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High-Q microcavities with quadratic and cubic nonlinearities add lots of versatility in controlling
microcombs. Here, we study microcavity simulton and soliton dynamics reinforced by both χð2Þ and χð3Þ

nonlinearities in a continuously pumped microcavity. Theoretical analysis based on the Lagrangian
approach reveals the soliton peak power and gain-loss balance are impacted by the flat part of the
intracavity pump, while the dark-pulse part of the pump leads to a nearly constant soliton group velocity
change. We also derived a soliton conversion efficiency upper limit that is fully determined by the coupling
condition and the quantum-limited soliton timing jitter in the χð2;3Þ system. Numerical simulations confirm
the analytical results. Our theory is particularly useful for investigating AlN microcombs and sheds light on
the interplay between χð2Þ and χð3Þ nonlinearities within microcavity simultons.
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Introduction.—Optical simultons are two-color bright-
dark soliton pairs that were first introduced in a synchro-
nously pumped χð2Þ optical parametric oscillator (OPO) [1].
Recent experiments show that a similar soliton compound
is possible in continuously pumped high-Q AlN micro-
cavities [2], which is termed as microcavity simulton in this
Letter. It constitutes another form of microcombs in
addition to the dissipative Kerr soliton (DKS) microcombs
[3–7]. DKSs have shown great prospects for the photonic
chip-based optical frequency synthesizer [8], optical clock
[9], LiDAR [10], spectrometer [11] and computation
processor [12,13]. However, the low pump-to-soliton con-
version efficiency represents an Achilles’s heel for them
[14–16]. Microcavity simulton offers a viable solution to
improve the efficiency [2].
By pumping a microcavity at a frequency of 2ω properly,

a bright soliton can arise around ω, and the pump becomes
dark-pulse-like, forming the microcavity simulton [see
Fig. 1(a)]. The formation of the bright soliton needs the
coexistence of χð2Þ and χð3Þ nonlinearities [2]. Hence, its
dynamics differs from solitons sustained by pure χð3Þ

[4,17,18] or χð2Þ [1,19,20] nonlinearity, and it is referred
to as a χð2;3Þ soliton here. Pure χð2Þ comb generation by
pumping cavities at 2ω continuously has been investigated
experimentally and theoretically [21–31], but soliton gen-
eration remains a technical challenge [26]. Most studies
have focused on lithium niobate (LN) microcavities with a
relatively strong χð2Þ effect. It needs a very high pump
power (tens of kW for a LN microcavity with a Q-factor of

107 predicted in Ref. [32]) to observe the interplay be-
tween χð2Þ and χð3Þ nonlinarities. The intermediate χð2Þ non-
linearity makes AlN microcavities a versatile platform to
study χð2;3Þ solitons and microcavity simultons [2,33].
However, analytical study on their dynamics is rare, to
our knowledge.
Here, we propose a pair of Ansätze for both the signal

and the pump for the microcavity simulton, which enable
us to analyze the nonlinear dynamics analytically by the
Lagrangian approach [34–36]. Our work reveals that the
interaction within the microcavity simulton via the χð2Þ
nonlinearity contributes to balancing phase detuning from
the resonance and governs the scaling of soliton peak
power and pulse width. Analysis of the gain-loss balance
reveals a soliton conversion efficiency limit depending on
the coupling condition only. We also derived the impact of
the coexistence of χð2Þ and χð3Þ nonlinearities on soliton
group velocity and quantum-limited timing jitter [36–39].
Our work can contribute to tailoring chip-based χð2;3Þ
microcombs in doubly resonant conditions. It can also
inspire work on soliton dynamics in singly resonant,
parametrically driven fiber cavities [40], dichromatically
pumped χð3Þ microcavities hosting bright-dark solitons
[41], and simulton χð2Þ OPOs [1,42].
Ansätze for simultons.—The microcavity simulton

dynamics can be modeled by the following coupled
generalized Lugiato-Lefever equations [2,30,32,43,44]:
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where A and B are the envelopes of the intracavity fields for
signal and pump (normalized so that jAj2 and jBj2 represent
optical power), respectively; T and t are slow time and fast
time; L is the cavity length; TR is the round trip time; κ1ð2Þ
is the total loss rate for the signal (pump); κ2e is the external
coupling rate for the pump Bin; δω1 is the frequency
detuning for the signal; g is the χð2Þ nonlinearity coefficient;
γ1ð2Þ are the χð3Þ nonlinearity coefficients (note that we
omitted the influence of mode overlap when calculating the
nonlinear coefficients for cross-phase-modulation); δβ0 and
δβ1 represent the phase mismatching and the group velocity
mismatching, respectively; and β21ð2Þ is the group velocity
dispersion at the signal (pump) frequency.
We first used the following cavity parameters: L ¼

0.4 mm, TR¼2.8ps, κ1¼κ2=4¼κ2e=2¼2π×0.65GHz,
g ¼ 40 W−1=2=m, γ1 ¼ 0.75 ðWmÞ−1, γ2 ¼ 1.5 ðWmÞ−1,
δβ1 ¼ 0.4 ps=mm, β21 ¼ −50 fs2=mm, β22 ¼ 50 fs2=mm
for simulation. These parameters are possible for AlN

microcavities with a design similar to Ref. [45]. We
assumed a phase-matched condition (δβ0 ¼ 0 m−1), which
can be realized by intermode phase matching [45]. A
microcavity simulton can be generated from noise by
scanning δω1 from −κ1 to κ1 linearly within a slow time
slot ½0; 46�=κ1, and holding it at κ1 afterward with
B2
in ¼ 50 mW. A bright soliton starts to form with δω1

around κ1=2 after passing a chaotic regime [Fig. 1(b)].
Meanwhile, the pump develops a sawtoothlike waveform.
Microcavity simultons also exist with slight phase mis-
matching (see the Supplemental Material, Sec. 3 [46–48]).
The simulated χð2;3Þ soliton still has a sech-pulse shape

[Fig. 1(c)], and we used the following formulas as Ansätze
for the doubly resonant signal and pump fields:
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where B1, t0, τs,Ω1, and φ1 are the amplitude, timing, pulse
width, center frequency shift, and phase of the soliton,
respectively. The Ansätze in Eq. (4) can be derived by
substituting A into Eq. (2), and a linear term is added to
satisfy the periodic boundary condition, i.e., Bð−TR=2Þ ¼
BðTR=2Þ (see the Supplemental Material, Sec. 1 [46]). B2

and φ2 in Eq. (4) are the amplitude and phase of the flat part
for the intracavity pump field. The Ansätze for A and B
agree reasonably with the simulation [Fig. 1(c)]. Since the
linear term was added for the periodic condition rather than
rigorously derived, it causes a slight discrepancy between B
and the simulation. The amplitude for the pump in the
microcavity simulton is asymmetric, while the simulton
amplitude in a χð2Þ OPO is symmetric (tanh-shaped) with-
out a flat part [1]. The flat part and asymmetry of the pump
field will impact the χð2;3Þ soliton dynamics via the χð2Þ
nonlinearity. Equation (4) shows that group velocity mis-
match (δβ1), plays an important role in shaping the
microcavity simulton.
In the frequency domain, the signal comb has a smooth

sech2 shape without a dominant line, as the pump is in the
2ω band [Fig. 1(d)]. There is a steep decrease in jBj when it
overlaps with the soliton pulse. Owing to this modulation,
the pump also develops a comb in the 2ω band. The
simulated pump and signal combs agree with the Ansätze
determined comb shapes [Fig. 1(d)], which further vali-
dates our Ansätze.

(a)

(b)

(c) (d)

FIG. 1. (a) An illustration of χð2;3Þ solitons and simulton
generation in a microcavity. (b) Normalized intracavity pump
and signal dynamics in the simulation when scanning δω1 from
−κ1 to κ1 linearly from the beginning to 46=κ1 and holding it at κ1
afterward. (c) Simulated amplitude of the pump and signal fields
(points) and the corresponding Ansätze (curves). (d) Theoretical
comb spectra derived from the Ansätze also agree with the
simulation.
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Soliton peak power and pulse width.—With these
Ansätze, we analyzed the χð2;3Þ soliton dynamics by the
Lagrangian approach based on Eq. (1) [34–36]. Details of
the method can be found in the Supplemental Material,
Sec. 1 [46]. We first analyzed the peak power (B2

1) of the
χð2;3Þ soliton, whose scaling law is derived to be

δω1TR ¼ γ1B2
1L=2þ gB2L cos ð2φ1 − φ2Þ: ð5Þ

This means the round trip phase detuning δω1TR is bal-
anced by nonlinear phase accumulation from both the χð3Þ

and the χð2Þ nonlinearities [49]. Since the χð3Þ nonlinearity
induced round trip phase shift for a soliton is γ1B2

1L=2, the
peak power for a DKS scales as γ1B2

1L ¼ 2δω1TR
[3,49,50]. The flat part of B also contributes to the non-
linear phase accumulation via the χð2Þ nonlinearity for χð2;3Þ
solitons. Therefore, the simulated soliton peak power no
longer changes linearly with δω1 and is in excellent
agreement with Eq. (5) [see Fig. 2(a), where B2 and φ2

were determined by the simulated B at t ¼ t0]. The
simulated soliton peak power increases with pump power
for a fixed detuning. This increase was further analyzed in
Fig. 2(b) with δω1 ¼ κ1. The simulated soliton peak power
change versus pump power is also in excellent agreement
with Eq. (5) (DKS peak power is almost independent from
the pump power [50]). Furthermore, when g increases, the
soliton peak power decreases, also consistent with Eq. (5).
We further defined R23 ¼ 2gB2L cos ð2φ1 − φ2Þ=γ1B2

1L as
a measure of the relative strength of χð2Þ and χð3Þ non-
linearities. For a given g and pump power, we scanned δω1

to have the maximum R23 as plotted in Fig. 2(c), which
clearly shows their comparable strength. It needs appro-
priate (not large) g and pump power to have comparable
χð2Þ and χð3Þ effects and χð2;3Þ soliton. The used pump power
is much lower than the critical power (6 W) predicted in
Ref. [32], as the soliton endows a high peak power. The
microcavity simulton ceases to exist for a very large g or a
very small γ1.
Pulse width τs is shown to follow the relationship

B2
1τ

2
s ¼ −β21=γ1: ð6Þ

Hence, the soliton area theorem (the product of soliton
amplitude and duration is a constant) [51] is retained for
χð2;3Þ solitons in doubly resonant microcavities. Figure 2(d)
verifies the relationship under different soliton peak powers
(obtained by changing Bin and δω1).
Gain-loss balance and soliton efficiency.—We further

analyzed the dissipation dynamics of χð2;3Þ solitons. The soli-
ton energy can be calculated as E ¼ 2B2

1τs, whose motion
equation is (see the Supplemental Material, Sec. 1 [46])

dE
dT

¼ −κ1Eþ 2gLB2 sinð2φ1 − φ2ÞE
TR

: ð7Þ

The second term on the right-hand side of Eq. (7) can be
regarded as the parametric gain via the χð2Þ nonlinearity and
it is the flat part of the pump that contributes to the gain-loss
balance of the χð2;3Þ soliton. Although the χð3Þ nonlinearity
enables energy exchange within the ω band, it does not add
to the net parametric gain. The relationship is verified in
Fig. 3(a). Hence, 2φ1 − φ2 should fall in (0, π) and
B2 ≥ κ1TR=2gL.

(a) (c)

(d)(b)

FIG. 2. The change of soliton peak power versus (a) detuning
δω1 and (b) pump power B2

in. (c) Comparison between χð2Þ and
χð3Þ nonlinear phase shift. (d) Soliton pulse width still has an
inverse relationship with the soliton amplitude B1. Square colors
stand for pump powers in panels (a),(d) and g in panel (b).

(a)

(b)

(c)

(d)

FIG. 3. (a) χð2Þ parametric gain rate for the soliton based on
Eq. (7) with g ¼ 40 W−1=2=m. (b) Round trip gain-loss ratio
2

ffiffiffiffiffiffiffiffiffiffiffiffi
κ2eTR

p
B2Bin cosφ2=ðκ1Eþ κ2B2

2TRÞ for microcavity simul-
tons under different detunings. (c) Maximum simulated soliton
conversion efficiencies are clamped by Eq. (9). (d) Ratio of round
trip loss for signal and pump under the maximum soliton
efficiency.
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Considering the gain-loss balance for the microcavity
simulton instead of the χð2;3Þ soliton, the round trip gain
from external coupling of Bin should equal the round trip
loss for the simulton, which means

��Bþ ffiffiffiffiffiffiffiffiffiffiffiffi
κ2eTR

p
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��2− jBj2¼2
ffiffiffiffiffiffiffiffiffiffiffiffi
κ2eTR
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¼κ1Eþκ2B2
2TR≥2B2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ1κ2ETR

p
:

ð8Þ

The first two formulas represent round trip gain from the
external pump, and the third represents the round trip loss
(flat part of B dominates the intracavity pump energy). The
gain-loss balance for the microcavity simulton is verified in
Fig. 3(b). The equal sign in Eq. (8) is reached when the
round trip loss for the signal equals that of the pump.
According to Eq. (8), a limit for pump-to-soliton conver-
sion efficiency η is derived as

η ¼ κ1eE
B2
in

≤
κ1eκ2ecos2φ2

κ1κ2
≤
κ1eκ2e
κ1κ2

; ð9Þ

where κ1e is the external coupling rate for the signal. The
simulated maximum η (obtained with the maximum δω1)
for different pump powers and g is shown in Fig. 3(c) for a
critically coupled cavity for both 2ω and ω bands, and is
clamped by Eq. (9) at 25%. Figure 3(d) confirms that the
maximum efficiency is reached when the loss of the signal
is equal to that of the pump. Distinct from continuously
pumped DKSs whose efficiency is proportional to τs=TR

[15], χð2;3Þ solitons have an efficiency limit that is inde-
pendent from soliton profiles. Based on the coupling
conditions given in Ref. [45] (the same sample used in
Ref. [2]), the maximum η is 20%, while the measured
highest efficiency is 17% [2] (wavelength-dependent cou-
pling may cause the slight discrepancy).
Group velocity and quantum-limited timing jitter.—

Group velocity (vg) and soliton timing which determine
the comb frequency stability [6,52] are also impacted by the
modulated pump. The derived motion of the χð2;3Þ soliton
timing t0 in the retarded time frame is

dt0
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¼ β21LΩ1
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The four terms on the right-hand side represent group
velocity change (δvg, δvg=vg ¼ −dt0=dT) induced by the
center frequency shift Ω1 via dispersion, and the tanh part,
the flat part, and the linear part of B via the χð2Þ non-
linearity, respectively. The second term, which agrees with
the previous work on soliton group velocity change in χð2Þ
OPOs and is proportional to 1=δβ1 (δβ1 affects amplitude
of the tanh part) [1,53], was found to dominate. Although

χð3Þ nonlinearity does not impact δvg directly, Eq. (10)
shows that δvg for χð2;3Þ soliton is insensitive to change in
δω1 and τs due to the presence of χð3Þ nonlinearity and the
retained soliton area theorem.
The inverse relationship between δvg and δβ1 is validated

in Fig. 4(a). The simulated δvg with increasing δβ1 (under
δω1 ¼ κ1 and B2

in ¼ 50 mW) agrees well with the full and
simplified Eq. (10). δvg will decrease slightly with τs when
varying δω1. It is mainly the fourth term in Eq. (10) resulting
from the linear part of B that contributes to the decrease
[inset of Fig. 4(a)]. When increasing g in the simulation, δvg
would increase nearly quadratically, as Eq. (10) predicts
[Fig. 4(b)]. The deviation from the simplified Eq. (10)
becomes larger with increasing g, sinceB2

1τ
2
s starts to deviate

from jβ21j=γ1 under stronger χð2Þ nonlinearity (see the
Supplemental Material, Sec. 3 [46]).
Thenwe analyzed the impact of the group velocity change

on quantum-limited soliton timing jitter [36,37]. The
derived quantum-limited timing jitter spectral density for
a χð2;3Þ soliton is (see the SupplementalMaterial, Sec. 2 [46])

St0ðω0Þ¼
ℏωκ1
Eω2

0

�
π2τ2s
12

þðβ21vg−mÞ2
3τ2sðω2

0þκ21Þ
−
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ω2
0þκ21

�
;

ð11Þ

(a) (b)

(c) (d)

FIG. 4. (a) Simulated δvg decreases inversely with δβ1, and the
inset shows δvg changes slightly with τs. (b) Simulated δvg
increases quadratically with g. (c) Simulated and theoretical jitter
spectral density with the inset showing the simulated soliton
random walk. (d) Allan deviation of the simulated and theoretical
quantum-limited timing jitter. The inset shows the simulated and
theoretical m as τs increases.
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where m ¼ π2τ2sgLB2 cosð2φ1 − φ2Þ=3TR and ω0 is the
Fourier frequency. If g ¼ 0 W−1=2=m, m vanishes and
Eq. (11) reduces to the quantum-limited timing jitter
for DKSs.
The simulated jitter spectral density (see Ref. [37] and

the Supplemental Material, Sec. 2 [46], for methods) is in
good agreement with the theory as shown in Fig. 4(c) and is
about 1.76 times of the DKS theory due to a positive m for
δω1 ¼ 3.5κ1=2 and B2

in ¼ 50 mW. The inset shows the
simulated random walk of the soliton timing, which was
used to calculate the Allan deviation for the soliton
diffusion [37]. The simulation is also in excellent agree-
ment with the theory and is about 1.33 times of the
theoretical DKS quantum diffusion [Fig. 4(d)]. Similar
to DKSs, the timing jitter is still dominated by fluctuation
of the center frequency shift Ω1 [second term in Eq. (11)],
but this fluctuation can further penetrate into jitter via χð2Þ
nonlinearity by the flat part of B and nonzero m besides
dispersion β21 [see the third term in Eq. (10)]. The inset
shows the simulated and theoretical m versus τs when
varying δω1. It shows the additional noise from the χð2Þ
nonlinearity is relatively large for short solitons or large
δω1 and starts to decrease or even becomes negative when
δω1 decreases (meanwhile B2

1 and η will decrease). Finally,
the omitted narrow band AlN Raman gain [54] does not
impact δvg and quantum-limited timing jitter strongly (see
the Supplemental Material, Sec. 3 [46]).
Conclusion.—We have studied the simulton dynamics

formed in microcavities with comparable χð2Þ and χð3Þ
nonlinearities. The interaction within a microcavity simul-
ton via the χð2Þ nonlinearity impacts the soliton peak power,
dissipation dynamics, group velocity, and quantum-limited
timing jitter of χð2;3Þ solitons (thus, their applications in
precision measurements). The highest soliton efficiency is
realized when the loss for the signal equals the pump. These
χð2;3Þ solitons can enablemidinfraredmicrocomb generation
by pumping at the telecom band. Moreover, the impacts of
Hopf bifurcation [55–59], active gain [60,61], and quantum
dynamics [36,37,62–64] onmicrocavity simultons and χð2;3Þ
systems is worth investigation in the near future.
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