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Surface polaritons have proven to be uniquely capable of controlling light-matter interactions. Here
we explore surface magnon polaritons in low-loss ferrimagnetic semiconductors, with a focus on their
topological phases. We propose several surface magnon polariton devices, including microwave resonators
that can strongly enhance magnetic fields and low-loss interconnects joining waveguides with vastly
different impedances. Our work can facilitate the exploration of topological phases in polaritons and the
development of topological microwave devices for quantum sensing and information processing.

DOI: 10.1103/PhysRevLett.132.013601

The study of topological phases in electromagnetic
waves has recently attracted significant attention [1,2].
One intriguing example is the optical quantum anomalous
Hall effect [3–5], inspired by Chern insulators of electrons.
The bulk topology of these optical systems protects
unidirectional transport channels along their edges, which
are resilient against backscattering caused by surface
roughness or fabrication imperfections. To achieve optical
Chern insulators, breaking time-reversal symmetry and
electromagnetic reciprocity is crucial. This can be achieved
through various means, such as the gyromagnetic effect
[6–8] in ferrimagnetic semiconductors, the gyroelectric
effect [4] in magnetized plasmas [9,10], or dynamically
driving nonlinear materials [11,12]. Notably, gyrotropic
effects are prominent at microwave frequencies but sig-
nificantly weaker at near-infrared and optical frequencies,
while optical nonlinearities generally require intense driv-
ing fields due to their intrinsic weakness. Additionally,
there is growing interest in exploring topological phases in
quasiparticle settings, such as polaritons [13–16], which
can exist in systems with strong dispersion.
Surface polaritons have proven to be powerful tools for

controlling light-matter interactions due to their high spatial
squeezing factors. Compared to free-space plane waves at
the same frequency, surface polaritons exhibit significantly
faster spatial oscillations. While these polaritons are subject
to material losses [17], they exhibit a range of fascinating
phenomena [18], including strong field enhancements [19],
hyperbolic dispersion [20–22], and substantial modifica-
tions of nearby emitter dynamics [23], even enabling
otherwise forbidden transitions [24–26].
A particularly interesting regime of surface polaritons is

the quasistatic limit, characterized by extremely high
spatial squeezing factors. In this regime, the electric (E)
and magnetic (B) fields of electromagnetic waves are
largely decoupled, allowing independent and versatile

control over both fields. Two types of materials with
negative permittivity, ϵðωÞ < 0, have garnered significant
attention: metals below their plasma frequencies [27–30]
(together with indium tin oxide [31] and gaseous-phase
plasma) and polar crystals within their reststrahlen bands
[32]. Alternatively, materials with negative permeability,
μðωÞ < 0, such as those near ferromagnetic resonances in
ferrites [33], can also be utilized, although this approach
has received less focus.
This work studies surface magnon polaritons (SMP) in

ferrite structures and identifies a Chern insulator topologi-
cal phase in an array of SMP ring resonators. We present a
universal method to geometrically scale SMP structures in
the quasimagnetostatic limit, which enables easy adjust-
ment of their energy velocity [34] and effective impedance
while maintaining their frequencies. This geometric scaling
technique is further applied to the SMP Chern insulators
and their chiral edge states to develop a compact and
lossless interconnect between waveguides with vastly
different impedances. This work paves the way for future
exploration of new methods to localize magnetic fields at
microwave frequencies for quantum applications and the
development of topological microwave devices.
We start by introducing the geometric scaling rule for

electromagnetic waves in the quasistatic limit before
applying it to different SMP structures in conventional
and topological settings. There exists a class of solutions to
Maxwell’s equations where the spatial oscillation is sig-
nificantly faster than the temporal oscillation (k ≫ ω=c).
One such example is known as the surface polaritons,
which arise at the interfaces between air and materials with
negative permittivity ε (e.g., surface plasmon polaritons
[29,35] and surface phonon polaritons [36]) or negative
permeability μ (surface magnon polaritons). In strongly
localized surface plasmon polaritons (surface magnon
polaritons), the magnetic (electric) field strength is nearly
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zero, B ∝ H ∼ 0 (D ∝ E ∼ 0). To satisfy Faraday’s law,
∇ ×E ¼ −∂B=∂t (Ampere-Maxwell equation, ∇ ×H ¼
∂D=∂t), the left-hand side of the equation also needs to
vanish. Namely, the electric (magnetic) field needs to be
nearly curl free, akin to the electrostatic (magnetostatic)
limit.
In both quasistatic limits (Fig. 1), the electric and

magnetic fields are effectively decoupled, allowing them
to vary independently under scaling transformations. For
instance, when a polaritonic waveguide in the quasielec-
trostatic limit is scaled down by a factor of s, the operating
frequency ω remains unchanged. Meanwhile, the E field is
increased by a factor of s while the H field remains nearly
unchanged. On the other hand, in quasimagnetostatics, the
same scaling down operation will increase the H field by a
factor of s while keeping the E field unchanged. In both
cases, the energy velocity vE is reduced by a factor of s.
Motivated by these insights, we proceed to derive the

dispersions of surface-magnon polariton (SMP) wave-
guides and examine their behavior under geometric scaling.
A typical SMP waveguide configuration involves a ferri-
magnetic semiconductor, such as the yttrium iron garnet
(YIG), with a finite width. The waveguide is subjected to an
external magnetic field, Bextẑ, oriented tangentially to the
surfaces of the waveguide, which is assumed to lie in the xz
plane [Fig. 2(a)]. The magnetic permeability tensor of YIG
reads as
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Here the column vectors of the unitary matrix η correspond
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and ê3 ¼ ẑ
of the magnetized YIG material. Along principal axes ê�,
the effective permeability reads as
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Here f¼ω=2π is the frequency, fH¼ γ0H, and fM ¼ γ0M,
where γ0 is the gyromagnetic ratio of YIG (2.8 MHz=Oe).
The external magnetic field is denoted as H ¼ Bext=μ0 ¼
3570 Oe, and the magnetization of YIG is taken to be
M ¼ 1800 Oe, following Refs. [37] and [38]. The Gilbert
damping constant is taken to be α¼8.9×10−4, which is
consistent with experimental results when a gadolinium
gallium garnet (GGG) substrate is used [39–41]. Removing
the GGG substrate can substantially reduce the damping
[39] and facilitate a much longer propagation length
[dashed lines in Fig. 2(b)]. For our 2D calculations, the
demagnetization field [37,42] is zero since the sample
extends to infinity in the direction of the external magnetic
field. See the Supplemental Material [43] for more details
of the material properties.
Besides electromagnetic modes that extend through the

bulk, localized SMP modes are found at the interfaces
between YIG and air [Fig. 2(a)], which are also known as
magnetostatic surface waves (MSSW) in the literature.
Unlike the conventional MSSW results derived under the
magnetostatic approximation (E ¼ 0), we solve the full
Maxwell’s equations without such approximations, leading
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FIG. 1. Geometric scaling of electromagnetic waves in quasi-
static settings. Geometrically scaling down a surface polariton
waveguide, in the quasielectrostatic or quasimagnetostatic limit,
provides an effective method to adjust the energy velocity and the
effective impedance, while maintaining the same operational
frequency.
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FIG. 2. SMP waveguide dispersion and geometric scaling.
(a) Schematic drawing of a SMP waveguide based on ferrimag-
netic semiconductors (YIG) placed in an external magnetic field.
The two SMP waveguide modes (red and green) live on opposite
surfaces and travel in opposite directions. (b) Scaling down the
waveguide width d by factors of s ¼ 10, from 50 to 5 and then to
0.5 μm, results in a proportional decrease in the energy velocity
vE, effective impedance Zair, and propagation length L. Solid
(dashed) lines in the last panel are calculated when a GGG
substrate is (not) used, causing a higher (lower) material loss.
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to several deviations in their dispersions as explained
below. The SMP waveguide modes are bound in frequency:
between a lower limit fL ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fHðfH þ fMÞ
p

and an upper
limit fU ¼ fH þ fM=2. The lower limit fL, often denoted
as f⊥ in the MSSW literature, represents the resonance
frequency of a forward volume wave with a magnetic field
polarized perpendicular to the external magnetic field
(B⊥Bext). We note that the upper limit fU is defined under
the assumption of lossless materials. Consequently, it may
appear that this limit is exceeded in our results, which is due
to our calculations incorporating realistic material losses.
Our calculated SMP dispersion starts from a finite

momentum at the lower frequency bound fL, unlike the
MSSW results derived under the magnetostatic approxi-
mation where it starts from zero momentum [42,47]. The
SMP dispersion consists of two branches: one (red curve)
localized on the upper interface and traveling to the right,
and the other (green curve) localized on the bottom inter-
face and traveling to the left. These waveguide modes
exhibit nonreciprocal behavior due to the broken time-
reversal symmetry and reciprocity caused by the YIG
permeability. The SMP dispersion exhibits a symmetry
ωðkxÞ ¼ ωð−kxÞ due to the Cz

2 symmetry of the waveguide.
The momentum of both SMP branches, kx ∼ 103 m−1, is
significantly larger than that of free-space modes at the
same frequencies (f=c ∼ 40 m−1), confirming the quasi-
magnetostatic nature of the SMP modes.
To validate the scaling rules of SMP modes, we

geometrically scale SMP waveguides to different widths
(d): as d is decreased by factors of s ¼ 10, from 50 μm to
5 μm to 0.5 μm, the frequency range of SMP remains
unchanged; however, the in-plane momentum kx increases
by factors of 10 [Fig. 2(b)]. This is consistent with the
predicted scaling rules. Accordingly, the energy velocity
vE, effective impedance in the air Zair, and propagation
length L also decrease by factors of s ¼ 10.
SMP resonators can also be constructed by curving the

SMP waveguide into a ring resonator, characterized by
inner radius ri, outer radius ro, and width d ¼ ro − ri
[Fig. 3(a)]. The rotational symmetry of the ring resonator
leads to the quantization of SMP resonances based on their
azimuthal numbers m: Em

z ∝ eimϕ. Here ϕ represents the
polar angle in cylindrical coordinates. Nonreciprocal
behaviors similar to those of the waveguide modes are
also observed in SMP resonances: resonances with m > 0
(red circles) localize at the inner surface of the ring and
propagate in the counterclockwise direction, while those
with m < 0 (green circles) localize at the outer surface and
propagate in the clockwise direction. The frequencies of
SMP resonances (circles) are in good agreement with the
SMP waveguide dispersion (dashed lines) when the
momentum of the SMP resonance is associated with
the azimuthal number m according to k ¼ m=reff , where
reff ¼ d= lnðro=riÞ. This relationship is demonstrated in
Fig. 2(a), through an example with d ¼ 50 μm and

ri ¼ 120 μm. See the Supplemental Material [43] for more
details. The SMP resonance frequency increases with the
absolute value of m. Our calculations reveal that SMP
resonances with opposite m values are very close in
frequency, although they are not identical as previously
noted in the MSSW literature [42,47].
The geometric scaling behavior is also observed in SMP

ring resonances [Fig. 3(b)]. When the entire structure is
scaled down by a factor of 10 (or 100), the new SMP
resonance frequencies labeled by red squares (or blue
triangles) remain nearly identical to their original values,
labeled as black circles.
Beyond the conventional devices discussed earlier,

topological devices can be constructed by arranging
SMP ring resonators into a square lattice array, as illustrated
in Fig. 4(a). Each ring here is identical to the one depicted
in Fig. 3(b), with a width of d ¼ 5 μm. When the lattice
constant is set to be a ¼ 108 μm, the rings are sufficiently
far apart. Consequently, the band structure is predomi-
nantly composed of nearly flat bands, which result from
individual ring resonator modes with opposite m values
(such as m ¼ �2 or m ¼ �3). However, there are three
highly dispersive bands that are primarily constituted by the
m ¼ 0 and m ¼ �1 modes. Interestingly, many of the
resulting SMP energy gaps exhibit nontrivial topology, as
evidenced by nonzero Chern numbers (e.g., C ¼ 1). This
observation aligns with the analysis of Cz

2 indices of the
eigenmodes at high symmetry points (Γ andM) in the band
structure, as detailed in the Supplemental Material [43].
To confirm the Chern insulator nature of the SMP energy

gaps, a supercell geometry is employed to examine the
presence of chiral edge states (CES) between the SMP ring
resonator array and a perfect electric conductor (PEC),
as shown in Fig. 4(b). Indeed, pairs of CESs are observed
between 12.397 and 12.452 GHz, as well as between
12.455 and 12.483 GHz. These pairs of CESs, denoted
by red and blue lines, localize at opposite interfaces
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FIG. 3. SMP ring resonators and scaling invariance. (a) SMP
ring resonators support two sets of resonances, labeled by
positive and negative azimuthal numbers m, that propagate on
opposite surfaces and in opposite directions. The SMP resonance
frequencies agree well with the SMP waveguide dispersion with
the same width d. (b) Geometrically scaling down the ring
resonators by factors of s ¼ 10 does not alter the resonance
frequencies.
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(left and right) and propagate in opposite directions (down-
ward and upward). We note that compared to previous
photonic Chern insulators that also utilize YIG [3,6,7], our
unit cells and feature sizes are approximately 2–3 orders
of magnitude smaller, which confirms the high spatial
squeezing factors of SMP. We also note that due to the
high spatial squeezing factors, the effective medium
theory does not generally apply to the SMP, particularly
in the magnetostatic regime. Finally, most of the CES lies
below the light line and may not require confinement
from PECs in practice.
Both the SMP Chern insulator and CES can be geo-

metrically scaled. When the unit cell is reduced by a factor
of s ¼ 10, resulting in a decrease of d from 5 μm to 0.5 μm
and a decrease of a from 108 μm to 10.8 μm, the Chern
numbers of the bands and the frequencies of the CESs
remain unchanged [Fig. 4(c)], but now with 10 times the
momentum ky. Consequently, the CES energy velocity vE
and the effective impedance Zair are also reduced by factors
of s ¼ 10.
A compact and lossless interconnect can be created

between geometrically similar CES. The configuration
[Fig. 5(a)] involves placing an SMP Chern insulator
(bottom section) adjacent to a scaled-down version
(s ¼ 20) of itself (top section). Both structures are termi-
nated by PECs on the right side. When power P1 is input

through the bottom CES (blue arrow), backscattering is
prohibited due to the unidirectionality of the CES.
Consequently, it can only be transmitted through its
geometrically scaled-down counterpart (purple arrow
toward the top, P3), or it can be scattered through possible
trivial edge states (gray arrow toward the left, P2). By
engineering the interface between the two Chern insulators
with identical Chern numbers, one can eliminate such
trivial edge states [43]. This ensures that all input power is
transmitted through, with P3=P1 being 1 [Fig. 5(b)]. This is
achieved despite a significant mismatch in energy velocity
and effective impedance between the input and output CES.
The ability to change the effective impedance by orders of
magnitude while maintaining a consistent frequency range
is a distinctive characteristic of quasistatic systems, such as
SMP. Such adjustments cannot be straightforwardly imple-
mented in dynamic systems, such as gyromagnetic pho-
tonic crystals [3,43].
The structures we proposed are practically feasible

for fabrication and testing. While our calculations here
focus on 2D structures, similar results can be achieved in
3D structures defined in thin-film YIG placed between
metallic plates, as demonstrated in previous experimental
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works [6,7]. Commercially available thin-film YIG wafers
with narrow ferromagnetic resonance linewidths [38] are
well-suited for these implementations. Furthermore, the
proposed structures, such as waveguides and ring resona-
tors, can be fabricated using standard etching techniques
described in existing literature [48,49].
The geometric scaling rules presented here only apply

to certain parameter regimes. For example, overly wide
waveguides (with d ≫ 100 μm) fail to achieve the spatial
confinement necessary for operation in the quasimagneto-
static limit, which results in the SMP dispersion being
unresponsive to variations in waveguide width. On the
other hand, overly narrow waveguides (with d ≪ 1 μm)
necessitate accounting for the magnetic dipole exchange
interaction, an aspect not included in our calculations.
Further investigation of such fine structures could
delve into the exchange regime of electromagnetic waves
[50,51], potentially revealing more complex and intriguing
phenomena.
In summary, this work studies SMP devices in ferri-

magnetic semiconductors and their topological properties.
The proposed geometric scaling rules enable easy adjust-
ments of light speed and effective impedance in the
quasimagnetostatic limit. Our findings open up avenues
for exploring topological phases in polaritonic systems,
manipulating magnetic fields in the microwave regime,
and designing robust and compact topological microwave
devices.
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