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Making nodal lines (NLs) deterministic is quite challenging because directly probing them requires bulk
momentum resolution. Here, based on the general scattering theory, we show that the Bloch modes of the
circuit metamaterials can be selectively excited with a proper source. Consequently, the transport
measurement for characterizing the circuit band structure is momentum resolved. Facilitated by this bulk
resolution, we systematically demonstrate the degeneracy conversions ruled by the relative homotopy,
including the conversions between Weyl points (WPs) and NLs, and between NLs. It is experimentally
shown that two WPs with opposite chirality in a two-band model surprisingly convert into an NL rather
than annihilating. And the multiband anomaly (due to the delicate property) in the NL-to-NL conversions is
also observed, which in fact is captured by the non-Abelian relative homotopy. Additionally, the physical
effects owing to the conversions, like the Fermi arc connecting NLs and the parallel transport of eigenstates,
are discussed as well. Other types of degeneracy conversions, such as those induced by spin-orbit coupling
or symmetry breaking, are directly amenable to the proposed circuit platform.

DOI: 10.1103/PhysRevLett.132.016605

Introduction.—In three dimensions (3D), robust band
degeneracies in semimetals can manifest as discrete points
or closed lines. In the case of degeneracy points, there are
Weyl points (WPs) and Dirac points [1]. Weyl and Dirac
semimetals have attracted considerable attention owing to
their characteristic topological surfaces [2] and novel
responses to applied external fields [3,4]. On the other
hand, nodal lines (NLs) [5–7], in the form of closed lines,
require additional symmetry by contrast (such as PT
symmetry). They may behave as various shapes in the
Brillouin zone (BZ), such as rings [8,9], chains [10–12],
knots [13–15], and links [16–19]. Interestingly, degener-
acies can mutually convert. For example, an NL breaks into
Weyl or Dirac points as a result of spin-orbit coupling or
symmetry breaking [7,20–23], a nodal ring converts into a
nodal chain due to the topological transition [10–12,24–26].
Recently, homotopy theory has been applied to under-

stand the band intersection, which includes the complete
nodal classification [27] and the degeneracy conversions
[5,28]. Beyond the established “tenfold way” methods, one
of the unique generalizations from the homotopy descrip-
tion is the non-Abelian nodal-line semimetals [5,29], which
feature braiding topological structures [30–32] and trajec-
tory-dependent node transfers [33–37]. However, those
predicted conversions in 3D have not been observed.
It seems that directly characterizing the band degener-

acies of 3D semimetals is impossible. Experimentally,
the angle-resolved transmission spectroscopy (ARPES,

e.g., [11,38,39]) and the Fourier-transformed field scan
(FTFS, e.g., [19,33]) are the primary approaches to mea-
sure the band structures. But, neither of them is applicable
because the former has limited momentum resolution in the
perpendicular direction [7], and field distributions in the
latter are hardly accessible in 3D. The topological signature
on the surface can reduce the 3D measurement task to a 2D
one. For example, the Fermi arc of the boundary modes
always terminates at WPs [2], so instead of directly
measuring WPs, one can characterize the Fermi arc first
through 2D ARPES or FTFS [40,41] and extract WPs from
the arc. The same procedure can be applied to those NLs
with drumhead surface states [8]. But NL semimetals
normally do not have topologically protected boundary
modes [1,7,42], e.g., the NLs considered here.
Another challenge is the metamaterialization of semi-

metals. The tight-binding approximation is widely adopted
to describe the band structure in the theory of semi-
metals [1] and topological insulators [43]. But localized
orbits are not desired bases for optics [44], and adding the
model-required terms, such as the long-range hopping, is
extremely difficult (even impossible). The site-resolved
topological circuits [45–49] may provide a manageable
platform since the circuit network has a one-to-one corre-
spondence to a tight-binding model and the required
terms are possible to realize. But, the existing circuits
are experimentally unfeasible in observing degeneracy
conversions [50].

PHYSICAL REVIEW LETTERS 132, 016605 (2024)

0031-9007=24=132(1)=016605(6) 016605-1 © 2024 American Physical Society

https://orcid.org/0000-0002-8653-2010
https://orcid.org/0000-0002-3026-8564
https://orcid.org/0000-0002-8274-5131
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.016605&domain=pdf&date_stamp=2024-01-05
https://doi.org/10.1103/PhysRevLett.132.016605
https://doi.org/10.1103/PhysRevLett.132.016605
https://doi.org/10.1103/PhysRevLett.132.016605
https://doi.org/10.1103/PhysRevLett.132.016605


Here, based on the temporal topolectrical circuits (TTCs)
proposed previously [54], we show that the selective
excitation enables us to acquire the band information along
with the specific crystal orientation, leaving the TTCs
bulk momentum resolved. We experimentally show that a
pair of WPs related by the mirror symmetry can convert
into an NL, and this annihilating anomaly is topologically
obstructed by the relative homotopy. As for NL-to-NL
conversions, we demonstrate that the multiband generali-
zation of the non-Abelian homotopic description precisely
controls these conversions.
Momentum-resolved circuits.—We first briefly review

the TTCs. The admittance of the circuit in a lattice structure
can be written as Jðw;kÞ ¼ YIþ J0ðw;kÞ, where YI is the
so-called self-admittance and preset to be identical. Tuning
YI globally will offset the eigenvalues of the admittance,
and it doesn’t cause any physical effect since it can be
gauged out. But for TTCs, it controls the eigenvectors Vk;0

without changing the operating frequency [54]. Compared
to the existing topolectrical circuits [45,46], this feature
greatly facilitates the band characterization since it can be
achieved by generic transport or scattering measure-
ments [50] [e.g., Fig. 1(b)].
The TTCs are bulk momentum resolved, which is critical

to observing NLs, if the Bloch modes in the circuit
metamaterials can be selectively excited. The coupling
rate between the field ψ in a source and the Bloch mode ϕk
determines how well the mode is excited, and it is propor-
tional to the overlap integral

R
drψ�ϕk. The vanishing

coupling indicates that the mode cannot be excited by the
source even ψ ≠ 0. So, roughly analogous to the phase
array antenna, we can selectively excite the modes through
a properly configured source. The idea for the proof is
briefly outlined below with more details given in the
Supplemental Material (SM) [50].
Assuming that N ports are connected to the internal sites

of the lattice at ri [Fig. 1(a)]. Employing i ¼ 1;…; N − 1 as
sources and i ¼ N as a receiver, we now calculate the
transmission T between them. Given the coupling matrix
w between the sites and ports, the excited states u in the
lattice is

u ¼ G
X
i

½wΨ�i; G ¼ ðE −HÞ−1; ð1Þ

where H is the Hamiltonian and Ψ is the state vector of
ports. Now consider a line source [blue line in Fig. 1(a)].
The excitations are arranged to be the same as one
eigenstate jli of H up to constant times c0:
½wΨ�n ¼ c0½jli�ri . Then u ¼ Gjk0iδr;ri , which follows
from the fact that the eigenstates in the real and momentum
spaces are related by jk0i ¼

P
eik0·rjli. Using the general

expression [55,56] for scattering, we have the transmission
(see SM [50])

TðrNÞ ∝
X
k0

jk0ihk0j
E − Eðk0Þ þ iΓ

; ð2Þ

where Γ is the port self-energy and Eðk0Þ is the eigenvalue
with respect to jk0i. The above can be extended to the
circuit by noting the corresponding H ↔ J; E ↔ Y. The
transmission for characterizing the band only depends on
the Bloch states with momentum k0, so the TTCs are
momentum resolved. For experimental simplicity, all the
models considered here are finely tuned such that the
excitation ports have no phase difference.
Two types of models with mirror symmetry mz along z

are considered: (i) a model without global symmetries (e.g.,
time-reversal T), to demonstrate the WP-to-NL conver-
sions; therein T breaking allows for the existence of WPs;
(ii) the PT-symmetric models (space-inversion P) that
exhibit the NL-to-NL conversions, where the PT symmetry
implies NL degeneracies. All conversions mentioned above
are ruled by the relative homotopy.

FIG. 1. Momentum-resolved TTCs due to the selective ex-
citation and the Y-enabled FTFS. (a) The line source consisting of
N − 1 ports (blue line) would excite the Bloch states with
momentum k0, while the port N is used to receive the signal.
The transmission between line source and portN is formulated by
Eq. (2). (b) Quadratic degeneracy formed by the Weyl node
colliding [with respect to the inset of Fig. 2(b)]. The planes with
scaled colors show the Fourier-transformed field distribution
(FTFD) from experiments. Note that FTFD corresponds to the
isoenergy (or iso-self-admittances) contour. (c) and (d) The
circuit realization of J1 in ðx; zÞ and ðy; zÞ, respectively.
L ¼ 30 uH, C ¼ 10 nF, and α× denotes α components in
parallel. The self admittances are preset to be Y. For more details
see SM [50].
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WP-to-NL conversions.—Without loss of generality, we
consider the minimal model with two bands [the circuit
realization, see Figs. 1(c) and 1(d)]:

ðjw0CÞ−1J1ðkÞ ¼ 2 sin kzðsin kxσx þ sin kyσyÞ
− ½−1.5þ cos kx þ cos ky − α cos kz�σz

ð3Þ

where σ are the Pauli matrices and α is the tuning para-
meter. J1 is mz symmetric: σzJ1ðk⊥; kzÞσz ¼ J1ðk⊥;−kzÞ
with σz being its representation andk⊥ ¼ ðkx; kyÞ. Breaking
the T symmetry, which is achieved by current negative
impedance converter (INIC) components here, may be
extremely difficult for other platforms.
The evolution of the two opposite WPs in this model is

anomalous beyond the widely held paradigm. To show that,
we first set α ¼ 1 such that our model has two mz-related
WPs with opposite chirality [Figs. 2(a) and 2(d)]. TwoWPs
will move toward each other when α decreases until
α ¼ 0.5. In that case, two WPs will collide on the mz-
symmetric plane Π ¼ ðk⊥; 0=πÞ [Figs. 2(b) and 2(e)],
forming a double Weyl node which does not have a linear
dispersion in all directions [33] [inset of Figs. 2(b) and
1(b)]. According to a widely held paradigm [1], the two
WPs will annihilate when α < 0.5, because topological
charge n ¼ þ1 − 1 ¼ 0 on a sphere that encloses both
WPs. Here, we set the chirality of the red WP in Fig. 2 to
þ1, while the black WP is set to −1. However, the expected
annihilation does not happen, instead, two points convert
into an NL [Figs. 2(c) and 2(f)].
This anomaly can be well explained by the relative

homotopic description π2ðM2; XmÞ of degeneracies. M2 is
the ensemble of all possible gapped 2-by-2 Hermitian
matrices [e.g., J1ðkÞ], and Xm ⊂ M2 commutates with σz
for ∀ k∈Π. To calculate the topological charge nr of
π2ðM2; XmÞ, one needs to specify a symmetric sphere (just
like the sphere surrounding WPs mentioned above).
However, half of the sphere with its equator lying on Π
[e.g., the blue hemisphereD2 in Fig. 2(a)] is sufficient since
it is identical to the upper half of the sphere and fully
contains the topological information. The nontrivial nr
corresponds to the WP-to-NL conversion [28] (nr also
known as the delicate Chern number [58]). Here,
π2ðM2; XmÞ ¼ Z (integer group) and nr ¼ 1 on D2, imply-
ing the conversion. To show that, supposing the WPs can
vanish by tuning α, one can gap out the WPs by annihi-
lation, so that there is no singularity inside D2, contra-
dicting the assumption that nr ¼ 1. In this sense, the
annihilation of the WPs is obstructed by nr ¼ 1 on D2.
The conversion indicator nr also suggests the chiral

Fermi arc on the surface [Figs. 2(g) and 2(h)]. The
argument for the presence of the Fermi arc is similar to
that of WPs [2,28] (note that nr ¼ 1 onD2 is equal to n on a
sphere that solely includes the red WP), and the arc

terminates at the critical points of conversion. Besides,
like the usual mirror-protected NLs, the model of J1 also
has drumhead surface states [Fig. 2(i)] bounded by the
NL projection onto the surface Brillouin zone [Figs. 2(g)
and 2(i)]. Those surface states may help to measure the
degeneracies, but the exhibition of surface states is not
universal (e.g., J2 and J3).
NL to NL: Disentangling of CPs.—The NLs and the

nontrivially converted NLs always intersect at crossing
points (CPs). So, one can alternatively understand that
π1ðM;XmÞ protects the CPs (SM [50]). Here, we first focus
on the fact that the relative homotopy description estab-
lished in two bands is absent due to the delicate property.

FIG. 2. Weyl point conversion determined by the relative
homotopy group π2ðM2; XMÞ. The green plane denotes the
mz-invariant plane Π. (a) mz-related WPs with opposite chirality.
The blue hemisphere is the embedding D2 used in π2ðM2; XMÞ,
and D2 ∩ Π ¼ S1 (black ring) which is a constant in M2 (i.e., D2

is closed inM2). So, nr onD2 is equal to n on a sphere that solely
includes the red WP: nr ¼ 1. α ¼ 1. (b) WPs colliding on Π form
a quadratic degeneracy (inset). α ¼ 0.5. (c) WPs convert to an NL
(purple circle) rather than annihilating. α ¼ 0. We do not plot the
NL on the kz ¼ π plane for clarity since it can be evaded by the
selective excitation. (d)–(f) FTFD in BZ with respect to (a)–
(c) from experiments. The face and line current sources are used
to excite the degeneracy modes in (a), (b), and (c), respectively.
The voltage distribution in the real space recorded by an
oscilloscope is mapped into the BZ via the Fourier transform.
(g) NL projection and isoenergy contour of surface states on the
surface BZ (grey plane). Fermi arc (blue line) and drumhead
states (blue annulus) are supported by J1 simultaneously. (h),
(i) FTFD of the Fermi arc and drumhead states in the surface BZ
from simulation [57]. The white dashed line denotes the NL
projection. We place a point source at the center of the
metamaterial surface to maximally excite the surface modes.
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The next subsection will demonstrate the finer relative
homotopic rules modified by the additional band.
The concrete circuit lattice model is

1

2
ðjw0CÞ−1J2ðkÞ ¼ ðcos kx − 1Þλ4 þ ðcos kz − 1Þλ6

þ λ3 cos ky −
� ffiffiffi

3
p

λ8 − I
� α
3
; ð4Þ

where λi is the Gell-Mann matrices. The above model
does not respect mz symmetry, but the k · p expression
J02ðkÞ of J2ðkÞ around k0 ¼ ð0;�π=2; 0Þ does, namely,
mzJ02ðκ⊥; κzÞmz ¼ J02ðκ⊥;−κzÞ with mz ¼ diagð1;−1; 1Þ
and κ ¼ k0 − k (referred as emergent symmetry [58]).
J02ðkÞ contains all the topological information, so we use
J02ðkÞ to identify π1ðM1;2; XmÞ, but our discussion returns
to J2ðkÞ when working out the NL configurations.
π1ðM1;2; XmÞ is incapable of stabilizing CPs, implying
the relative homotopic description is absent [5], whereM1;2

is the topological space of all distinct gapped PT-symmetric
matrices and the subscript 1,2 implies that the occupied
band and the upper two bands are considered separately.
The above absence is experimentally demonstrated as the

following. First, we set α ¼ 0.5. The NLs of the lower two
bands of J2 take the form of the red lines in Fig. 3(a). Those
red NLs intersect at CPs (indicated by red arrows). The red
CPs survive until α ¼ 0 [Fig. 3(b)]. However, tuning α to
negative values results in a separation of those red NLs
[Fig. 3(c)]. Therefore, the red CPs are not stable. Such CP
disentangling is impossible in two-band models (for more
mathematical explanation see SM [50]). The above analysis
neglects the blue NLs formed by the upper two bands
because those two are considered as a single trivial band.

NL to NL: Non-Abelian entangling.—The non-Abelian
NL braiding constrained by π1ðM3Þ has been shown
experimentally in Refs. [30,31]. Here, we demonstrate
the NL-to-NL conversions controlled by non-Abelian
relative homotopy π1ðM3; XmÞ, which has not been exper-
imentally reported elsewhere. Explicitly, the circuit model
reads

1

2
ðjw0CÞ−1J3ðkÞ ¼ ðcos kx − 1Þλ4 þ ðcos kz − 1Þλ6

þ
�
cosð2kyÞ þ

α

2

�
3λ3 þ

ffiffiffi
3

p
λ8 þ 2I

6

−
� ffiffiffi

3
p

λ8 − I
� cos ky

3
: ð5Þ

Similarly, the k · p expression J03 has emergent mz sym-
metry near k0 ¼ ð0;�π=2; 0Þ. The model has extended and
detangled NLs when α ¼ 3 [Figs. 4(a) and 4(e)]. NLs of
different types stay extended until α ¼ 2, and they touch
each other when α ¼ 2 [Figs. 4(b) and 4(f)]. However,
further tuning α < 2 does not force NLs to move across
each other. In fact, they present as tangled NLs with an
earring structure [α ¼ 0, Figs. 4(c) and 4(g)]. The long-
range term may not be conveniently realized with other
platforms.
The entangling of the model is consistent with the non-

Abelian π1ðM3; XmÞ with M3 being the topological space
of all distinct gapped 3-by-3 PT-symmetric matrices (e.g.,
J03ðkÞ ⊂ M3). Compared to the relative homotopy men-
tioned above, the group elements herein are cosets. For
example, the entangling in Fig. 4(g) is controlled by
π1ðM3; XmÞ ¼ ff�1;�jg; f�i;�kgg, and f�i;�kg is
the nontrivial indicator of stabilizing CPs. The elements
�i and�k correspond to loops that encircle NLs formed by
the upper and lower two bands, respectively, while j
encircles both, and the sign � corresponds to the NL
orientation. The elements in the coset are no longer integers
since π1ðM3; XmÞ partially inherits from π1ðM3Þ, and they
suggest that there are some uncertainties to be clear, e.g.,
the endpoints ∂γ of γ in mz-invariant plane Π, γ is the half
loop to calculate the topological charge of π1ðM3; XmÞ. In
Fig. 4(g), ∂γ can be brought together along the orange
circle. If we move ∂γ such that they meet at A, the
quaternion charge carried by γ is �k since γ encloses a
red NL. Similarly, γ carries�i when they meet at B. This is
consistent with the nontrivial coset f�i;�kg that protects
the CP (for more details see SM [50]).
The conversion also leads to the parallel transport effect

of the eigenstates. Figure 4(h) shows the eigenstates evolve
on γ with ∂γ meeting at A. The red trace (eigenstates of the
first band) and the orange trace (the second) change sign,
while the blue one (the third) is unchanged. That means the
eigenstates experience a rotation instead of just returning to
initial states along the closed path γ. This is caused by
the degeneracy of �k (� is differed by the orientation of

FIG. 3. The relative homotopy group π1ðM1;2; XmÞ protecting
red CPs is absent, and CP transfer for the three-band model. The
red and blue lines denote the NLs formed by the lower and upper
two bands, respectively. (a) Red CPs (indicated by red arrows)
intersected by red NLs. α ¼ 0.5. (b) Red CPs survive when
α ¼ 0. (c) Red CPs disentangle. α ¼ −0.5. Such CP disentan-
gling is impossible in two-band models. In fact, red CPs transfer
to blue CPs. (d)–(f) FTFD in the BZ with respect to (a)–(c) from
experiments. A line source is used.
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the loop). A similar effect happens in Fig. 4(i), but the
difference is that only the red trace returns back now since γ
with ∂γ at B surrounds �i. We remark that the observation
of parallel transport is enabled by the momentum resolution
of the proposed circuits.
Conclusion.—Directly evidencing the topological prop-

erty in three dimensions that does not feature surface states
is quite challenging. Here, we propose site-resolved and
momentum-resolved circuits, which can serve as a general
experimental platform. As an example of that, we experi-
mentally demonstrate the band degeneracy conversions
in semimetals. Our circuits may inspire metamaterial
reverse design (such as that in acoustic [59] and electro-
magnetic [60] frequency range) since those can be sim-
plified as the lumped parameter electrical circuits.
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