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Quantum control is a ubiquitous research field that has enabled physicists to delve into the dynamics and
features of quantum systems, delivering powerful applications for various atomic, optical, mechanical, and
solid-state systems. In recent years, traditional control techniques based on optimization processes have
been translated into efficient artificial intelligence algorithms. Here, we introduce a computational method
for optimal quantum control problems via physics-informed neural networks (PINNs). We apply our
methodology to open quantum systems by efficiently solving the state-to-state transfer problem with high
probabilities, short-time evolution, and using low-energy consumption controls. Furthermore, we illustrate
the flexibility of PINNs to solve the same problem under changes in physical parameters and initial
conditions, showing advantages in comparison with standard control techniques.

DOI: 10.1103/PhysRevLett.132.010801

Optimal quantum control (QC) is crucial to exploit all
the advantages of quantum systems, ranging from
entangled states preparation and quantum registers to
quantum sensing. Nowadays, QC can be achieved by
means of controllable dissipative dynamics [1,2], meas-
urement-induced backaction [3-5], Lyapunov control [6,7],
optimal pulse sequences [8], and differentiable program-
ming [9,10]. These QC techniques serve multiple purposes
including state preservation, state-to-state transfer [11],
dynamical decoupling in open systems [12-14], and
trajectory tracking [15,16]. Furthermore, we have wit-
nessed powerful applications across multiple platforms,
including atomic systems [17,18], light-matter systems
[19,20], solid-state devices [21,22], trapped ions [23],
and others. Dynamical QC stems from a time-dependent
Hamiltonian that steers the dynamics [24], and it is
subjected to several constraints like laser power, inhomo-
geneous frequency broadening, and relaxation processes, to
name a few. Therefore, finding the optimal sequence for
QC is highly cumbersome and generally depends on the
system.

Complex computational calculations are at the forefront
of numerical methods to tackle simulation of quantum
systems. For instance, a parametrization of quantum states
in terms of neural networks has enabled the approximation
of many-body wave functions in closed quantum systems
[25-27], and it has also been extended to approach the
density operator in open dynamics (dissipative) [28-33].
Along these ideas, other models have focused on hybrid
implementations [34-36], probabilistic formulations based
on positive operator-valued measure [37,38], or data-
driven model via time-averaged generators [39]. Overall,
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estimating the dynamics of open quantum systems is a
challenging problem. Here, machine learning provides
versatile and promising algorithms to expand our alter-
natives toward completing this task [40-46]. However,
combining time evolution and QC with artificial intelli-
gence, being solved within a single deep learning method
still needs to be explored.

Neural networks (NNs) are commonly trained with data
allowing them to learn the dynamics of quantum systems.
However, NNs that preserve the underlying physical laws
without preliminary data would have practical advantages.
Hence, physics-informed neural networks (PINNs) have
been introduced as a new artificial intelligence paradigm
that requires only the model itself [47,48]. This is a general
physics-informed machine learning framework that has
been applied to solve high-dimensional partial differential
equations [49,50], many-body quantum systems [51,52]
and quantum fields [53], inverse problems using sparse and
noisy data [54], and to discover underlying physics hidden
in data structures [55,56]. Since PINNs are coded using
physical laws, they can be applied to any quantum
evolution where the model is well known [57-63].

In this Letter, we introduce a novel PINN architecture to
find optimal control functions in open quantum systems.
This is a data-free inverse modeling deep learning approach
with a target dynamical behavior instead of data. Our
approach suggests smooth control functions for driving
quantum states to a preselected target state.

Let us consider the following n-dimensional nonauton-
omous dynamical system:

x =A(4,u(?))x(1),

x(0) =xo,  u(0) =wy, (1)
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System dynamics

x(t) = A(A, u(t))x(t)

|<t.Aﬁx<o>7u<o>>
‘ Neural Network‘

'Nx(t% Nu(t)

Parametrization
x(t) = x(0) + f({)Ng(t)
u(t) = u(0) + f(£)Ny(t)

Loss function
L = Lodel + Leontrol + Leonst + Lreg

FIG. 1. PINNSs architecture for solving quantum control prob-
lems. Quantum evolution can be translated into a dynamical
system x(7) = A(4,u(7))x(#), where x(#) and u(z) are the state
and control vectors, respectively, and A are the system parameters.
The input data (red circle) is given by the discrete time vector ¢,
and the outputs of the neural network (NN) are N,(7) and N, (¢)
(blue circle). By minimizing the loss function L the NN discover
N, ,(t) for the parametrized solutions x(#) and u(?).

where x(1)=(x;,...,x,)T€R", u(t) = (uy, ..., u,)" €R™,
and A= (4,,....,4,)T €R* are the state, control, and
parameter vectors (with n, m, s > 1 and m < n?), respec-
tively. Here, A(4,u(7)) is a real n x n dynamical matrix
that depends on u(z) (control) and A (parameters).

Given A and x(z) satisfying Eq. (1), we can apply
machine learning to discover an optimal control vector
u(7) such that the system evolves from x(0) to some
desired target state x,. Techniques based on optimal control
[64], Lyapunov control theory [6], or linear control theory
are based on optimization rules to find a suitable control
vector u (7). Therefore, the main idea is to construct a PINN
that minimizes a loss function to achieve optimal quantum
control.

A feed forward NN is a powerful universal approximator
for any vector function F': R? — RY (r, ¢ > 1) (universal
approximation theorem) [65]. Let us consider the NN
architecture illustrated in Fig. 1 as a new paradigm to
solve quantum control problems. We use an equally
distributed time array ¢t = (¢, ..., f);) as the input to the
NN, with M representing the dimension of the sample
points. PINNs do not require a structured mesh; thus, #; can
be arbitrarily discretized. The NN consists of multiple
hidden layers with activation function sin(-) for the hidden
neurons. This choice of activation has been shown to
improve PINNs’ performance in solving nonlinear dynami-
cal systems [66] and high-dimensional partial differential
equations [50]. The outputs of the NN are the solutions
N, () e R" and N, (1) € R™. We construct a neural state and
control vectors that identically satisfy the initial conditions
by using a hard constraint, x(7) = x(0) + f(#)N,(¢) and
u(7) = u(0) + f(r)N,(1), where f(r) =1 — e is a func-
tion satisfying f(0) =0 [66]. This hard constraint
approach avoids numerical errors in the initial conditions.
The network parameters, weights and biases, are randomly
initialized, and then they are optimized by minimizing a

physics-informed loss function defined by

L= Lmodel + Lcontrol + Lconst + Lreg- (2)

The component L .4, describes the system dynamics:

Lioaa = _ 1%(t) =AGu(t))x(s) . (3)
i=1

with || - || representing a Euclidean distance. The time
derivatives in the neural solutions are computed using
the automatic differentiation method provided by PyTorch
package [67]. By minimizing the above functional, the state
vector will approximately satisfy the system dynamics and,
thus, the underlying physics. The second term on the right-
hand side of Eq. (2) represents the control, that reads

control =1 Z ||X

where the factor # regulates the relevance of the control
condition compared to the leading model component
L 04e- Note that x; could be a constant (regulation) or
time-dependent (trajectory tracking) vector depending on
the control scheme. The term L, could take into account
additional physical constraints for the state or control
vector, respectively, such as probability conservation or
holonomic constraints of the form H(x, u, ) = 0. Finally,
L., is a standard regularization loss term that encourages
the network parameters to take relatively small values
avoiding overfitting. We remark that imposing initial
conditions into the loss function (soft constraint) is also
possible, as illustrated in Ref. [47]. The comparison
between soft and hard constraints is discussed in
Ref. [68]. The effect of overfitting will be the prediction
of a too complex u(¢), which might be practically unfea-
sible for designing a real control. We introduce L., as an
I,-norm of the network weights L., = x> _; w?, where y is
the regularization parameter.

The minimization of the loss function given in Eq. (2)
yields NN predictions that obey the underlying physics and
suggest optimal control functions. For the training [min-
imization of Eq. (2)], we employ Adam optimizer [76].
Moreover, the points ¢; are randomly perturbed during the
training iteration—this method has been shown to improve
the training and the neural predictions [49,60]. To highlight
the method and keep the presentation elegant, we focused
on low-dimensional Hilbert space examples. In the
Supplemental Material, we demonstrate that the proposed
PINN can successfully deal with larger systems [68].

We consider a two-level system as a proof-of-principle
example to illustrate the use of PINNs for QC. We address
the problem of generating Gibbs (mixed) states of the form
Paivbs = 271 255 €PEi|j)(j], with Z = Tr(e™") (partition
function) and f = (kzT)~! (inverse temperature). The
preparation of mixed states is relevant for simulating
high-temperature superconductivity in variational quantum

t;) — x4l%, 0<n<l1, (4
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FIG. 2. (a) Open two-level system controlled by a time-

dependent modulation £(7). Losses are included through absorp-
tion (y,p,) and emission (y.,,) processes. (b) Three-level A system
controlled by two driving fields Q,,(¢) and Q,(¢). We include pure
dephasing rates y; (i = 1, 2, 3) acting on each state |i). One-
(A;,) and two-photon (6) detunings are considered in our
simulations.

circuits [77]. In addition, QC of two-level systems is
also relevant in the context of pulse reverse engineering
[78], feedback control [3], optimal control theory [64], and
controllable quantum dissipative dynamics [79]. Quantum
transitions can be written in terms of the operators o;; =
i) (j| (i, j = e, g), with |e) (|g)) the excited (ground) state.
Let us consider the following Hamiltonian with a phase
damping control,

H(t) = W0, + W0, + é:(t)Geea (5)

with , , representing system parameters and £(#) describing
the unknown control field. Here, 6, = o,, — 6,, and o, =
0oy + 04 Here, £(2) is the control used to generate Gibbs
states. To train our PINN we use the Markovian master equ-
ation, p=—i[H(t),p] + > ;_127ilLipL{ = (1/2){L]L;.p}],
with [-,-] ({-,-}) representing the commutator (anticommu-
tator). The amplitude damping channel is described by
absorption (L, = o,,) and emission (L, = o,4,) processes
with rates y; = y,4,, and y, = y.m. respectively; see Fig. 2(a).
In what follows, we use w, =2, w, =1, yus =0.1,
Yem = 0.3, and £(0) = 0. For £(7) = 0, we get the steady
state (SS) p55=0.2775|¢)(e]|+0.7225|g)(g|+[(—0.1106+
i0.0083)|g) (e|+c.c|. Thus, we use &(7) to drive the system
to another SS, say, p, = (1/2)(|e){e| + |g){g|). Hence, we
introduce the real state vector x(f) = (xy, x5, x3,%4)7 =
[pg_(p pewRe(peg)’Im(peg)]T’ where Pij = <l|p(l‘)‘j> are the
elements of the density matrix. The dynamics can be written
as X = A(4,u(1))x(z), with

~—Yabs  Vem 0 _za)x
Yabs ~7Vem 0 zwx
A A, u(rs = )
(4.u(n) 0 0 T 20, -&@1)
o, -0, 20,+E&1) -r

(6)

0 5 10 15 20
Time (a.u.)

FIG. 3. Evolution of populations p,,(1), p..(t), and coherence
C(t) using the control function &(r) predicted by the PINN. The
architecture of the NN consists of 4 hidden layers of 200 neurons,
it is trained for 4 x 10* epochs with a learning rate 1074,
x = 1073, and 5 = 1. The inset figure shows the PINN solution
for the control function.

where A = (Wy, W., Yaps» Yem) 1S the set of parameters, u(#) =
&(1) is the control vector that needs to be discovered, and
I'=(1/2)(y; +7,) is the effective dephasing rate. We
remark that all results concerning the time evolution are
simulated from a traditional ordinary differential equation
(ODE) solver using the control obtained from the PINN. In
Fig. 3, we plot the dynamics using the PINN’s prediction for
the control &(¢) (inset). The PINN discovers an optimal
Gibbs state preservation with fidelity F(p(t),p,) =
(Tr{[p"2()pap'/?(£)]"/?})? = 0.99 (for ¢ > 20), and the
steady state approaches to p, within an error of 1% for each
component of the density matrix [68]. We remark that
our result outperforms the analytically optimized solu-
tion that finds pjs = 0.549, p55 = 0.4510, Re(p,,) =0,
and Im(p,,) = 0.049, for a constant control &5 = —4
(see Ref. [68] for further details). The latter explains the
asymptotic behavior for &(#) predicted by the PINN.
Moreover, we note in Fig. 3 that the quantum coherence
C(1) = 2|p.,4(1)| is highly activated during the transient
dynamics in order to generate an equally distributed mixed
state, but it asymptotically reaches C =~ 0.1014.

We now focus on a A configuration with two control
fields [see Fig. 2(b)], a platform for studying electromag-
netically induced transparency [80,81], coherent popula-
tion trapping [82,83], and adiabatic population transfer
[84]. The latter has been dubbed stimulated Raman
adiabatic passage (STIRAP) [85]. Let us begin with the
system Hamiltonian H =), E;0;; + H.(t), where E;
stands for the eigenenergies, o;; = [i)(j|, and H.(1) is
the control Hamiltonian. In a multirotating frame and after
the rotating wave approximation, the dynamics of the three-
level system is governed by (A = 1)

(0, 0

QP
H(t) = 66y + Ajo33 + >

03) + HC> s

(7)
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where A} = E3 — E; —w, and A, = E3 — E, — w, are the
one-photon detunings that originate from off-resonant
driving fields with frequencies ), and w,, while § = A; —
A, is the two-photon detuning. Here, Q,,(#) and Q,(t) are
the control fields to be found. A similar Hamiltonian can be
obtained from the interaction of a nitrogen-vacancy center
with a carbon-13 nuclear spin [86,87]. We aim to find the
optimal control pulses [Q,(7) and Q(7)] to transfer
population from state |1) to state |2) via the lossy
intermediary state |3). Our goal is to train a PINN that
completes the task reaching high fidelity, with (i) minimiz-
ing the population in the state |3) and (ii) minimizing the
pulse area. We train our model using the Markovian master
equation (7 = 1),

3
p=—ilH(t),p] + Z}’i(zaiipaii —oiip = poii), (8)
i—1

where y; > 0 are dephasing rates. We set y3 = 0.14 and
Y1 =7» = 1073 to account for larger dissipation in the
excited state. We use the real vector z= (p1,p02,033,
Re[p,],Im[p),],Re[py3],Imp;3], Re[pas], Im[py3])” to write

the dynamics (details are given in Ref. [68]).
In Fig. 4(a), we show the population evolution and the
predicted NN solutions for the control fields Q; ,(¢). Note

"™
\ P2 = 0.97
081 \ 10
g \\ _QS(t)
=o06f |\ Q(t)
= 1 5
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PhE 0 1 2 3
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FIG. 4. (a) Population dynamics for the A system using €, , ()

predicted by the PINN. The PINN allows us to polarize the
system starting from a (b) coherent (¢ = 1) and (c) quasithermal
state (¢ = 0.7). The architecture of the NN includes 5 hidden
layers of 150 neurons and it is optimized over 2 x 10* training
epochs with learning rate 8 x 1073, 7 = 0.2, and y = 2.8 x 1073
[68]. The inset figures show the PINN solution for the pulses
Q, ,(1) considering different initial conditions.

that our PINN successfully delivers a population transfer
with smooth pulses. Furthermore, it attempts to implement
a counterintuitive sequence, turning on the Stokes pulse Q
(red solid line) at the same time that the pump field Q,
(blue dashed line)—for a genuine counterintuitive se-
quence like STIRAP, Stokes pulse precedes the pump
pulse. This is remarkable, considering that the PINN does
not know QC theory or the relevance of following a dark
state evolution. It is worth noting that the Stokes pulse
shown in the inset of Fig. 4(a) triggers the |2) <> |3)
transition, which in STIRAP serves the purpose of prepar-
ing a dark state [87], since initially all the population is in
state |1).

For completeness, we consider a more challenging initial
state given by p(0) =06,,/2+ 0620/2+ (612 + 621)/2.
For ¢ =0, we end up with a fully mixed state (without
quantum coherence), while ¢ =1 provides a balanced
coherent state. Our PINN can handle this new task without
changing the network’s architecture, showing that PINNs
provide a general and adaptive framework for inverse
design (standard methods are not designed for this task).
In Figs. 4(b) and 4(c), we show the population transfer and
the corresponding pulse sequences for ¢ = 1 and € = 0.7,
respectively. Note that the PINN updates the pulses to
deliver good polarizations.

For a thorough benchmarking, we consider other control
methods besides STIRAP [84,85], such as stimulated
Raman exact passage (STIREP) [88], inverse engineering
(Inv. Eng.) [89,90] and modified superadiabatic transition-
less driving (MODSATD) [21,91]. For detailed calculations
of these pulses, see [68]. In Table I we show a comparison.
One can observe that PINN itself speeds up the population
transfer with a high fidelity and using a small amount of
energy. The transfer time 7/ is defined as the time required
to reach the highest probability in the target state (more
details in Ref. [68]). The predicted control functions have
the smallest area A compared to the other methods. We
remark that the regularization L., penalizes the fields for
being too large and provides smooth functions. Thus, we
can control the amplitudes of the fields and the pulse area to
achieve a less power-consuming transfer. Another impor-
tant advantage of our protocol is the robustness against
changes over initial training parameters. It is known that

TABLE 1. The p2 = Trlpon],
A= féf d;\/|gp(z)|2 + |Q,(#)|?, and transfer time ty (in arbi-

trary units). In parentheses, we report the values with A, /27 =
0.2 and §/27 = 0.2, the one- and two-photon detuning, respec-
tively.

population pulse area

PINN STIRAP  STIREP  Inv. Eng. MODSATD
p, 097 (0.93) 0.98 (0.88) 0.98 (0.91) 0.97 (0.79) 0.98 (0.89)
A 7.3 128.6 53.3 19.8 50.0
i 2.0 35 9.4 3.0 13
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STIRAP deteriorates when increasing & [92,93]. Further-
more, the optimization for the other sequences with  # 0 is
nontrivial, and there is not much literature about it—to our
best knowledge. To compare the robustness of the earlier
discovered pulse sequences, we also report in Table I the
population transfer in the presence of two-photon detuning
6/2x = 0.2. We stress that no training or further optimi-
zations have been made to account for the new 8. Therefore,
based on Table I, we conclude that (i) PINNs can reach high
fidelities in a short time under low energy consumption and
(i1) PINNSs are very robust when initial training parameters
are changed, delivering better results in comparison with
standard methods. In [68], we show that PINNs can be
easily trained to counteract the adversary effect of 0.

Finally, we extend our calculations to a four-level system
and show that our PINN performs well against crosstalk to
the newly added state, and also we check that our protocol
deals with larger systems [68].

In this Letter, we introduced a physics-informed neural
network to find control functions in open quantum systems.
We demonstrated a data-free deep learning approach that
jointly solves the open dynamics of quantum systems and
the inverse design of control functions. First, we applied
this formalism to prepare a Gibbs state in a two-level
system. Second, we applied it to state-to-state transfer in a
three-level system. We found that the PINN provides a
flexible method that adapts to different parameters, initial
states, noise channels, and power consumption require-
ments. We hope that PINNs will be very attractive for
problems such as adiabatic quantum computing, quantum
gates, state preservation, manipulation in high-dimensional
Hilbert spaces, initialization of entangled states, and time-
dependent induced behavior in many-body systems.
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