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We present a novel generalized scaling framework and predictive model for wall friction in turbulent
flows. The scaling is derived from the dynamical equations, and total mean-flow kinetic energy and the
velocity profile shape factor are used as surrogates for dynamical and boundary condition effects. Veracity
of the present approach is assessed using data from the literature spanning unprecedented ranges of flow
types, Reynolds numbers, accelerations, and history effects. Unlike previous models that solely apply to
standard flows, the present framework reconciles nonstandard flows with standard flows and enables
accurate estimates of wall friction in numerical simulations and experiments without resolving the viscous
sublayer or using the law of the wall.
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Introduction.—Fluids flowing adjacent to solid surfaces
experience a resisting force due to friction between the flow
and the surface. This surface friction (also referred to as
wall friction) depends on the character of the flow, namely,
laminar, transitional or turbulent, which in turn depends on
the flow Reynolds number Re (to be defined later). Most
flows of practical relevance have high Reynolds numbers
and are therefore, turbulent. In order to maintain a turbulent
flow, energy needs to be supplied to overcome the work of
wall friction; a reference frame wherein the wall moves
upstream and fluid far away is stationary, is convenient to
visualize the work of wall friction [1]. Therefore, wall
friction dictates economics of flow processes such as the
pumping power required to push fluids through pipe lines,
consumption of aviation fuel by commercial airliners, and
so on [2–5]. Hydrodynamically, rough walls cause more
friction compared to smooth ones [6,7]. Thus, surfaces in
most applications are polished or coated to be smooth to
reduce operating costs. Even then, friction at these smooth
walls contributes a major chunk of the financial burden
passed on to the end users. Friction scaling and predictive
models in smooth-wall turbulence have therefore been
intensely studied for over a century [6,8–15], and are the
focus of this Letter as well.
Smooth-wall turbulent flows may be classified as inter-

nal flows (fully developed pipe and channel flows) and
external flows (boundary layers). Turbulent boundary
layers (TBLs) are of three broad types: (a) no acceleration
of the freestream, i.e., freestream velocity U∞ ¼ constant
due to the pressure-gradient force being zero (ZPG TBLs),
(b) decelerating freestream, i.e., U∞ is a decreasing
function of the streamwise coordinate x due to adverse
(opposing the flow) pressure gradient force (APG TBLs),
and (c) accelerating freestream, i.e., U∞ is an increasing
function of x due to favorable (assisting the flow) pressure
gradient force (FPG TBLs). For a very strong APG, the

boundary layer may start “approaching” separation so that,
wall friction no longer remains dynamically relevant [2].
Our study therefore, comprises of internal flows, and all
“attached” TBLs (Fig. 1) which also include, for the
first time as far as we know, (i) a wide variety of non-
self-similar TBLs, such as those over aircraft wings
and turbine blades, and (ii) compressible (supersonic and

FIG. 1. Smooth-wall turbulent flows covered by this study. All
flows are two dimensional in the mean. Internal flows are fully
developed. External flows are different types of attached TBLs.
Thick black lines indicate solid wall(s) and arrows indicate nominal
flow direction. Thin red lines schematically indicate turbulent-
nonturbulent interface, a measure of the thickness of TBLs.
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hypersonic) TBLs with Van-Driest-transformed mean
velocity profiles [16–19].
Drawbacks of existing scalings and models.—All fric-

tion scalings and models are mathematical descriptions of
how a dimensionless measure f of friction varies with flow
Reynolds number Re [9,11,14,15,20], where f and Re are
defined by

f ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ=ρU2

s

q
¼ Uτ=Us and Re ≔ δUs=ν: ð1Þ

Here, ρ is the density of flowing fluid, τ is the shear stress
between the flow and the wall, Uτ ≔

ffiffiffiffiffiffiffi
τ=ρ

p
is the friction

velocity (throughout this Letter, ≔ denotes a definition),
δ is the outer length scale of the flow (boundary layer
height or pipe radius or channel half-height), and ν is
the kinematic viscosity of the fluid. The velocity scale Us
should (i) render τ (or Uτ) and δ dimensionless, and
(ii) “scale” the data in a universal fashion in (f, Re)
coordinates.
Despite the extensive research taken place so far, all

f-Re relations in the literature suffer from two major
shortcomings.
(1) From a fundamental point of view, these relations are

not founded firmly in the governing dynamics of turbulent
flows. Mostly, they are by-products of mean velocity
scaling laws which themselves, are physically intuitive
but still empirical. Specifically, it is a tradition to use U∞
(freestream velocity for TBLs and center-line or bulk
velocity for pipes and channels) as the velocity scale
(Us ¼ U∞) in Eq. (1). However, this is simply because
U∞ is either specified as the outer velocity boundary
condition (BC) in TBLs or is a practically useful measure
of flow rate through pipe or channel. There is no “dynami-
cal” basis for setting Us ¼ U∞; (2) From a practical point
of view, the applicability of these relations is too restrictive,
limited to only certain types of flows studied extensively
using experiments and numerical simulations. These “stan-
dard” flows are ZPG TBLs, and fully-developed pipe and
channel flows. Most practical flows of interest are, how-
ever, “nonstandard” and departures from the standard
behavior are significant. These include self-similar and
non-self-similar TBLs in strong APGs and FPGs, and
compressible TBLs. For example, a TBL developing over
an aircraft wing or turbine blade experiences strong PG that
also varies in the streamwise direction much more rapidly
compared to the intrinsic timescale of turbulence adjust-
ments [21], and this mismatch renders these flows non-self-
similar. Individual f-Re relations cannot be devised for
such flows due to the diversity of flow situations that could
arise. The generalized universal f-Re framework, which is
the focus of this Letter, offers an elegant solution to this
problem.
To highlight these issues, we consider friction data

from several types of flows shown in Fig. 1. These data
come from experiments and numerical simulation studies

published in the literature, and cover very wide ranges of
Reynolds number and PG (Supplemental Material Part IIC
—Data Tables [22]). Figure 2 plots friction data in the tradi-
tional scaling framework (f0, Re0) where f0 ≔ Uτ=U∞ and
Re0 ≔ δU∞=ν, i.e., Us ¼ U∞ in Eq. (1). Different datasets
show very different trends as well as varying degrees of
scatter. Figure 2 clearly demonstrates the absence of any
generalized scaling behavior in the (f0, Re0) framework,
precluding any possibility of making useful predictions.
Physical basis for generalized scaling.—Fundamentally,

the velocity field of every turbulent flow is a solution of the
governing dynamical equations subject to certain initial and
boundary conditions (ICs and BCs). For statistically sta-
tionary flows, only BCs are relevant; all flows considered
here are statistically stationary. Friction at the wall is a
consequence of the no-slip BC at the wall and is related to
the gradient of mean velocity field in the vicinity of the
wall. This region receives velocity contributions from
turbulent motions or eddies that span a wide range of
scales. The smallest eddies are dissipative and have sizes of
the order of Kolmogorov length scale; the largest eddies are
energetic and scale on δ [2,3]. Further, large eddies orga-
nize in the form of large-scale motions (LSMs) [64,65], and
very-large-scale motions (VLSMs) in internal flows [66] or
superstructures in external flows [67,68]. This rich spectral
structure of a turbulence cascade is set up by nonlinearity of
governing Naviér-Stokes equations through vortex stretch-
ing mechanism [2]. Since friction at the wall receives
contributions from this entire spectrum of scales [69–73], a
meaningful “scaling” of friction must follow from the flow
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FIG. 2. Traditional scaling of friction (f0 ≔ Uτ=U∞ and
Re0 ≔ δU∞=ν) in smooth-wall turbulent flows. Circles—pipes,
squares—ZPG TBLs, diamonds—channels, triangles—APG
TBLs (self-similar and non-self-similar), inverted triangles—
FPG TBLs (self-similar and non-self-similar), and pentacles—
compressible TBLs. Further details of symbols and datasets are in
Supplemental Material Part IIC—Data Tables [22]. Data cover
Reynolds number range 95 ≤ Reτ ≤ 528 860 (more than three
decades in Reτ) and dimensionless pressure gradient range
−1.5 ≤ β ≤ 35.9 (from strong FPG to strong APG). Note that,
Reτ ≔ δUτ=ν is the friction Reynolds number and β ≔
δ�=τðdp=dxÞ is the Rotta-Clauser pressure gradient parameter
[62,63]; δ� is displacement thickness and dp=dx is mean stream-
wise pressure gradient.
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dynamics that embodies this structure of turbulence. It is
important to note that, BCs are not central to setting up the
eddy cascade. They are, however, peripherally important
since they modulate the strength of large eddies in a manner
that differs from one type of flow to another [74,75].
Therefore, BCs could influence friction at the wall in an
indirect fashion through their influence on the large eddies.
With this physical insight, it is clear that the quest for a
generalized scaling of friction, valid for all flows, must take
into cognizance both, the dynamics and the BCs as
illustrated schematically in Fig. 3. Note that, the traditional
choice of velocity scale Us ¼ U∞ mentioned earlier,
completely misses the dynamics since U∞ is technically
just the outer velocity BC.
Unified scaling in standard flows.—Our recent work

[20] presents analysis of friction scaling in standard flows
(ZPG TBLs, pipes and channels) along the lines discussed
above. It shows how dynamics and BCs can be used to
unify the scaling of friction in these flows. The analysis
consists of two parts. First, the equation governing the
evolution of streamwise mean-flow kinetic energy U2=2 is
considered in its wall-normally integrated form; this step
bears striking resemblance to the approach of Renard and
Deck [1] who decompose wall friction into contributions
from physical phenomena across the complete TBL. The
asymptotic form of this equation shows that the dynamics
sets its own velocity scale for friction [20]. This new
dynamical velocity scale is different from U∞, and is
given by M=ν where M ¼ R

δ
0 U

2dz is proportional to total
streamwise kinetic energy content of the mean flow. With
Us ¼ M=ν in Eq. (1), dimensionless friction and the
Reynolds number become

f01 ≔ Uτν=M and Re01 ≔ δM=ν2: ð2Þ
This nondimensionalization is referred to as M-ν scaling
of friction and is founded firmly on the dynamics of
wall-bounded turbulent shear flows. All standard flows
are shown to obey the dynamical asymptotic friction scaling

law f01 ∼ Re0−1=21 in the limit of an infinite Reynolds number.
For a given finite-Re standard flow, friction in M-ν scaling
may be treated as a small perturbation from the asymptotic
scaling law. Using asymptotic series expansions, a finite-Re
model in the M-ν scaling framework is obtained [14,20].
This model combines contributions to friction from inviscid
attached-eddy-type motions as well as small-scale, dissipa-
tive motions that are not captured by the attached-eddy
model (SupplementalMaterial Part IB [22]). Themodel very
well describes variation of f01 with Re01 for each individual
standard flow type, but fails when all of them are taken
together [20]. This happens because M-ν scaling does not
account for any BC effects; at finite Reynolds numbers, BCs
for different standard flows are different [20]. The second
part of the analysis proposes that the shape of the mean
velocity profile is a useful measure of the distinguishing
effects of BCs. Empirical transformations are proposed [20]
to obtain “effective” dimensionless friction f1 andReynolds
number Re1 where shape of mean velocity profile has been
factored in. These transformations are

f1 ¼ f01ðG=GrefÞp and Re1 ¼ Re01ðG=GrefÞq; ð3Þ

whereG is Clauser’s shape factor [76], for the outer-scaled or
defect velocity profile, defined as G ≔ U∞=Uτ½ðH − 1Þ=H�
whereinH is the conventional shape factor (H ≔ δ�=θwhere
δ� is displacement thickness and θ is momentum thickness),
Gref ¼ 6.8 is the reference value of G corresponding to the
ZPG TBL at high Reynolds number [20,76], and p and q are
empirical (constant) exponents. Thus, ðG=GrefÞp and
ðG=GrefÞq in Eq. (3) are empirical top ups, on the basic
dynamical scaling of friction [Eq. (2)], accounting for BC
effects. This scaling framework of coordinates (f1, Re1) is
termed asM-ν-G scaling (SupplementalMaterial Part I [22]).
The finite-Re friction model (M-ν-G scaling) unifying
friction in standard flows [20] is

f1 ¼
A1

ln Re1
Re

h
B0þ B1ffiffiffiffiffiffiffi

ln Re1
p

i

1 : ð4Þ

Model coefficients A1, B0, B1, and empirical (constant)
transformation exponents p and q are determined by opti-
mizing the fit of Eq. (4) to the data (Supplemental Material
Part II-A [22]). Friction data from all standard flows are
described very well, in a unified manner, by the M-ν-G
scaling [Eq. (3)] and finite-Re model Eq. (4) [20].
Hypothesis of generalized scaling in all flows.—We now

hypothesize that the M-ν-G scaling and friction model
[Eq. (4)] are generally applicable to all flows. For this to
happen, the following three conditions need to be satisfied:
(i) M-ν scaling should apply to all flows, (ii) nonstandard
flows can have strong PGs and mathematically, PG is a BC.
Therefore, G, which accounts for BC effects in standard
flows, should account for strong PG effects in nonstandard

FIG. 3. Schematic depicting roles of dynamics and BCs
towards setting up and modulating eddies of turbulence that
contribute to friction experienced by the flow at the wall.
Dynamics contributes M-ν scaling and effects of BCs are taken
into account by Clauser’s shape factor G, both together yielding
generalized M-ν-G scaling.
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flows, and (iii) nonstandard flows can have strong stream-
wise variations in PG giving rise to PG history or memory
effects, and G should also account for these effects.
With reference to the first condition, we note that a

cornerstone assumption for M-ν scaling in standard flows
[20] is the turbulence kinetic energy (TKE) production term
in the log-law-type overlap varying inversely with distance
from the wall, i.e., Pþ;overlap ∼ 1=zþ; zþ ≔ zUτ=ν is the
distance from the wall in viscous units. For nonstandard
flows, the extent, slope and intercept of the log region vary
with PG strength [77–81]. Alternatively, there are proposals
arguing in favor of power-law-type overlap. If the type of
overlap (log-law-type or power-law-type) is not specified,
then the variation of production term may be generally
written as Pþ;overlap ∼ 1=zmþ (m > 0); m ¼ 1 corresponds to
log-law-type overlap. Supplemental Material Part I [22]
provides derivations of M-ν scaling for all possible over-
laps m ¼ 1, 0 < m < 1 and m > 1. These derivations are
new and account for the region below the overlap layer
(viscous sublayer, buffer layer and mesolayer) in addition
to overlap and wake layer regions. In all cases, the
dynamics dictates the same M-ν scaling irrespective of
the type of overlap and wall-normal extents of various flow
regions. Therefore, the first condition mentioned above is
satisfied for all flows. As to the second condition, it is
known that G is a function of dimensionless PG in case of
self-similar TBLs [62,82]. Therefore, one may readily
expectG to capture strong PG effects, satisfying the second
condition. Finally, flowswith rapid variations of dimension-
less PG are inevitably characterized by strong history effects
wherein wall-normal distributions of turbulent stresses do
not scale simply on local variables (self-similarity fails), but
depend strongly on the upstream distribution of PG the flow
has experienced [83]. This memory is due to large-scale
structures such as LSMs andVLSMs or superstructures, that
take longer time to adjust to the BCs compared to the
timescale of the variation of PG BC itself [21]. As such,
streamwise distributions of the Reynolds number, skin
friction coefficient (Cf ≔ 2f20), conventional shape factor
(H), etc. lag behind the streamwise variation of dimension-
less PG [80,84,85]. However, careful scrutiny reveals that
the streamwisevariations ofCf andH follow each other very
well albeit with opposite phases; H increases (decreases)
withCf decrease (increase). This is evident in several studies
[Fig. 5(b) of Fernholz and Warnack [84], Figs. 3 and 4 of
Warnack and Fernholz [85], Fig. 3 and Table 1 of Aubertine
and Eaton [86], Fig. 6 of Bourassa and Thomas [80], Fig. 4
of Vinuesa et al. [87], Fig. 5 of Bobke et al. [83], Figs. 1(b)
and 1(d) of Maciel et al. [63], Fig. 3 of Dróżdż et al. [88] ].
Since G is related to H and Cf [76], its variation is also in
tunewith that ofH orCf [Figs. 1(b), 1(d), and 1(e) ofMaciel
et al. [63] ]. Most importantly, Figs. 2(a), 3, 6, and 7 of
Bobke et al. [83] reveal that for matched local values of
dimensionless PG and Reynolds number, the shapes of
viscous-scaled mean velocity profiles differ (G values are

different) depending on the PG history. Further, it has been
suggested in the literature that H captures history effects in
TBLs [63,88,89]. Taken together, the empirical evidence
indeed suggests that G could capture PG history effects as
well. This satisfies the third condition. In view of these facts,
one may expect M-ν-G scaling Eq. (3) and friction model
Eq. (4) to hold generally for all flows (Supplemental
Material Part I [22]).
Hypothesis testing.—To test our hypothesis, we process

and plot all data in M-ν-G scaling [Fig. 4(a)]. Friction
model Eq. (4) fitted to the data is also plotted. Data
processing is outlined in Supplemental Material Part IIA
[22]. The model coefficients are A1 ¼ 2.0699, B0 ¼
−0.4749 and B1 ¼ −0.2860 [Eq. (4)], and empirical
exponents are p ¼ 0.5392 and q ¼ −0.5451 [Eq. (3)].
Data in Fig. 4(a) tightly cluster around the fitted friction
model [Eq. (4)] which can now be used to predictUτ in any
flow. Prediction involves solving implicit Eq. (4)—Uτ

occurs on both sides due to the presence of G in f1 and
Re1 [Eq. (3)]—using measured or computed velocity pro-
file data (Supplemental Material Part IIB [22]); viscous
sublayer data or law-of-the-wall assumptions are not requi-
red (Supplemental Material Part III [22]). Figure 4(b) plots,
for all data points, the percentage deviation of the predicted
value of Uτ from the actual value in measurements or
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FIG. 4. (a) Generalized universal M-ν-G scaling of friction in
smooth-wall turbulent flows. Solid line shows generalized finite-
Re friction model Eq. (4) fitted to all data. (b) Percentage
deviation of predicted Uτ from its actual value. Dotted, dashed,
and dashed-dotted horizontal lines, respectively, indicate devi-
ation bands of�2.5%,�5%, and�7%. Inset shows histogram of
the fraction of data points contained in these bands. For symbols,
see caption of Fig. 2.
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simulations. An impressive root-mean-squared (RMS)
deviation of 2.04% is evident with a �5% band covering
almost all the deviations. Note that, 85 data points out of the
total 192 correspond to standard flows and the remaining
107 correspond to nonstandard flows that involve strong
PGs and/or PG history effects. Results are therefore not
biased by standard flows. While dedicated models tailored
to individual flows could achieve better prediction accu-
racy, results of Fig. 4 unequivocally confirm that our
hypothesis stands scrutiny of the data, and our generalized
M-ν-G scaling [Eq. (3)] and friction model [Eq. (4)] show
high fidelity in handling wide variety of flows over very
broad ranges of Reynolds number, PG and PG history
effects.
Conclusion.—High-Re, nonstandard flows such as those

over wings and fuselage of an aircraft or the nose and body
of launch vehicles and missiles, are of great importance to
practising designers and engineers. Standard flows, on the
other hand, are mainly of interest to academicians as
systematic tools for unveiling the behavior of wall turbu-
lence. Strong PG and PG history effects make nonstandard
flows hard to predict. The present results, for the first time,
show that our generalized scaling and model for friction,
founded firmly on the dynamics and BCs, and supported
strongly by data from experiments and simulations, bring
out an inherent universality of friction in all attached,
smooth-wall turbulent flows. The results are very relevant
to both modelers and experimentalists. For estimating
wall friction, the viscous sublayer next to the wall needs
to be resolved [90] which is computationally expensive
or experimentally formidable [91] in high-Re flows.
Alternatively, wall functions (based on the law of the wall)
may be used if the first resolved (or measured) point is
beyond the viscous sublayer [92,93]. For nonstandard
flows, however, the law of the wall is not universal
[78,93]. Our generalized friction model shows promising
potential to accurately estimate wall friction in numerical
simulations and experiments of high-Re, nonstandard flows
without resolving the viscous sublayer or relying on the law
of the wall.
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