subsystem Symmetry in a Hole-Doped Honeycomb-Lattice Ising Magnet
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We study a model of a hole-doped collinear Ising antiferromagnet on the honeycomb lattice as a route
toward realization of subsystem symmetry. We find nearly exact conservation of dipole symmetry verified
both numerically with exact diagonalization on finite clusters and analytically with perturbation theory. The
emergent symmetry forbids the motion of single holes—or fractons—but allows hole pairs—or dipoles—to
move freely along a one-dimensional line, the antiferromagnetic direction, of the system; in the transverse
direction both fractons and dipoles are completely localized. This presents a realization of a “unidirectional”
subsystem symmetry. By studying interactions between dipoles, we argue that the subsystem symmetry is
likely to continue to persist up to finite (but probably small) hole concentrations.

DOI: 10.1103/PhysRevLett.132.016701

Introduction.—Fractons are the newest addition in the
line of exotic quasiparticles in condensed matter physics.
Recent years have witnessed tremendous progress in under-
standing fractons [1-40], which unmasked connections with
other areas of physics including topological order [2,4,8,9],
gauge theory [12,13], quantum computing [4], glasses,
and soft matter [21,22]. These exotic properties result
from unusual mobility constraints whereby a fracton is a
chargelike excitation which has restricted mobility when
in isolation, but which, nonetheless, can easily move in a
subdimension of space when bound to an oppositely charged
fracton in a dipolar bound state [41].

The realization of these aberrant mobility constraints and
subsystem symmetry in physical systems is, however, not
naturally available, stimulating many interesting theoretical
proposals [42—44]. One particularly appealing approach is
based on the idea that defect motion-induced frustration in
an ordered background leads to emergent immobility
constraints on the motion of defects themselves which in
turn gives rise to fractonic quasiparticles, with hole-doped
Ising antiferromagnets [45-54] being a prime example of
this mechanism [27,28]. Unlike other constructions pro-
posed to realize fracton topological order (e.g., [55]), this
approach does not require an extensive number of locally
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conserved quantities (which results in an extensively
degenerate ground state), making the physical realization
of fracton conservation laws (without topological order) in
quantum magnets significantly more accessible. However,
the emergence of fractonlike quasiparticles in fully two-
dimensional (2D) hole-doped Ising antiferromagnets has
been demonstrated only in the asymptotic limit of t < J
(where 7 is the hole hopping and J is the Ising coupling) [27],
where already at the leading order in 72/J, the direction of
the dipole moment is not conserved even though its
magnitude is because hole pairs can rotate as they move
in the 2D plane [56].

In this Letter we overcome this limitation and propose an
essentially exact physical realization of fractonic quasipar-
ticles with subsystem dipolar symmetry in a 2D nondegen-
erate, ordered spin system with local two-spin interactions.
The key ingredient in our proposal is the collinear anti-
ferromagnetic order in which defect motion-induced frus-
tration completely prevents hole pairs or dipoles from
moving in the perpendicular direction, resulting in an almost
exact conservation of both the magnitude and direction of
dipole moment in the asymptotic limit ¢ < J. This further
endows the system with a subsystem symmetry since dipole
motion is restricted to a one-dimensional (1D) submanifold
of the system. This symmetry manifests only along the
antiferromagnetic direction; thus we denote it as “unidirec-
tional” subsystem symmetry. Importantly, we find via exact
diagonalization (ED) that this symmetry continues to hold
quantitatively away from the perturbative limit when 7 2 J.
We further suggest that interaction between hole pairs is
weak implying continuity of these immobility constraints to
small, finite concentrations.
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Model—Using a coupled spin chain construction to
ferromagnetically couple antiferromagnetic Ising chains we
construct a 2D ordered Ising magnet, in which we study
doped holes. Specifically, we consider a model of holes
doped into an Ising collinear antiferromagnet on the
honeycomb lattice given by

H = —f Z <CI,-+5j,o—cl‘i,O' + HC) =+ HIsing7 (1)

r;.0;,0

where ¢ denotes the hopping amplitude, ¢’ (¢) are fermionic
creation (annihilation) operators, and s €{?, |} is the
fermion spin. The coordinates r; are defined by the sites
of a Bravais lattice given by r; = m;a, + n;a,, where a,,
a, denote the primitive lattice vectors of the honeycomb
lattice. The basis has two sites referred to as A and B. The
vectors o, 5),/, 0, connect spins on nearest-neighbor sites
in the three directions of the honeycomb lattice; see Fig. 1.
A no double occupancy constraint, n,, = >y cIi,ﬁcri,G <1,
V r; € A, B is enforced on the Hilbert space. The Ising spin
Hamiltonian Higy,, is constructed by ferromagnetically
coupling alternating sites on antiferromagnetic chains (this
can be viewed as a model of a striped antiferromagnet in a
brick-wall lattice). The ferromagnetic spin couplings are
taken to be along the ¢, direction and antiferromagnetic
spin couplings along the 6, and d,/ directions:

Pigng =3 (S%05,55+ 500,55 = 505,57 )+ (2)
r;

where S denotes the spin-z operator. One ground
state of Hlsing is given by |WGS> :Hri.(a1+a2)e2z Cr,,

‘LTCll'i+5xh¢C:i+alaTclTi+al+5th|0>‘

A hole can be created (annihilated) on a given site by
annihilating (creating) an electron on that site. For any
given hole density, the total magnetization is conserved.
Thus, we associate the removal (addition) of a fermion with
spin ¢ with the creation (annihilation) of a hole with spin
—o, as either amounts to a total net change of the
magnetization of the entire system by —o. Therefore, the
hole creation operator is given by f I,- o = Cr, —s- A hole can
move to a neighboring site along the antiferromagnetic
direction if the electron with antialigned spin on that site
moves to the hole’s original site. One can view this as a spin
flip operation at the original hole site accompanied by
hopping of the hole to the concerned neighbor site. The
original hole site with a flipped spin is now in a “wrong”
orientation with respect to its two remaining neighbors and
thus we view this as defect creation. A hole dressed by such
bosonic (spin wave) defects forms a magnetic polaron. We
can represent a misaligned spin as a bosonic magnon defect

: o -t

for the sites r;.(a; +a,) €2Z as by, = oy, by 5, =05,
P 4 P - -

by s, = 0, 5,0 and b, 15, = Orito,0 and for the sites

FIG. 1. Ground state of the Hamiltonian Hyg,, [Eq. (2)] with
one electron per site. The three bonds of the honeycomb lattice
are denoted as x’, y’, and 7/, respectively (x and y are the Cartesian
directions). The Hamiltonian describes an Ising magnet on a
honeycomb lattice with antiferromagnetic exchange along the x’
and y’ bonds and ferromagnetic exchange along the z’ bonds. The
vectors 6, 5},,, and 6. connect near-neighbor sites in the x', y’,
and 7' directions, respectively. The unit cell of the honeycomb
lattice with A and B sublattices is shown in the dotted region, and
a, and a, are the primitive lattice vectors.

— ~t — —

ri.(a,+ay)€2Z+ 1 as by, =0, by 5, = Oriis,: bris, =
- _ + .

Oris,0 and brf+5:/ =0r 15, where o7, are the Pauli ladder

operators. In contrast to motion along the antiferromagnetic
direction, a single hole can move (only by one site) in the
ferromagnetic 7’ direction since there is no wrongly
aligned spin.

A unique characteristic of this model on the honeycomb
lattice is that each site has two antiferromagnetic neighbors
in the x" and y’ directions and one ferromagnetic neighbor
in the 7' direction. This means that in order for a hole to
move from a site to another in the x’ or y’ direction it must
create a defect on the site of its departure or annihilate a
defect on the site of its arrival. In contrast, hole hopping in
the 7' direction will not involve any defect creation. Thus,
in the language of the hole and magnon defect operators our
model in Eq. (1) can be recast as

H= _tz(fiﬁLﬁ‘.uafr[,a + HC)
r;
) IZ [fii%ﬂﬁfﬁﬁ(bii +bris,) + H.c}
r;

- IZ |:fz,»+5yr,0'fl‘ia0<bj:i + bri+5“/) + HC:|
r;

+ Hlsing . (3)

In Eq. (3) a no-double occupancy constraint at each lattice
position is imposed, as there can be either a defect or a spin
in a given lattice site. We ascribe an effective charge degree
of freedom to the dressed hole in terms of its spin density:

qr, = f Ii,arg,a JSr,.a» Where 7_ is the Pauli-z matrix in the hole
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> (b)

FIG. 2.

(a) An isolated hole can move by one site only in the ferromagnetic direction but cannot move in the antiferromagnetic

direction without frustrating the antiferromagnetic bonds. (b) A pair of holes on neighboring sites can move only along the
antiferromagnetic x — y direction. Note that a pair of holes on neighboring sites connected by a bond in the 7z’ direction cannot move

without frustrating the background and as such will be localized.

spin flavor space. The total charge Q = ), ¢, is a global
conserved quantity, [H, Q] = 0.

Single hole.—We first consider the single-hole sector
M= s f:l.‘,, fr,.o = 1. We find an effective Hamiltonian
for the single hole in the limit 7/J < 1 by treating the hole-
boson coupling term in Eq. (3) perturbatively. The effective
Hamiltonian, up to second order, is given by

27
hiicond — _TZfIi’Gfri’a - tz(fii‘*'éz/v"fri"’ ‘I‘HC) (4)

r;,o

The first term in this expression reflects the effective
localization of single holes where 2¢?/J is the formation
energy associated with creating an immobile polaron. This
can be understood as follows. Since hole motion in the x’
and y’ directions frustrates the antiferromagnetic bonds, the
hole must retrace its path and return to its original site in
order to heal the background [27]; thus a single hole cannot
move along the antiferromagnetic direction. This is repre-
sented pictorially in Fig. 2 where we demonstrate that a
single hole can hop only between two sites in the Z’
direction via the second term in Eq. (4), but cannot hop in
the x" and y" directions without creating misaligned spins
even following a move in x” direction, and thus the hole is
localized on the 7’ bond connecting the two sites. A single
hole can only move away from its original site via virtual

|

22 i 472
h%ehcnd == 7 Zfl}‘i,dfri,o- - tz(fll',»-&-ﬁz/,o‘fl'i,rf + HC) + 7
;o

;o

J

;o

J

r;,c

processes involving closed loops known as Trugman
loops [45]. In contrast to the case of a square-lattice
antiferromagnet where Trugman loops first appear at sixth
order in perturbation theory, Trugman loops in our model
are of 14th or 15th order depending on the initial position of
the doped hole. Thus, we expect fracton physics to persist
in a parametrically larger regime in 7/J. Furthermore, away
from the perturbative limit, we expect these closed loops to
be energetically much more costly and thus their contri-
bution to hole motion to be negligible [54]. To confirm this
behavior beyond the limits of applicability of perturbation
theory, we use ED [58] for the model with J/f = 0.4 on
N =24 and N = 32 site clusters. Figures 3(a) and 3(c)
show the energy spectrum as a function of momentum in
the Brillouin zone for n;, = 1. We observe nearly exact
degeneracy of the spectrum at all momenta. This fully flat
degeneracy in momentum space implies that if one con-
siders an initial state where the hole is at one particular site,
the hole will remain there for infinite times because matrix
elements that connect it to other sites are identically
vanishing. Thus the hole will be effectively “localized”
in real space [59].

Two holes.—Next, we consider the two-hole sector n;, =
Zr[’a f Im fr,o = 2. We derive an effective Hamiltonian for
two holes perturbatively, which, up to second order in #/J is
given by

8
nr,-,rrnr,-+5k.—(r+ J E nr;,ﬁnri+§:/,n

rioke{xy} r;,c

21
i il i i
— S (Fhsss ol bt oisy o+ Fhoacnnel o ol eafess, o + He.)

21
- (fzi+5y,,gfli,—afri,afri-&-ﬁx/,—0 + fI;+al—az,afIiJrﬁy,,—{;frl-,o-frl--kéx/,—a + H-C-> . (5)
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FIG. 3. Energy spectrum as a function of momentum from ED
on an N = 32 (a),(b) and N = 24 (¢),(d) cluster for r = 1.0 and
J = 0.4. Results for a single hole are shown in (a) and (c), and
results for two holes are shown in (b) and (d). The insets depict
the momenta resolved by the simulation cluster. The symbols of
the energy levels denote different point group representations. We
observe a flat spectrum in both momentum directions for n;, = 1
and a flat spectrum in the k, direction only for n, = 2. This
implies that a single hole is effectively localized in all directions
and two-hole bound state is localized along the 6, direction only.

Here, the first and second terms correspond to single-
hole processes derived in Eq. (4), while the third and fourth
terms correspond to near-neighbor repulsive density-
density interactions between magnetic polarons, and the
fifth and sixth terms correspond to pair hopping [60-62]
along the x’-y" direction. This effective Hamiltonian shows
that two neighboring holes oriented along the x’-y’ line can
move in a bound state via a second-order process in which
one hole hops by creating a bosonic defect which is then
absorbed by the second hole only if it follows its partner
along the x’ or y’ directions. In contrast, hole pairs cannot
move along the 7' direction because any such motion
frustrates the antiferromagnetic bonds, in which case the
holes have no option but to retrace their paths to their original
nonfrustrating configuration. One can visualize these proc-
esses pictorially in Fig. 2, which shows that two holes
can move only together and only in the antiferromagnetic

x'-y" direction, but not through the ferromagnetic z’ direc-
tion [63]. This picture is confirmed via ED for the model
with J/t = 0.4 on N = 24 and N = 32 site clusters. First,
we compute the two-hole binding energy E,, defined as
Ey=Eo(ny=2)=Ey(ny=0)=2[Eq(n, =1) = Eo(n, =0)].
For the N = 24 site cluster, we obtain a numerical value of
E;, = —0.0605 while for N = 32 we obtain E;, = —0.0587;
both these values are negative, implying that the two holes
bind. Second and more importantly, Figs. 3(b) and 3(d)
show the energy spectrum as a function of momentum in the
Brillouin zone for n;, = 2. We observe that the lowest-
energy states in the different momentum sectors are nearly
exactly degenerate only along the k, direction of the
Brillouin zone, indicating effective localization of states
solely along the 0, direction in real space [64].

The phenomenology of one- and two-hole states in our
model implies an emergent unidirectional subsystem sym-
metry along the antiferromagnetic direction with conser-
vation of both charge and dipole moment (defined as
D =), q,1;). Here a single hole forms a spin polaron
which is almost perfectly localized up to very high order in
perturbation theory mimicking a fracton, while two near-
neighbor holes form a spin bipolaron which moves with
ease along an antiferromagnetic 1D submanifold of the
system while conserving dipole moment exactly like a
dipole. The effective Hamiltonian in Eq. (5) manifestly
conserves the total charge. The conservation of dipole
moment, [D, h;‘;fond] = 0 [65], can be seen from Eq. (5)
which shows that hole pairs can only move together while
conserving their relative separation and cannot rotate [66].
We note that unlike the case of the square-lattice anti-
ferromagnet [27,67], there is no need to impose external
energetic constraints to realize fracton physics in our
model, which appears to hold robustly even away from
the perturbative limit 7/J < 1 as seen in ED. Furthermore,
our results will continue to hold even if the magnitude of J
along the antiferromagnetic direction is different from that
along the ferromagnetic direction, making physical reali-
zation more readily accessible.

Finite density of holes.—Having established unidirec-
tional dipole symmetry, we address the question of dipole-
dipole interactions at finite hole concentrations. We study
numerically via ED n;, = 4 holes in a N = 24-site cluster
(large clusters are beyond reach). Figure 4 shows a nearly
degenerate spectrum along the k, momentum direction
corresponding to the ferromagnetic direction §, in real
space suggesting that dipole conservation may persist at
finite hole densities. To investigate interactions between
dipolar pairs, we compute the pair-pair binding energy E ;.
defined as

Epair = Eo(n), = 4) = 2E¢(n), = 2) + Eo(n;, = 0).  (6)

For the N = 24-site cluster, at J/t=04 we find
Epi/t = 0.13, suggesting that dipole-dipole interaction
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FIG. 4. Energy spectrum as a function of momentum for n;, = 4
holes from ED on an N = 24 cluster for t = 1.0 and J = 0.4. The
momenta I" and M, are degenerate up to a difference of
A/t = 1.4 x 1073, indicating effective localization along the ky,
direction.

is repulsive. However, it is not clear to what extent these
results are sensitive to finite-size effects. We argue that
current indications suggest that dipole symmetry may play
an important role at finite hole concentrations and hope to
address this in future work.

Conclusion.—We considered the physics of fractons and
dipoles emergent in a hole-doped collinear antiferromagnets
on a honeycomb lattice. By means of analytical arguments
and ED, we showed that individual holes are completely
localized in the 2D system, while near-neighbor hole pairs
form dipolar lineons which can move freely only along the
antiferromagnetic direction. These observations reflect an
emergent quasiexact unidirectional subsystem symmetry
along the antiferromagnetic direction. These results were
obtained for an Ising magnet, but, based on perturbative
arguments [27], we expect a sufficiently small spin exchange
J | to not affect our results significantly [57,68]. Our results
indicate that dipole symmetry is a robust feature in the limit
of a single and a pair of doped holes and may persist to finite
hole concentrations where dipole-dipole interactions are
nontrivial and have implications that will be the subject of
future work. Another promising future direction involves
using a coupled plane construction analogous to our
approach to engineering a three-dimensional model with
exact subsystem symmetry along lines or planes. On the
experimental side, recent progress in cold atom experi-
ments [69-76] is promising toward engineering our pro-
posed Hamiltonian in Eq. (2). Several proposals exist on
implementing controlled hole doping in spin models in cold
atomic systems [77,78]; a careful consideration of these
proposals will be a very interesting problem toward real-
world demonstrations of the fractonic behavior predicted in
this Letter. We hope that such approaches will enable
studying the exotic properties of fractons, such as their
unusual dynamical behavior in simple, potentially acces-
sible spin systems.
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