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We present a new quantum field-theoretic definition of fully unintegrated dihadron fragmentation
functions (DiFFs) as well as a generalized version for n-hadron fragmentation functions. We demonstrate
that this definition allows certain sum rules to be satisfied, making it consistent with a number density
interpretation. Moreover, we show how our corresponding so-called extended DiFFs that enter existing
phenomenological studies are number densities and also derive their evolution equations. Within this new
framework, DiFFs extracted from experimental measurements will have a clear physical meaning.
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Introduction.—High-energy collisions of hadrons are
central to understanding their femtoscale structure at the
level of quarks and gluons (partons) within the theory of
quantum chromodynamics (QCD). The critical ingredients
that encode this information are parton distribution func-
tions (PDFs) and fragmentation functions (FFs). A crucial
property of PDFs and FFs is their interpretation as number
densities in a parton model framework [1,2], which con-
sequently allows one to derive certain sum rules [1–5]. For
example, the unpolarized transverse momentum dependent
(TMD) PDF fi=N1 ðx; k⃗2TÞ gives the number density in the

momentum fraction x and transverse momentum k⃗T of a
parton i ¼ q or g in a nucleon N [1,2]. Similarly, the
unpolarized TMD FFDh=i

1 ðz; P⃗2⊥Þ gives the number density
in the momentum fraction z and transverse momentum P⃗⊥
of a hadron h fragmenting from a parton i [1,2]. Since PDFs
and FFs are number densities, one can also use them to
calculate expectation values (see, e.g., Refs. [6–9]). The
information contained in sum rules and expectation values
are important pieces to understanding hadronic structure as
well as constraining or cross-checking phenomenological
extractions and model calculations of PDFs and FFs.
The most common type of FFs describe the situation

where a single hadron h is detected in the final state,
i → hX (X representing all undetected particles). Another
intensely studied class of reactions analyzes the case of
two hadrons h1 and h2 being detected from the same

parton-initiated jet, i → ðh1h2ÞX, where dihadron FFs
(DiFFs) become relevant [10–50]. The quantum field-
theoretic definition of DiFFs at the fully unintegrated
level (what we will call uDiFFs) was first written down
almost 25 years ago in the pioneering paper of Bianconi,
Boffi, Jakob, and Radici (BBJR) [20]. This work has
been the basis for all subsequent dihadron-related research
for observables sensitive to the relative transverse momen-
tum of the two hadrons [21–25,27,31,32,35–39,41–48].
Unfortunately, the BBJR definition does not allow the
uDiFFs, nor the so-called extended DiFFs (extDiFFs) that
are the focus of existing phenomenological analyses, to
retain a number density interpretation in a parton model
framework.
The main purpose of this Letter is to disseminate a new

definition of uDiFFs that corrects this issue. We justify its
number density interpretation by explicitly proving certain
sum rules. We also show our corresponding extDiFFs are
number densities and derive their evolution equations.
Given the existing electron-positron annihilation dihadron
cross section data [51], dihadron transverse single-spin
asymmetries in electron-positron annihilation [52], semi-
inclusive deep-inelastic scattering (SIDIS) [53,54], and
proton-proton collisions [55,56], and anticipated measure-
ments of the proton-proton dihadron cross section and
SIDIS dihadron multiplicities, one eventually will be able
to perform rigorous fits of extDiFFs within QCD global
analyses. These studies must be carried out within our new
framework for the extracted extDiFFs to have a clear
physical meaning—see Refs. [57,58].
New correlator definition of DiFFs.—We begin by

briefly discussing two different reference frames that will
be relevant for our analysis: the “parton frame” (p), where
the fragmenting parton has no transverse momentum, and
the “dihadron frame” (h), where the dihadron has no
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transverse momentum. In both frames the parton has the
same large minus-light-cone momentum component k−

[V� ≡ ðV0 � V3Þ= ffiffiffi
2

p
for a generic vector V]. They are

connected through the following Lorentz transformation
(see, e.g., Ref. [2], Sec. 12.4.1): V−

p ¼ V−
h ≡ V−; Vþ

p ¼
ðk⃗T=k−Þ2V−=2þVþ

h − k⃗T ·V⃗T=k−; V⃗⊥¼−ðk⃗T=k−ÞV−þV⃗T .
We use⊥ðTÞ to denote transverse components in the parton
(dihadron) frame. The parton frame is more natural for the
formulation of fragmentation correlators (whether single
hadron or dihadron) as number densities, whereas the
dihadron frame is more practical for proofs of factorization
needed for phenomenological applications.
The quantum field-theoretic correlator for the fragmen-

tation of a parton i into two hadrons h1 and h2, after
integrating over kþ, is defined as [20]

Δh1h2=i
αβ ðz1; z2; P⃗1⊥; P⃗2⊥Þ

¼ 1

Ni

XZ
X

Z
dξþd2ξ⃗⊥
ð2πÞ3 eik·ξOh1h2=i

αβ ðξÞ
���
ξ−¼0

; ð1Þ

where z1 and z2 are the fractions of the parton’s
longitudinal momentum carried by each hadron and P⃗1⊥
and P⃗2⊥ are the transverse momenta of the hadrons relative
to the parton. For a quark, Ni is the number of quark colors
Nc ¼ 3, and

Oh1h2=q
αβ ðξÞ¼ h0jWð∞;ξÞψq;αðξþ;0−; ξ⃗⊥ÞjP1;P2;Xi

× hP1;P2;Xjψ̄q;βð0þ;0−; 0⃗⊥ÞWð0;∞Þj0i; ð2Þ

where ψq is the quark field, α and β are indices for the
components of the field, and W is a Wilson line in the
fundamental representation of SU(3) that ensures color
gauge invariance [2,59]. A sum over color indices in Eq. (2)
is implied. For a gluon, Ni ¼ N2

c − 1, and

Oh1h2=g
αβ ðξÞ ¼ h0jWbað∞; ξÞFaþαðξþ; 0−; ξ⃗⊥ÞjP1; P2;Xi

× hP1; P2;XjFc
þβð0þ; 0−; 0⃗⊥ÞWcbð0;∞Þj0i;

ð3Þ

where Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν is the field

strength tensor involving the gluon field A and the
Wilson lines are now in the adjoint representation of SU(3).
Throughout this Letter, we focus on the production of

unpolarized hadrons. For the fragmentation of an unpolar-
ized parton, we parametrize the correlator in Eq. (1) as

1

64π3z1z2
Tr
h
Δh1h2=qðz1; z2; P⃗1⊥; P⃗2⊥Þγ−

i

¼ Dh1h2=q
1 ðz1; z2; P⃗2

1⊥; P⃗2
2⊥; P⃗1⊥ · P⃗2⊥Þ; ð4Þ

z
32π3z1z2P−

h

δij⊥Δh1h2=g;ijðz1; z2; P⃗1⊥; P⃗2⊥Þ

¼ Dh1h2=g
1 ðz1; z2; P⃗2

1⊥; P⃗2
2⊥; P⃗1⊥ · P⃗2⊥Þ; ð5Þ

where z ¼ z1 þ z2 is the total momentum fraction of the
dihadron and Ph ¼ P1 þ P2. As we will show in the next
section, the prefactor of 1=ð64π3z1z2Þ in Eq. (4) is crucial to
justifying the number density interpretation of the quark
uDiFFs [and similarly for the gluon case in Eq. (5)]. If one
insteadwere to use a prefactor of1=ð4zÞ, to be in full analogy
with single-hadron fragmentation [1,59–61], the quark
uDiFFs would not retain a number density interpretation.
Indeed, the fact that the prefactors on the lhs of Eqs. (4)
and (5) are needed was already recognized previously in the
context of collinear DiFFs Dh1h2=i

1 ðz1; z2Þ [28,29].
Number density interpretation.—To justify that Eqs. (4)

and (5) have the desired number density interpretation, we
will derive sum rules involving our uDiFFs in a parton
model framework. The proofs of the sum rules in this
section are left for Supplemental Material [62]. We focus
first on the number sum rule:

Z
dPSDh1h2=i

1 ðz1;z2; P⃗2
1⊥; P⃗2

2⊥; P⃗1⊥ · P⃗2⊥Þ¼ hN ðN −1Þi;

ð6Þ

where
R
dPS¼P

h1

P
h2

R
1
0 dz2

R 1−z2
0 dz1

R
d2P⃗1⊥

R
d2P⃗2⊥

and N is the total number of hadrons produced when
the parton i fragments. Thus, hN ðN − 1Þi is the expect-
ation value for the total number of hadron pairs produced in
the fragmentation of i. A sum over hadron spins must be
included if either or both hadrons have nonzero spin. We
remark that the labeling of the two hadrons as ðh1; h2Þ or
ðh2; h1Þ is distinguishable and no factor of 1=2 is needed in
the rhs of Eq. (6). We note that the number sum rule Eq. (6)
was first derived in Ref. [29]. A crucial step in our proof is
being able to introduce the number operator

N̂hj ≡
Z

dP−
j d

2P⃗j⊥
ð2πÞ32P−

j
â†hj âhj ¼

Z
dzjd2P⃗j⊥
ð2πÞ32zj

â†hj âhj ð7Þ

for each hadron (j ¼ 1 or 2). This can be achieved only by
having the specific prefactors on the lhs of Eqs. (4) and (5).
Indeed, a derivation is not possible if a prefactor of
1=ð4zÞ ¼ 1=½4ðz1 þ z2Þ� is used on the lhs of Eq. (4).
The result in Eq. (6) gives a clear interpretation for

the uDiFFs we defined in Eqs. (4) and (5): They are
densities in the momentum fractions z1 and z2 and trans-
verse momenta P⃗1⊥ and P⃗2⊥ for the number of hadron
pairs ðh1h2Þ fragmenting from a parton i. The uDiFF
Dh1h2=q

1 ðz1; z2; P⃗2
1⊥; P⃗2

2⊥; P⃗1⊥ · P⃗2⊥Þ encodes the dihadron
fragmentation process for an unpolarized quark (γ− pro-
jection of the correlator). The number density interpretation
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also holds for the fragmentation of a longitudinally polar-
ized quark (γ−γ5 projection) and a transversely polarized
quark (iσi−γ5 projection). The explicit parametrization of
Eq. (1) in terms of quark and gluon uDiFFs for all parton
polarizations, as functions of ðz1; z2; P⃗2

1⊥; P⃗2
2⊥; P⃗1⊥ · P⃗2⊥Þ,

is given in Supplemental Material [62].
We can also derive a momentum sum rule involving

uDiFFs and TMD FFs:

X
h1

Z
1−z2

0

dz1

Z
d2P⃗1⊥z1Dh1h2=i

1 ðz1; z2; P⃗2
1⊥; P⃗2

2⊥; P⃗1⊥ · P⃗2⊥Þ

¼ ð1− z2ÞDh2=i
1 ðz2; P⃗2

2⊥Þ: ð8Þ

If either or both hadrons have nonzero spin, then a sum over
the spin of h1 must be included on the lhs of Eq. (8) [and
Eq. (9) below]. Note that one can identify the ratio of the
uDiFF to the TMD FF, Dh1h2=i

1 ðz1; z2; P⃗2
1⊥; P⃗2

2⊥; P⃗1⊥ ·

P⃗2⊥Þ=Dh2=i
1 ðz2; P⃗2

2⊥Þ, as a conditional number density in
the momentum ðz1; P⃗1⊥Þ for h1 fragmenting from i given
h2 has fragmented from i with momentum ðz2; P⃗2⊥Þ.
Further integrating Eq. (8) over P⃗2⊥ yields

X
h1

Z
1−z2

0

dz1 z1D
h1h2=i
1 ðz1; z2Þ ¼ ð1 − z2ÞDh2=i

1 ðz2Þ: ð9Þ

The momentum sum rule Eq. (9) was first put forth in
Refs. [11,14]. We also mention that the study of DiFFs has
a close connection to double PDFs (DPDFs), where two
partons emerge from a single nucleon. Indeed, an analo-
gous sum rule to Eq. (9) exists for DPDFs, as was derived
in Refs. [63,64]. The quantum field-theoretic derivation
of the sum rule Eq. (8) at the unintegrated (transverse-
momentum-dependent) operator level [from which Eq. (9)
follows immediately] is a new aspect presented here for the
first time.
One can readily generalize to n-hadron (n ≥ 1) frag-

mentation in a way that retains a number density inter-
pretation:

1

4ð16π3Þn−1z1…zn
Tr
h
Δfhign=qðfzign; fP⃗i⊥gnÞγ−

i

¼ Dfhign=q
1 ðfzign; fP⃗2

i⊥gn; fP⃗i⊥ · P⃗j⊥gnÞ; ð10Þ
z

2P−
h ð16π3Þn−1z1…zn

δij⊥Δfhign=g;ijðfzign; fP⃗i⊥gnÞ

¼ Dfhign=g
1 ðfzign; fP⃗2

i⊥gn; fP⃗i⊥ · P⃗j⊥gnÞ; ð11Þ

where z¼ z1þ���þzn, Ph¼P1þ���þPn, fhign≡h1…hn,
fzign≡z1;…;zn, fP⃗i⊥gn≡P⃗1⊥;…;P⃗n⊥, fP⃗2

i⊥gn ≡P⃗2
1⊥;…;

P⃗2
n⊥, fP⃗i⊥ ·P⃗j⊥gn≡P⃗1⊥ ·P⃗2⊥;…;P⃗1⊥ ·P⃗n⊥;P⃗2⊥ ·P⃗3⊥;…;

P⃗2⊥ ·P⃗n⊥, etc. The correlators Δfhign=iðfzign; fP⃗i⊥gnÞ are

the natural extensions of Eqs. (2) and (3) to n hadrons, i.e.,
the final state is now jP1;…; Pn;Xi. The corresponding
number sum rule reads

Z
dPSn D

fhign=i
1 ðf� � �gnÞ ¼

�Yn−1
k¼0

ðN − kÞ
�
; ð12Þ

where
R
dPSn denotes the n-hadron version of

R
dPS and

we have abbreviated the arguments of the FF. Interestingly,
the evolution of collinear n-hadron FFs was already studied
some time ago [12,13], as well as more recently in
Refs. [49,50], but no correlator definition was presented.
Connection to phenomenology.—In order to analyze

measurements of dihadron observables, it becomes conven-
ient to change to the dihadron frame [20,23]. In addition to
Ph, we also introduce the relative momentum R ¼
ðP1 − P2Þ=2. The individual hadrons have masses M1

andM2, while the invariant mass (squared) of the dihadron
is M2

h ¼ P2
h. Along with z, we form the variable ζ ¼

ðz1 − z2Þ=z. The hadron momenta P1 and P2 can then be
written as P1¼½ðM2

1þR⃗2
TÞ=ðð1þζÞP−

h Þ;ðð1þζÞ=2ÞP−
h ;R⃗T �

and P2 ¼ ½ðM2
2 þ R⃗2

TÞ=ðð1 − ζÞP−
h Þ; ðð1 − ζÞ=2ÞP−

h ;−R⃗T �.
Note that one readily finds R⃗2

T ¼ ðð1 − ζ2Þ=4ÞM2
h−

ðð1 − ζÞ=2ÞM2
1 − ðð1þ ζÞ=2ÞM2

2. Because of this change
of reference frames, one naturally thinks of uDiFFs
as now depending on ðz;ζ; k⃗2T;R⃗2

T;k⃗T · R⃗TÞ rather than
ðz1;z2;P⃗2

1⊥;P⃗2
2⊥;P⃗1⊥ · P⃗2⊥Þ.

Nevertheless, the form of the number sum rule in Eq. (6)
allows us to generalize the idea of uDiFFs as number
densities to any set of variables we choose. Consider
making a change of variables from ðz1; z2; P⃗1⊥; P⃗2⊥Þ to
ðw; x; Y⃗; Z⃗Þ, where we understand w and x to be scalars and
Y⃗ and Z⃗ to be two-dimensional vectors. Then Eq. (6)
implies

Dh1h2=i
1 ðw; x; Y⃗2; Z⃗2; Y⃗ · Z⃗Þ
≡ J ·Dh1h2=i

1 ðz1; z2; P⃗2
1⊥; P⃗2

2⊥; P⃗1⊥ · P⃗2⊥Þ ð13Þ

is a number density in ðw; x; Y⃗; Z⃗Þ, where J ¼
j∂ðz1; z2; P⃗1⊥; P⃗2⊥Þ=∂ðw; x; Y⃗; Z⃗Þj is the Jacobian for the
change of variables from ðz1; z2; P⃗1⊥; P⃗2⊥Þ to ðw; x; Y⃗; Z⃗Þ.
Substituting Eq. (4) or (5) into the rhs of Eq. (13) then gives
an operator definition of Dh1h2=i

1 ðw; x; Y⃗2; Z⃗2; Y⃗ · Z⃗Þ. In
addition, integrating over one or more of the variables
ðw; x; Y⃗; Z⃗Þ will define a DiFF that is a number density in
the remaining variables.
For example, if we change variables from ðz1;z2;P⃗1⊥;

P⃗2⊥Þ to ðz; ζ; k⃗T ; R⃗TÞ, as is typically done when deriving
factorization theorems used in phenomenology, then
J ¼ z3=2. Thus,
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Dh1h2=q
1 ðz; ζ; k⃗2T; R⃗2

T; k⃗T · R⃗TÞ
¼ z

32π3ð1 − ζ2ÞTr½Δ
h1h2=qðz1; z2; P⃗1⊥; P⃗2⊥Þγ−� ð14Þ

is a number density in ðz; ζ; k⃗T ; R⃗TÞ [where we made use of
z1z2 ¼ z2ð1 − ζ2Þ=4], and similarly for the gluon case.
Note that the arguments of the correlator on the rhs
can be replaced with z1ð2Þ ¼ zð1� ζÞ=2 and P⃗1ð2Þ⊥ ¼
−zð1� ζÞk⃗T=2� R⃗T .
We emphasize the distinction between our prefactor of

z=½32π3ð1 − ζ2Þ� in Eq. (14) and the prefactor of 1=ð4zÞ
used by BBJR. The latter does not allow for the uDiFFs to
retain a number density interpretation. The explicit para-
metrization of Eq. (1) in terms of quark and gluon uDiFFs
for all parton polarizations, as functions of ðz; ζ; k⃗T ; R⃗TÞ, is
given in Supplemental Material [62].
The functions of interest in experimental measurements

are the extDiFFs, which we define by changing variables
from ðz1; z2; P⃗1⊥; P⃗2⊥Þ to ðz; ζ; k⃗T ; R⃗TÞ (as above) and
integrating over k⃗T. In the quark sector, two twist-2
Dirac projections survive [16,20]:

z
32π3ð1 − ζ2Þ

Z
d2k⃗TTr

h
Δh1h2=qðz1; z2; P⃗1⊥; P⃗2⊥Þγ−

i

¼ Dh1h2=q
1 ðz; ζ; R⃗2

TÞ; ð15Þ

z
32π3ð1 − ζ2Þ

Z
d2k⃗TTr

h
Δh1h2=qðz1; z2; P⃗1⊥; P⃗2⊥Þiσi−γ5

i

¼ −
ϵijT R

j
T

Mh
H∢h1h2=q

1 ðz; ζ; R⃗2
TÞ; ð16Þ

where ϵijT ¼ ϵ−þij with ϵ12T ¼ 1. One should understand the
lhs of Eqs. (15) and (16) as giving an operator definition of
the extDiFFs where the integration over k⃗T has been
explicitly carried out on the correlator in Eq. (1). In this
case, we consider these objects within full QCD. We note
that if one instead changes variables from ðz1; z2; P⃗1⊥; P⃗2⊥Þ
to ðz1; z2; k⃗T ; R⃗TÞ, integrating over k⃗T and R⃗T leads to the
collinear DiFFDh1h2=q

1 ðz1; z2Þ, and the associated correlator
matches that in Refs. [28,29].We emphasize the existence of
H∢h1h2=q

1 ðz; ζ; R⃗2
TÞ, which is not present for fragmentation

into a single hadron. This function has become important in
the extraction of the transversity PDFs, which couple to it in
dihadron observables [32,35,36,39,41,45,48,57,58]. The
gluon extDiFFs are given in Supplemental Material [62].
Experimental measurements of dihadron observables

are usually differential in ðz;MhÞ and integrated over ζ.
The relevant DiFFs are then dependent on ðz;MhÞ [20,22–
25,27]. We change variables from ðz1; z2; P⃗1⊥; P⃗2⊥Þ to
ðz; ζ; k⃗T ;Mh;ϕRT

Þ, where ϕRT
is the azimuthal angle

of R⃗T . The Jacobian is J ¼ z3ð1 − ζ2Þ=8. Using our

aforementioned prescription, we can define a DiFF that
is a number density in ðz;MhÞ:

Dh1h2=i
1 ðz;MhÞ≡π

2
Mh

Z
1

−1
dζð1−ζ2ÞDh1h2=i

1 ðz;ζ;R⃗2
TÞ: ð17Þ

For completeness, we also write down our definition of
H∢h1h2=i

1 ðz;MhÞ:

H∢h1h2=i
1 ðz;MhÞ

≡ π

2
Mh

Z
1

−1
dζ

jR⃗T j
Mh

ð1 − ζ2ÞH∢h1h2=i
1 ðz; ζ; R⃗2

TÞ: ð18Þ

Given the number density interpretation of our DiFFs,
one can compute expectation values for the ensemble of all
ðh1h2Þ pairs in the fragmentation of a parton i. As
mentioned, two of the main variables that dihadron mea-
surements are sensitive to are z and Mh. The expectation
value of an arbitrary function Oðz;MhÞ of these variables
can then be calculated as

hOðz;MhÞih1h2=i¼
Z

dzdMhOðz;MhÞDh1h2=i
1 ðz;MhÞ: ð19Þ

For example, one could compute the average value of z or
of Mh for πþπ− pairs produced from the fragmentation of
an unpolarized quark. The DiFF Dh1h2=i

1 ðz;MhÞ can be
extracted directly from experiment, e.g., using the cross
section dσ=dzdMh for eþe− → ðh1h2ÞX measured by
Belle [51]. Our definition of uDiFFs allows us to establish
a clear physical meaning forDh1h2=i

1 ðz;MhÞ, which has been
absent thus far in the literature.
Actually, calculating the leading-order cross section for

dσ=dzdMh for eþe− → ðh1h2ÞX serves as another verifi-
cation of the number density interpretation of our new
definition of Dh1h2=i

1 ðz;MhÞ. Starting from P0
1P

0
2dσ=

d3P⃗1d3P⃗2, the result takes the form

dσ
dzdMh

¼ σ̂i0D
h1h2=i
1 ðz;MhÞ: ð20Þ

For i ¼ q, σ̂q0 ¼ 4πα2emNce2q=ð3sÞ, which is the partonic
cross section for eþe− → γ → qq̄, where αem is the fine
structure constant and

ffiffiffi
s

p
is the center-of-mass energy of

the eþe− pair. A sum over quarks and antiquarks is
then needed on the rhs of Eq. (20). For i ¼ g,
σ̂g0¼½ðα2sG2

FÞ=ð576π3Þ�f½m2
es2ðN2

c−1Þ�=ðs−m2
HÞ2g, which

is the partonic cross section for eþe− → H → gg (H
being the Higgs boson) using an effective H − g − g
coupling [65–67], αs is the strong coupling, GF is the
Fermi constant, and me (mH) is the mass of the electron
(Higgs). A factor of 2 is now needed on the rhs of Eq. (20),
since both gluons have the ability to fragment into the
dihadron.
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The structure of Eq. (20) is exactly what one expects if
Dh1h2=i

1 ðz;MhÞ is to be interpreted as a number density,
i.e., the differential cross section equals the partonic cross
section times the DiFF. We have also explicitly confirmed
this feature for other sets of variables, including
dσ=dz1dz2 and dσ=dzdζd2R⃗T involving Dh1h2=i

1 ðz1; z2Þ
and Dh1h2=i

1 ðz; ζ; R⃗2
TÞ, respectively.

Evolution of extended DiFFs.—Since the extDiFFs in
Eqs. (15) and (16) (and their gluon analogs) are the objects
that enter most directly in existing phenomenological
studies of dihadron observables, it is important to derive
their evolution equations for our definition. Here, we
analyze the OðαsÞ perturbative corrections to the dihadron
fragmentation correlator, similar to what is done for the
single-hadron case—see, e.g., Ref. [2], Sec. 12.10. The
evolution of the DiFF correlator in Eq. (1) has two pieces: a
“homogeneous term” involving only DiFFs [an example
graph is given in Fig. 1(a)] and an “inhomogeneous term”
involving single-hadron FFs [an example graph is given in
Fig. 1(b)]. We have explicitly checked that the inhomo-
geneous term for the evolution of Dh1h2=i

1 ðz; ζ; R⃗2
TÞ is not

ultraviolet divergent (see Supplemental Material [62])
and, therefore, does not contribute to the evolution of
extDiFFs. The same conclusion was reached in Ref. [30].
However, this inhomogeneous term is needed to derive the
full evolution for the collinear DiFFs Dh1h2=i

1 ðz1; z2Þ
[12,13,15,26,28,29,49,50]. We also remark that, for
extDiFFs, inhomogeneous diagrams will contribute at
Oðα2sÞ and higher orders of evolution.
For collinear PDFs and FFs [e.g., fi=N1 ðxÞ and Dh=i

1 ðzÞ],
evolution is a perturbative process for the 1 → 2 splitting of
a parton and is independent of the target (in the case of
PDFs) or final state (in the case of FFs)—see, e.g., Ref. [2],
Secs. 9.3.1 and 12.9. This observation, along with the
structure of the correlator in Eq. (1), the fact that the
extDiFFs are obtained by integrating over k⃗T, and the
conclusion that only the homogeneous term contributes to
their evolution, makes clear that the splitting functions for
extDiFFs will be the same as those for a parton fragmenting
into a single hadron. The final result reads

∂Dh1h2=iðz; ζ; R⃗2
T ; μÞ

∂ ln μ2

¼
X
i0

Z
1

z

dw
w

Dh1h2=i0
�
z
w
; ζ; R⃗2

T ; μ

�
Pi→i0 ðwÞ; ð21Þ

where D ¼ D1 or H∢
1 and Pi→i0 ðwÞ are the unpolarized

timelike splitting kernels [68] when D ¼ D1 or the trans-
versely polarized splitting kernels [69] when D ¼ H∢

1 . We

note from Eqs. (17) and (18) it is clear that Dh1h2=i
1 ðz;MhÞ

and H∢h1h2=i
1 ðz;MhÞ obey the same evolution equations as

Eq. (21), since the ζ dependence there is not altered in the
evolution.
Evolution equations for extDiFFs were previously

derived in Ref. [30] (and commented on in Ref. [31]).
No correlator was explicitly given, though, preventing us
from unambiguously comparing to those results. We will
instead emphasize that the prefactor used to parametrize the
dihadron correlator in terms of DiFFs does affect the
evolution kernel. For example, if on the lhs of Eq. (4) a
prefactor of 1=ð4zÞ is used [instead of 1=ð64π3z1z2Þ], then
the integrand of Eq. (21) would not have the 1=w factor. We
also mention that the evolution of Dh1h2=i

1 ðz1; z2Þ was
derived in Refs. [15,26,28,29] at leading order and recently
in Refs. [49,50] at next-to-leading order. We briefly discuss
in Supplemental Material [62] how, starting from extDiFFs,
one can reproduce the leading-order result.
Conclusions.—We have introduced a new quantum field-

theoretic definition for fully unintegrated dihadron frag-
mentation functions, as well as a generalized version for
n-hadron fragmentation, that retains a number density
interpretation. We have justified this by proving certain
number and momentum sum rules. Moreover, we have
developed a simple prescription for how to define operators
for uDiFFs that are number densities in any variables of
interest. In particular, we established a clear physical
meaning for the function Dh1h2=i

1 ðz;MhÞ as a number
density in ðz;MhÞ, which was not possible with prior
definitions in the literature. The definitions in Eqs. (4)
and (5) will also be beneficial as the starting point for
possible factorization theorems beyond leading order for
processes involving uDiFFs and extDiFFs. In addition, we
derived the OðαsÞ evolution equations for our extDiFFs.
With DiFFs now rigorously established as number den-

sities through this Letter, one can achieve a deeper under-
standing of hadronic structure through phenomenological
extractions of extDiFFs. Indeed, there are electron-positron
annihilation dihadron cross section data [51] available
sensitive toDh1h2=i

1 ðz;MhÞ, as well as several measurements
of dihadron transverse single-spin asymmetries sensitive to
H∢h1h2=i

1 ðz;MhÞ in electron-positron annihilation [52], semi-
inclusive deep-inelastic scattering [53,54], and proton-
proton collisions [55,56]. A simultaneous global analysis

(a) (b)

FIG. 1. Example diagrams of the (a) homogeneous and
(b) inhomogeneous terms for the evolution of the extDiFF
Dh1h2=q

1 ðz; ζ; R⃗2
TÞ.

PHYSICAL REVIEW LETTERS 132, 011902 (2024)

011902-5



in our framework of all the aforementioned data can be
found in Refs. [57,58].
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