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We investigate the detectability of gravitational waves that have been lensed by a spinless stellar-mass
black hole, with respect to the advanced LIGO. By solving the full relativistic linear wave equations in the
spacetime of a Schwarzschild black hole, we find that the strong gravity can create unique signals in the
lensed waveform, particularly during the merger and ring-down stages. The differences in terms of fitting
factor between the lensed waveform and best-fitted unlensed general relativity template with spin
precession and higher-order multipoles are greater than 5% for the lens black hole mass within 70M⊙ <
Mlens < 133.33M⊙ under advanced LIGO’s sensitivity. This is up to 5 times more detectable than the
previous analysis based on the weak field approximation for a point mass and covers most part of the black
hole mass gap predicted by stellar evolution theory. Based on Bayesian inference, the lensing feature can be
distinguished with a signal-to-noise ratio of 12.5 forMlens ¼ 70M⊙ and 19.2 forMlens ¼ 250M⊙, which is
attainable for advanced LIGO.
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Introduction.—Recent astronomical observations [1] and
gravitational wave (GW) detections [2] have revealed the
existence of massive stellar-mass black holes (BHs) within
the mass gap [3], which poses a potential challenge to the
stellar evolution theory. While most of these BHs are
observed in binary systems or under active accretion, the
majority of stellar-mass BHs are believed to be single and
quiescent [4]. To comprehensively understand the forma-
tion of BHs in the mass gap, it is necessary to study single,
inactive BHs. However, observing these BHs is an extreme
challenge since they emit almost no detectable signals [5].
Currently, the primary method to detect them is through
gravitational microlensing [6–8].
Similar to electromagnetic waves, GWs can also be

lensed when passing through a BH. This provides a new
probe to search for single stellar-mass BHs. Numerous
studies have examined the lensed waveforms of BHs in
the literature [9–21]. Nevertheless, most of them have
been conducted under the weak field approximation and
assumed a thin-lens model. This model neglects the impact
of the strong gravity of BHs and breaks down when the
incident wave is near the optical axis. For a point mass lens,
the difference in terms of fitting factor between the lensed
waveform and the best-fitted unlensed GR template is
typically less than 1%, given the sensitivity of advanced
LIGO (aLIGO) [18,22]. Even for the next generation GW
detectors with much higher sensitivity, such as the LIGO
Voyager [23], the Einstein Telescope [24], and the LIGO
Cosmic Explorer [25], the difference is no more than
4% [21]. A recent search using data from GWTC-3 did

not find any compelling evidence of lensing features
predicted by the weak field approximation [26,27]. It is
worth noting that the microlensing results presented in the
search should not be extended to scenarios involving strong
gravity effects, such as BHs.
Indeed, unlike in the weak field limit or flat spacetime,

GWs can interact with the background curvature and be
scattered back in a strong gravity field [28–32], which can
permanently change the waveform of GWs. For instance,
when a finite wavelet with a clear trailing wavefront passes
through a BH, typically the merger and ring-down signal
of a binary coalescence, a long tail can emerge after the
wavelet [33]. Despite its importance, this issue has not been
addressed in the literature.
In addition to the strong gravity effect, the wave effect of

GWs in the sensitive band of aLIGO (20–5000 Hz) [34]
also becomes prominent for lens BHs with mass below
∼130M⊙ [20], where the GW wavelength is comparable to
the event horizon radius of the lens BH. Unlike the
geometric optics, GWs in aLIGO band can bypass their
foreground stars and stellar-mass BHs along the optical
axis due to diffraction [35], while the electromagnetic
radiation is sheltered by these dense opaque objects.
Furthermore, in the thin-lens model, the frequency-
dependent lensing magnification factor derived from
Kirchhoff diffraction integral diverges on the optic axis
for a point mass lens [35].
To fully address the above problems, we use a 3D time-

domain numerical simulation, which solves the full rela-
tivistic linear perturbation equations in the spacetime of a
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Schwarzschild black hole. Throughout this Letter, we adopt
the geometric unit c ¼ G ¼ 1, in which 1 Mpc ¼
1.029 38 × 1014 sec and 1M⊙ ¼ 4.925 35 × 10−6 sec.
Numerical simulation.—The numerical setup is based

on our previous work, as detailed in [33]. We use
NRHybsur3dq8 [36], which is a surrogate template model
hybridized from nonprecessing numerical relativity simu-
lations, to generate the input waveform. We assume that the
source is a nonspin quasicircular binary BH system with
equal masses and a total initial mass of 40M⊙. The source
is located 100.0 Mpc away from the lens and has an
inclination of π=2, allowing for only hþ polarization at the
lens. The lensing effect primarily depends on the ratio
between the incident GWwavelength and the event horizon
radius of the lens BH ρs. This effect is not directly affected
by spin-induced precession. We assume that the input
waveform has zero spin and only ð2;�2Þ modes. The
input waveform lasts for 0.12933 sec, starting at
0.094666 sec before the merger. As we shall show later,
this waveform length is sufficient to obtain a complete
lensed waveform through interpolation.
We assume that the lens is an isolated Schwarzschild BH

with a mass of 133.33M⊙. The shape of the simulation
domain is a cylinder with a radius of Rcy ¼ 48.73ρs and a
length of Lcy ¼ 146.18ρs (x axis), where ρs ¼ M=2 is the
radius of the event horizon of the lensBH in isotropic coordi-
nate. The cylinder length Lcy ensures that the gravity of the
lens BH does not distort the input wavefront at the boundary
of the simulation domain [33]. To get the lensed waveform,
we place an observer at x ¼ 0.023 333 sec≈73ρs on the x

axis after the BH. In practice, the simulation is performed
with a scaling factor of 750 and the degrees of freedom are
8.055 × 108 using the first-order Lagrange element. The
simulation uses 4800 CPU cores and consumes a total of
1.1M CPU hours.
Figure 1 shows four snapshots of our simulation at

various times, taken in the x-y plane at z ¼ 0. The solid
black circles represent the position of the lens BH with size
equal to the event horizon. The color bar to the right shows
the amplitude of the GW in our simulation.
After passing through the BH, GWs form a highly

directional beam along the optical axis with an opening
angle, which is related to the ratio between the GW
wavelength of the incident waves and the radius of the
event horizon of the lens BH ρs. This opening angle in our
simulation is measured at a degree level, around 107 times
larger than the Einstein radius angle θE, which is typically
in the range of milliarcseconds for a stellar-mass BH in
local galaxies [8]. Note that the lensing effect in the thin
lens model of geometric optics becomes observable only
when the source, lens, and observer are precisely aligned
around θE.
Figure 2 shows the lensed waveform (orange line)

observed at x ¼ 0.023 333 sec≈73ρs on the x axis with
amplitude normalized by its maximum value. Since the
lensed waveform is only amplified during inspiral, we
rescale the input waveform (blue shaded line) to match the
lensed waveform before −0.04 sec for better comparison.
While in the merger and ring-down stages, the lensed
waveform undergoes significant frequency-dependent
amplification and phase shift.

FIG. 1. Snapshots of our simulation at consecutive instants. They are taken along the x-y plane at z ¼ 0. The solid black circles
indicate the position of the lens BH with radius equal to the BH event horizon. The color bar to the right shows the amplitude of the GWs
in our simulation.
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The detectability with respect to aLIGO.—We first ex-
plore the potential degeneracy between the lensing effect
and known physical effects from the unlensedGR templates.
We do not consider templates that are beyond GR in this
work. We choose the fully spin precession time-domain
effective-one-body waveform model SEOBNRV4PHM [37] to
generate the unlensed GR waveforms. High order multi-
poles are considered up to l ≤ 4. The free parameter for the
unlensed GR template is ðMtotal; qs; χ1; θ1;ϕ1; χ2; θ2;ϕ2;
ι; t0;ϕ0Þ. HereMtotal is the total initial binary mass. qs is the
mass ratio of the source binary. χ1;2 is the dimensionless
spin. θ1;2 and ϕ1;2 are zenith and azimuthal angles between
spin and the Newtonian orbital angular momentum LN . ι
is the inclination angle of LN . t0 and ϕ0 are the time and
phase offset.
We use the signal-to-noise ratio (SNR) in a matched filter

to quantitatively evaluate the differences between the
lensed and unlensed GR templates. We first define a
complex number correlation

zðt0Þ ¼
4

σðhlensedÞ · σðhGR;0Þ

×
Z

∞

0

h̃lensedðfÞ · h̃�GR;0ðfÞ
SnðfÞ

e2πift0df; ð1Þ

where hlensed is the lensed waveform and hGR;0 is the
unlensed GR template with unoptimized time and phase

offset, i.e., t0 ¼ 0, ϕ0 ¼ 0. SnðfÞ is the power spectrum
density (PSD) of the detector. σð·Þ is a normalization
constant for the given waveform defined as

σ2ðhÞ ¼ 4

Z
∞

0

jh̃ðfÞj2
SnðfÞ

df: ð2Þ

The fitting factor (FF) is defined as the maximum
modulus of the complex correlation [38]

FF ¼ max
t0

jzðt0Þj: ð3Þ

The time offset t0 is optimized when it gives out FF and the
corresponding phase offset 2ϕ0 ¼ arg zðt0Þ.
In this work, we choose SnðfÞ the sensitivity curve of

the aLIGO detector at Hanford based on the first three
months during O3 [39]. We assume that the length of the
signal is T ¼ 512 sec, leading to a PSD resolution of
Δf ¼ 1=T ¼ 0.001 953 125 Hz. The lower bound of the
waveform frequency is set as flower ¼ 20Hz. Given the fact
that the rescaled input waveform matches the lensed
waveform very well during inspiral, we interpolate the
lensed waveform down to flower using the rescaled input
waveform (black solid line in Fig. 2).
Since t0 and ϕ0 can be efficiently calculated and

optimized from Eq. (1) via the fast Fourier transform,

FIG. 2. The time domain lensed waveform (orange line) observed at x ¼ 0.023 333 sec≈73ρs on the x axis with amplitude
normalized by its maximum value. The amplitude of the input waveform (blue shaded line) is also rescaled to match the lensed
waveform during inspiral. For comparison, their starting times are aligned at the vertical dashed line with zero point time set at the
merger of the input signal. The lensing effect affects the input waveform most significantly at the merger and ring-down stages while the
inspiral signals match well with each other after rescaling. The lensed waveform can thus be interpolated down to flower ¼ 20 Hz using
the rescaled input waveform (black solid line).
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we focus on the remaining nine parameters and use the
Markov Chain Monte Carlo (MCMC) method to explore
the parameter space based on the PyCBC pipeline [40]. We
set the priors for the parameters as Mtotal ∈ ½38M⊙; 42M⊙�,
qs ∈ ½0.45; 1�, θ1;2 ∈ ½0; π�, ϕ1;2 ∈ ½0; 2π�, ι∈ ½0; π=2�. The
prior for the dimensionless spin is set as χ1;2 ∈ ½0; 0.7�,
within which the precessing accuracy of SEOBNRv4PHM in
terms of the fitting factor is better than 1% against the
numerical relativity simulation in most cases [41].
Considering that the waveform typically only lasts for
around 2 sec for our parameter space, given the lower
frequency cutoff flower ¼ 20 Hz, we zero-pad the length to
8 sec, as is commonly done in PyCBC. We sample the
parameter space with 50 walkers and 1000 iterations for
each. We then find the fitting factor among these 50 000
samples. The best-fitted waveforms are shown in Fig. 3. For
the spin precession templates, we find FFspin ¼ 0.946. And
for nonspin templates, namely χ1;2 ¼ 0, we find FFnonspin ¼
0.926. This demonstrates that spin precessing partially
degenerates with the lensing effect.
To generate the lensed waveforms for different values of

the lens mass, we rescale our numerical results, which is a
valid approach since we have used the geometric unit and
our wave equations are fully linear [33]. The rescaling
factor is between 0.5 and 1.875, which corresponds to a
total source binary mass range of 20M⊙ to 75M⊙. This
covers the majority of events detected by aLIGO. The
rescaling keeps the ratio between the incident GW wave-
length at coalescence, λcoal, and the event horizon radius
of the lens BH, ρs, around 9.7, where the lens BH has

relatively significant effect on the lensed waveform. For
each rescaled lensed waveform, we use the same pipeline to
find the fitting factors.
Figure 4 shows the differences (1-FF) between the lensed

waveforms and the best-fitted spin precession templates as
a function of the lens mass. For Mlens < 133.33M⊙ even
with spin precessing, the differences between the lensed
waveform and the unlensed GR templates are substantial,
with (1-FF) greater than 5%.

FIG. 3. Comparison between the lensed GW waveform and the best-fitted unlensed GR template. The solid orange line is for the
lensed GW waveform. The dashed blue line and dotted black line show the best-fitted unlensed GR template with and without spin
precession, respectively. The left panel shows the overall waveforms and the right panel shows a closeup view at the merger and ring-
down stages.

FIG. 4. The differences (1-FF) between the lensed waveforms
and the best-fitted unlensed GR templates as a function of the lens
BHmass. The unlensed GR templates include spin precession and
higher order modes. The fitting factors are obtained by exploring
the full parameter space of the GR templates using MCMC.
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We use the Bayesian inference to estimate whether such
a lensing signal can be distinguished by aLIGO. When
(1-FF) is not too large, the Bayes factor between the lensed
and unlensed GR template is given by [42,43]

lnBlensed;unlensed ≈
SNR2

2
ð1 − FF2Þ

þ ðnGR − δnlensedÞ ln FF: ð4Þ

Here nGR ¼ 15 is the total number of parameters in the
unlensed GR templates including external parameters.
δnlensed ¼ 1 is the number of additional parameters in
the lensed waveform relative to the unlensed case.
Figure 5 shows the logarithm Bayes factor between the

lensed waveform and the best-fitted unlensed GR templates
as a function of the SNR under aLIGO O3’s sensitivity. The
solid black horizontal line indicates the detecting threshold
of lnBlensed;unlensed ¼ 10. Given this criterion, for Mlens ¼
70M⊙ the lensed waveform can be distinguished from
the unlensed ones if the SNR is greater than 12.5. For
Mlens ¼ 250M⊙, the required SNR is 19.2, which is
attainable for aLIGO.
Discussions.—When GWs pass through a BH with the

event horizon comparable to the GW wavelength, gravi-
tational lensing will occur and forms a strongly directional
beam along the optical axis due to the wave nature of GWs.
The lensing effect can be detected as long as observed
within the beam opening angle, which is at a degree level
and is independent to the distances of source and lens. This
opening angle is approximately 107 times larger than the
Einstein radius angle θE in the thin lens model of geometric
optics for a stellar-mass BH in local galaxies. Additionally,
the beam is not only amplified but also has a complicated
nonspherical wavefront and therefore decays slower than

spherical waves. All of these can enhance the detection
probability of lensing events.
The waveform within the lensing beam also undergoes

considerable frequency-dependent amplification and phase
shift due to the strong gravity of the lens BH, particularly
during the merger and ring-down stages. This unique
lensing signal cannot be mimicked by the unlensed GR
template even with spin precessing and can be distin-
guished under aLIGO’s sensitivity with moderate SNR,
which is more detectable than the prediction based on weak
field approximation.
On the other hand, we can also use the lensed waveform

to deduce the physical properties of the lens BH. This offers
a new way to detect single and quiescent BHs, which are
believed to account for a dominant fraction of stellar-mass
BHs. Given substantial detections of these solitary objects,
a more comprehensive understanding of the BH distribu-
tion can be achieved. This can potentially help us to reduce
the uncertainty of the lower bound of the BH mass gap.
Besides, this method can also be used in the search for
primordial BHs since they are considered to be isolated and
spinless [44].
Finally, to actually search for such lensing signals in

LIGO-Virgo observations or even the next-generation GW
detectors, a template bank with gravitational lensing effect
should be established. To achieve this, we will use
phenomenological models with an ansatz in the frequency
domain. These models will be calibrated in the time domain
against a carefully selected set of simulations, which
encompass various parameter sets, spanning a wide range
of ratios between the GW wavelength and the lens BH
horizon radius. A detailed analysis will be provided in our
following work.
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