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Fracton order describes novel quantum phases of matter that host quasiparticles with restricted mobility
and, thus, lies beyond the existing paradigm of topological order. In particular, excitations that cannot move
without creating multiple excitations are called fractons. Here, we address a fundamental open question—
can the notion of self-exchange statistics be naturally defined for fractons, given their complete immobility
as isolated excitations? Surprisingly, we demonstrate how fractons can be exchanged and show that their
self-statistics is a key part of the characterization of fracton orders. We derive general constraints satisfied
by the fracton self-statistics in a large class of Abelian fracton orders. Finally, we show the existence of
nontrivial fracton self-statistics in some twisted variants of the checkerboard model and Haah’s code,
establishing that these models are in distinct quantum phases as compared to their untwisted cousins.
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Introduction.—Particle statistics is a fundamental aspect
of quantum mechanics. While elementary particles that
compose our Universe must be either bosons or fermions
due to the topological triviality of double exchanges in 3D
space, emergent quasiparticles in 2D quantum many-body
systems can exhibit anyonic statistics [1,2], which are
crucial for characterizing conventional topological order.
Recently, the theoretical discovery of fracton order in 3D
[3–9] has revealed a new situation where quasiparticles lack
their usual freedom to move in space, calling for a
reexamination of the notion of statistics [10–12].
Fracton systems have emerged as an active frontier of

quantum physics [13,14], attracting great interest from
condensed matter, quantum information, and quantum field
theory viewpoints. Fracton order is defined by the emer-
gence of quasiparticles with restricted mobility, including
fractons, which cannot move without splitting into more
than one excitation. Single isolated fractons are, thus,
immobile. Fracton models can also host excitations which
are mobile only within planes or lines. Statistical processes
involving or interpretable in terms of partially mobile
excitations have been studied [10–12,15–23]. Moreover,
fractons can be non-Abelian in the sense of carrying
protected topological degeneracy [11,16,24–35]. Never-
theless, a fundamental question remains open:Does a notion
of self-exchange statistics make sense for fractons, given
their complete immobility as isolated excitations?
In this Letter, we provide a resolution to this puzzle. By

allowing the fracton quasiparticle to split into multiple

coordinated pieces, it is possible to prepare two well-
separated realizations of the same fracton superselection
sector. Such a pair of excitation patterns can be physically
exchanged, giving rise to a fracton self-statistics. Our
findings apply to both fracton phases of foliated [36,37]
and fractal [5,6] nature. Furthermore, we point out
instances where the self-statistics of fractons is, in fact,
the only known statistical invariant that distinguishes
between two fracton phases. We provide explicit examples
by distinguishing twisted checkerboard models [11] and a
twisted Haah’s code [38] from their untwisted counterparts.
Thus, we show that fracton self-statistics is a fundamental
invariant needed to characterize fracton phases of matter.
Foliated fractons.—To illustrate the principle, we start

with the simplest relevant setting, in which all fractons a are
Abelian [39] and satisfy the fusion constraint

a × tμa × tμþtνa × tνa ¼ 1 ð1Þ
for all μ; ν∈ fx; y; zg such that μ ≠ ν, where tμðνÞ is the
elementary lattice vector in the μðνÞ direction, ta denotes
the analog of a at a t-shifted position, and ta is the
antiparticle of ta. This constraint guarantees the existence
of rectangular [40] membrane operators of arbitrary size
that generate quadrupolar configurations of a given species
a at its corners. Fractons satisfying the fusion constraint
will be referred to as (Abelian) foliated.
A large body of models hosting foliated frac-

tons are known in the literature, including the X-cube,
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checkerboard, and their many variants [8,11,17,41–43]. Let
us refer to the checkerboard model as a concrete example,
for its twisted variants will clearly demonstrate the usage of
fracton self-statistics.
The checkerboard model [8] is defined on a 3D

checkerboard lattice [Fig. 1(a)] with one qubit per vertex
v. Its Hamiltonian

Hcb ¼ −
X

c

ðAc þ BcÞ ð2Þ

is a summation over gray cubes c in Fig. 1(a), where

Ac ≔
Y

v∈ c

Xv; Bc ≔
Y

v∈ c

Zv ð3Þ

are products of Pauli X or Z operators at the eight vertices
of c. This is an exactly solvable gapped model with spec-
trum labeled by simultaneous eigenvalues fAc; Bc ¼ �1g.
An isolated excitation Ac ¼ −1 exemplifies a foliated

fracton. It can be “moved” at the expense of fractionali-
zing into more than one excitation, e.g., η ¼ fcg → ηi ¼
fc0i; c00i ; c000i g by a rectangular membrane operator; see
Fig. 1(b). Therefore, the excitation patterns η1 (red), η2
(green), η3 (blue), and η (orange) are all realizations of the
same fracton superselection sector.
Self-statistics of foliated fractons.—Generically, a foli-

ated fracton a is characterized by a set of four self-statistical

phases θ½xyz�a , θ½xyz�a , θ½x̄yz̄�a , and θ½xyz�a , each corresponding to a
“windmill” self-exchange process.
The process corresponding to θ½xyz�a is depicted in Fig. 2. It

begins with an excited state with a at the center of the
windmill, in addition to a triplet of excitations denoted â that
belongs to the same superselection sector as a. The process
proceeds with a sequence of six membrane operators
[Fig. 3(a)] whose total action exchanges a with â, returning
to the starting state in such a way that all arbitrary phases
cancel. It can be regarded as a fractonic generalization of the
T-shaped anyon exchange process [44].

The processes for θ½xyz�a , θ½x̄yz̄�a , and θ½xyz�a are defined
analogously but along windmills related to ½xyz� by a 180°

rotation about the x, y, and z axes, respectively. For
instance, the ½xyz� process involves the membrane oper-
ators located as in Fig. 3(b). The notation ½μ1μ2μ3� of three
directions μi refers to a windmill made of three bladesKi ¼
coneð−μi; μiþ1Þ≡ f−αμi þ βμiþ1jα; β ≥ 0g for i ¼ 1, 2, 3,
where μ4 ≡ μ1. Each overlined direction indicates its
opposite (e.g., x̄ ¼ −x).
Although more windmill processes can be considered,

they yield no new self-statistical phases beyond the four
already defined. Any two inversion-related windmills [e.g.,
½xyz� and ½xyz� in Figs. 3(a) and 3(c)] specify the same self-
statistics. The reason is demonstrated in Fig. 3(d):
Membrane operators for ½xyz� and ½xyz� can be related
by a deformation [45]. Consequently, despite eight possible
windmill choices (see Supplemental Material [46]), only
four self-statistics need to be specified for foliated fractons.

One might expect that θ½xyz�a , θ½xyz�a , θ½x̄yz̄�a , and θ½xyz�a are
independent. To the contrary, they are subject to a con-
straint

θ½xyz�a θ½xyz�a θ½x̄yz̄�a θ½xyz�a ¼ 1; ð4Þ
leaving only three of them independent, in general.

FIG. 1. (a) 3D checkerboard lattice with vertices and gray cubes
labeled by monomials xjykzl, where x̄≡ x−1, etc. (b) In the
checkerboard model, excitation Ac ¼ −1 (or Bc ¼ −1) has
fractional mobility fcg → fc0i; c00i ; c000i g, realizable by operator
Mi ¼

Q
v∈Σi

Zv (respectively, Mi ¼
Q

v∈Σi
Xv) supported on

rectangular membrane Σi, for i ¼ 1, 2, 3.

FIG. 2. The ½xyz� windmill process. The starting state has an
excitation a at the center of the “windmill” along with three other
excitations collectively called â in the same superselection sector
as a following Eq. (1). The process involves three membrane
operators M1, M2, and M3 and their inverses, successively
moving the four excitations from the corners of the yz square,
to the corners of the xy square, to the corners of the zx square, and
finally back to the original configuration. The process is designed
such that the phase arbitrariness in the choice of Mi is precisely
canceled by the action of M†

i . Therefore, the universal statistical

phase is well defined by θ½xyz�a ¼ M†
3M2M

†
1M3M

†
2M1.

FIG. 3. Membrane operators comprising the (a) ½xyz�,
(b) ½xyz�, and (c) ½xyz� windmill processes. (d) The membrane
operators for the ½xyz� process are smoothly deformed such that,
near the origin, they coincide with those of the ½xyz� process.
This proves θ½xyz�a ≡ θ½xyz�a .
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This constraint is most naturally derived by utilizing a
quantity Sμab for μ ¼ x, y, z, defined as the mutual braiding

statistics between dipoles a × ltμa and b × −ltμb in the large
l limit. The dipoles are planons (i.e., quasiparticles mobile
in two directions). The braiding direction is fixed by μ via
the right-hand rule. See Fig. 4(a).
A proof of Eq. (4) is as follows. If a is exchanged twice

with â, both sets of excitations return to their original
position. The total process is smoothly deformable into one
where a is stationary while â braids around a. For instance,
we can deform the ½xyz� windmill process into one along
the cyclic “path” in Fig. 4(b). Similarly, the ½xyz� process
(which produces statistics θ½xyz�a ≡ θ½xyz�a ) is deformable into
the one depicted in Fig. 4(c). If the two deformed
exchanges are started and ended with the intermediate
state containing excitations a and â0, their composite gives
the process in Fig. 4(d), implying

θ½xyz�a θ½xyz�a ¼ Sxaa: ð5Þ

Armed with this relation, we can now prove Eq. (4) by a
180° rotation of Eq. (5) about the y axis to obtain

θ½x̄yz̄�a θ½xyz�a ¼ ðSxaaÞ� and multiplying it with Eq. (5).
The mutual statistics also appear in the following

formula for the self-statistics of a fusion product of two
fractons and analogous formulas due to cubic symmetry:

θ½xyz�a×b ¼ θ½xyz�a θ½xyz�b SxabS
y
abS

z
ab: ð6Þ

See Supplemental Material [46] for a proof. This relation
implies

SxabS
y
abS

z
ab ¼ SxbaS

y
baS

z
ba: ð7Þ

It is interesting to note that Eqs. (5) and (6) generalize the
constraints θ2a ¼ Saa and θa×b ¼ θaθbSab of 2D Abelian
topological orders, where θa is the topological spin and S

the topological Smatrix. For an Abelian planon a satisfying
the foliation condition Eq. (1), analogous windmill proc-
esses are reducible into 2D braidings, and the above
discussions reduce to these familiar 2D equations.
Now assume a foliated fracton satisfies aN ¼ 1. We

show its self-statistics being constrained to discrete values

for use in distinguishing fracton orders. Note SxaaS
y
aaSzaa ¼

ðθ½xyz�a Þ2 by virtue of Eqs. (4) and (5). Thus, since

ðSμaaÞN ¼ SμaNa ¼ 1, we have ðθ½xyz�a Þ2N ¼ 1. Moreover,

applying Eq. (6) recursively gives ðθ½xyz�a ÞN2 ¼ θ½xyz�aN ¼ 1.
Together, these imply the self-statistics of a being multiples
of e2πi=ðN gcdðN;2ÞÞ in analogy to anyons in 2D.
Semionic fractons in twisted checkerboard models.—A

major application of fracton self-statistics is to distinguish
the quantum phase of the checkerboard model Hcb from its
twisted variants introduced in Ref. [11]. To illustrate, we
consider seven twisted models, denotedHx

cb,H
y
cb,H

z
cb,H

xy
cb,

Hyz
cb,H

zx
cb, andH

xyz
cb below. Together withHcb, we will show

that the eight models fall into two quantum phases,
distinguishable by the presence or absence of semionic
fracton self-statistics. Explicit construction of paths con-
necting models with identical fracton self-statistics is given
in Supplemental Material [46].
First, inHcb [Eq. (2)], all excitations (including fractons)

exhibit either bosonic (þ1) or fermionic (−1) statistics.
This is because all statistical processes are realizable by
tensor products of Pauli operators which commute or
anticommute only with each other.
In contrast, Hx

cb represents a new phase allowing semi-
onic (�i) fracton self-statistics. Instead of using the
formalism in Ref. [11], we specify this model using a
non-Pauli stabilizer Hamiltonian

Hx
cb ¼ −

X

c

ðAx
c þ BcÞ ð8Þ

obtained by replacing Ac in the untwisted model Eq. (2)
with a modified term Ax

c, to have a convenient description
of excitations with ðAx

cÞ2 ¼ 1 and the full spectrum labeled
by simultaneous eigenvalues fAx

c; Bc ¼ �1g, where x
refers to twisting being associated with x edges.
Explicitly, we label vertices and cubes by monomials as
in Fig. 1(a) and denote finite sets of vertices by polynomials
with Z2 ¼ f0; 1g coefficients [55]. In this notation,

Ax
c ≔ Acϕð1þxÞx̄cϕð1þxÞxc ð9Þ

according to the construction described in Supplemental
Material [46], where l ¼ ð1þ xÞx̄c and l ¼ ð1þ xÞxc
denote vertex pairs that are ends of x edges and

ϕl ≔ ð−1Þn
−
lȳn

−
lþn−lȳzn

−
lzþn−ln

þ
lyþn−lzn

þ
lyzþnþlyn

−
ly2

þnþlyzn
−
ly2z

· ð−1Þn−lyzð1þyÞn
−
lyð1þyÞð1þzÞ · i−n

−
lð1þȳÞð1þzÞ ð10Þ

FIG. 4. Graphic proof of θ½xyz�a θ½xyz�a ¼ Sxaa. The white arrows
denote the direction of braiding and exchange processes. (a) Def-
inition of Sxab. (b) The ½xyz� process (dotted windmill) is
deformable into one realized in three steps a → â0, â → a, and
â0 → â using operators supported on the olive, green, and gray
areas. The intermediate state â0 consists of excitations at the three
circles. (c) A process which is equivalent to the ½xyz� process and,
hence, produces statistics θ½xyz�a ≡ θ½xyz�a . (d) A process that braids
part of â0, along on the gray ribbon, around a. The statistical
phase due to the presence of a is Sxaa.
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is a Dijkgraaf-Witten twisting factor, with the shorthand

Zκ ≔
Y

v∈ κ

Zv; n�κ ≔
1

2
ð1� ZκÞ; ð11Þ

for κ any finite set of vertices.
In Hx

cb, one example of semionic fracton is a Bc ¼ −1
excitation (denoted mx below), which has

θ½xyz�mx ¼ θ½xyz�mx ¼ i and θ½xyz�mx ¼ θ½x̄yz̄�mx ¼ −i: ð12Þ

Two derivations of the statistics are given in Supplemental
Material [46]. In one, we construct a modified X operator
that explicitly generates the statistical processes for B
excitations. The modification of X is required to ensure
no Ax

c terms flipped and results in the above semionic self-
statistics.
We emphasize that, inHx

cb, exotic self-statistics (θ ≠ �1)
are exclusive to fractons. Reference [11] reported that
nonfractonic excitations in Hx

cb exhibit only bosonic or
fermionic statistics. This implies thatHx

cb cannot be a tensor
product of Hcb and 2D anyon models containing semions.
Therefore, the fact that only fracton self-statistics can
distinguish the two models highlights the novelty of Hx

cb
as a distinct phase of matter. We refer to the phase ofHx

cb as
a semionic fracton order, as characterized by the presence
of semionic statistics for only the fracton excitations.
The remaining six models are constructed similarly to

Hx
cb. InH

x
cb, the twisting factor ϕð1þxÞx̄cϕð1þxÞxc in Eq. (9) is

linked to x edges. Its analog associated with y edges (z
edges) specifies Hy

cb (Hz
cb). Moreover, twisting can be

applied to more than one direction simultaneously; for
example, Hxy

cb has twisting made along both x edges and
y edges.
Remarkably, despite the six models having different

ground states, we discover that (i) Hy
cb, H

z
cb, and Hxyz

cb
represent the same semionic fracton phase as Hx

cb, while
(ii) Hxy

cb, H
yz
cb, and Hzx

cb fall within the phase of Hcb. Let us
first demonstrate how fracton self-statistics are matched
betweenHxy

cb andHcb. InH
xy
cb, excitation Bc ¼ −1 (denoted

mxy) is a fracton with

θ½xyz�mxy ¼ i · i ¼ −1; θ½xyz�mxy ¼ ð−iÞ2 ¼ −1;

θ½xyz�mxy ¼ i · ð−iÞ ¼ 1; θ½x̄yz̄�mxy ¼ ð−iÞ · i ¼ 1; ð13Þ

where two twistings cause a cancellation in semionic
character. Furthermore, combining mxy with an A excita-
tion at relative position x̄y, denoted x̄ye, yields a fracton
x̄ye ×mxy with purely bosonic self-statistics, which can be
seen via Eq. (6) and its analogs.
Based on this observation, we indeed find an exact local

unitary transformation relating the ground states ofHxy
cb and

Hcb, rigorously confirming they represent the same phase

(see Supplemental Material [46]). Other phase identifica-
tions in the classification can be proven analogously.
Self-statistics of fractal fractons.—The notion of self-

statistics extends to nonfoliated fractons [56]. We demon-
strate this with Haah’s code [5]

HHaah ¼ −
X

λ∈Λ
ðAλ þ BλÞ; ð14Þ

an exactly solvable model defined on a cubic lattice with
two qubits per vertex. Here, Λ ¼ fxiyjzkg represents lattice
vectors ði; j; kÞ∈Z3 in monomial form. The AðBÞ terms
are translations of the representative A1ðB1Þ at the origin
given in Fig. 5(a). Each AλðBλÞ is a product of eight Pauli
X’s (Z’s). With collections of translationally related objects
represented as sums of Λ’s elements, we can describe Aλ

and Bλ using Laurent polynomials with Z2 ¼ f0; 1g
coefficients [55]:

Aλ ¼ λ · ðf̄1; f̄2; 0; 0Þ; Bλ ¼ λ · ð0; 0; f2; f1Þ; ð15Þ

f1 ¼ 1þ xþ yþ z; f2 ¼ 1þ xyþ yzþ zx; ð16Þ

f̄1 ¼ 1þ x̄þ ȳþ z̄; f̄2 ¼ 1þ xyþ yzþ zx; ð17Þ

where the first (last) two components of Aλ and Bλ locate
Pauli X’s (Z’s) for the two qubit species. The bar denotes
spatial inversion: x → x̄≡ x−1, etc.
Excitations can also be described by polynomials.

Applying a Pauli Z to the first (or second) qubit at the
origin excites A terms in the pattern f1 (respectively, f2).
Interestingly, one may flip A terms purely in the yz plane
[6] by noting

ðyþ zÞf1 þ f2 ¼ 1þ yþ y2 þ zþ yzþ z2≕ g: ð18Þ

Consider planar fractional moves for visual clarity. The yz-
planar ones are generated by g, allowing A excitations to
travel arbitrarily long distances toward each of the conic

FIG. 5. Fracton’s mobility in the Haah’s code. (a) Top: defi-
nition of A1 and B1. They are products of eight Paulis. Identity
operators I are omitted when possible. Bottom: mobility cones
(on the yz plane) for A and B excitations. (b) Fractional moves
1 → ηi of an A excitation are realized by operators of fractal
support. Gray square dots represent operator ð0; 0; yþ z; 1Þ and
its translations. (c) A windmill for a composite of type-A and
type-B fractons.
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directions K1, K2, and K3 in Fig. 5(a). Explicitly, for
l ¼ 2n, one has 1þ gl ¼ yl þ y2l þ zl þ zlyl þ z2l due to
the Z2 setting of the model. Accordingly, 1 → 1þ gl

provides an instance of pushing an A-term excitation by
at least l distance toward K1. It is realizable by fractal-
shaped operator gl−1ð0; 0; yþ z; 1Þ, reflecting the excita-
tion being a fracton of fractal nature. See Fig. 5(b). We call
each Ki a mobility cone for A excitations, as defined in
Supplemental Material [46]. The description of B excita-
tions are analogous but with spatial directions inverted.
Based on mobility cones, we categorize fractons of

HHaah into three types—A, B, and mixed—and define their
windmill self-statistical processes. Type A (type B) are
fractons with the mobility cones Ki (respectively, −Ki) for
i ¼ 1, 2, 3 shown in Fig. 5(a). The mixed are bound states
of type A and type B; they cannot be moved along any
individual cone among Ki’s or −Ki’s. Self-statistics is
definable using the “windmill”made of mobility cones. See
Figs. 5(a) and 5(c). In HHaah, nonmixed (i.e., type-A or
type-B) fractons exhibit purely bosonic self-statistics, since
only one type of Pauli is involved.
Fermionic type-A fractons in a twisted Haah’s code.—

To further illustrate the usage of fracton self-statistics,
consider a gauge-theoretic variant of Haah’s code defined
by applying HHaah to a Hilbert space that binds a fermionic
mode ψλ to Aλ via Gauss’s law −iγλγ̃λAλ ¼ 1, where γλ ≔
ψλ þ ψ†

λ and γ̃λ ≔ ð1=iÞðψλ − ψ†
λÞ are Majorana operators.

As detailed in Supplemental Material [46], the gauge
theory emerges from a spin model HF

Haah, namely, the
twisted Haah’s code proposed in Ref. [38].
Fracton self-statistics enables us to settle the unresolved

question of whether HF
Haah represents a distinct fracton

order from the original Haah’s codeHHaah. The expectation
that A excitation becomes fermionic is now definable and
provable via windmill processes. The operator creating A
excitations is modified to Zσcσ due to gauge invariance,
where Zσ denotes Pauli Z on qubit σ while cσ denotes a
product of γλ ’s that are associated with the Zσ-flipped A
terms. Still, one may wonder whether it is possible to
compensate the statistics change by attaching B excitations
to A. Indeed, this is the case for the 2D toric code and the
checkerboard model, which we have shown above.
However, it is not allowed here, because attaching type-
B fractons alters the mobility of A. Thus, the presence of
fermionic type-A fractons distinguishes HF

Haah from HHaah.
See also Supplemental Material [46] for the discreteness of
this self-statistics, which confirms the phase distinction.
Conclusions.—We have shown that it is possible to

exchange two realizations of a fracton superselection sector
via its fractional mobility. The notion of self-statistics for
fractons can, thus, be introduced, which is essential in
characterizing fracton orders. As applications, we studied a
family of twisted checkerboard models and a twisted
Haah’s code, from which we revealed a novel phase
of foliated nature—what we call a semionic fracton

order—and a new fractal-type order characterized by
emergent fermionic fractons. Our work marks a crucial
step toward a full “algebraic theory of fractons” yet to be
developed.
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