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As a hybrid of artificial intelligence and quantum computing, quantum neural networks (QNNs) have
gained significant attention as a promising application on near-term, noisy intermediate-scale quantum
devices. Conventional QNNs are described by parametrized quantum circuits, which perform unitary
operations and measurements on quantum states. In this Letter, we propose a novel approach to enhance the
expressivity of QNNs by incorporating randomness into quantum circuits. Specifically, we introduce a
random layer, which contains single-qubit gates sampled from a trainable ensemble pooling. The prediction
of QNN is then represented by an ensemble average over a classical function of measurement outcomes.
We prove that our approach can accurately approximate arbitrary target operators using Uhlmann’s theorem
for majorization, which enables observable learning. Our proposal is demonstrated with extensive
numerical experiments, including observable learning, Rényi entropy measurement, and image recog-
nition. We find the expressivity of QNNs is enhanced by introducing randomness for multiple learning
tasks, which could have broad application in quantum machine learning.
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Introduction.—In recent years, significant breakthroughs
have been made in the field of artificial intelligence.
Among various machine learning algorithms, neural net-
works have played a vital role, thanks to their universal
expressivity for deep architectures. As a quantum gener-
alization of neural networks, quantum neural networks
(QNNs) have been proposed based on parametrized quan-
tum circuits. QNNs use quantum states instead of classical
numbers as inputs [1–4]. However, the evolution of the
input quantum states is constrained to be unitary, which
limits the expressivity of QNNs. For physical observables,
which are linear functions of the input quantum states or
density matrices, QNNs can achieve high accuracy only if
the target operator shares the same eigenvalues with the
measurement operator. For a general situation, it requires
introducing auxiliary qubits, as proposed in [5]. To express
nonlinear functions of the input density matrices, such as
purities, traditional approaches introduce multiple replicas,
which is unfavorable on near-term, noisy intermediate-
scale quantum (NISQ) devices with a limited number of
logical qubits. Previous studies have also reported moderate
accuracy for more general machine learning tasks, includ-
ing image recognition [6–10].

In this Letter, we propose a universal scheme to over-
come the expressivity obstacle without the need for addi-
tional replicas. Our main inspiration comes from the recent
development of the randomized measurement toolbox for
quantum simulators [11–35]. In all of these protocols, a
measurement is performed after a random unitary gate, and
the desired property is predicted through a classical
computer after collecting sufficient measurement out-
comes. In particular, the random measurement has been
experimentally realized in [36–41]. These developments
unveil that randomness plays a central role in extracting
information from complex quantum systems efficiently.
From a machine learning perspective, this implies that
introducing random unitaries can enhance the expressivity
of QNNs. This naturally leads to the concept of randomized
quantum neural networks, where we collect measurement
outcomes from an ensemble of parametrized quantum
circuits to make final predictions. Analogous to the differ-
ent types of layers in classical neural networks, randomized
QNNs consist of deterministic layers and random layers. In
deterministic layers, the quantum gates contain parame-
trized quantum gates as in traditional QNNs, while in
random layers, they are sampled from trainable ensembles
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of single-qubit gates. This is illustrated in Fig. 1. We
demonstrate the high expressivity of the proposed archi-
tecture using several different tasks, including both linear
and nonlinear functions of the input density matrix. Our
results pave the way toward realizing the universal expres-
sivity ability for QNNs.
Architecture.—We begin with a detailed description of

randomized QNNs. To be concrete, we focus on the
architecture illustrated in Fig. 1 for Nsys ¼ 5 qubits, which
comprises two deterministic layers, namely, Û1 and Û2,
with a random single-qubit gate layer Ûr in between.
Each deterministic layer Ûld (ld ¼ 1; 2) contains a

number of units V̂l
ldðθlldÞ (l∈ f1; 2;…; Lldg), and each

deterministic layer is constructed as

Ûld ¼ V̂
Lld
ld

ðθLld
ld

Þ;…; V̂2
i ðθ2ldÞV̂1

ldðθ1ldÞ; ð1Þ

where fθlldg are the parameters of the deterministic layers. In
general, the arrangement of two-qubit gates in each deter-
ministic layer allows for a large degree of freedom. In this
Letter, we focus on the standard brick wall architecture with
spatial locality. Each unit V̂l

ld contains Nsys − 1 two qubit
gates and each two qubit gate is an SU(4) matrix which can
be parametrized as expðPj cjĝjÞ. Here, ĝj is the generator of
the SU(4) group, and fθlldg denotes parameters fcg of all
two qubit gates [42]. Nonetheless, alternative choices for
each deterministic layer have the potential to enhance the
expressivity of QNNs for a fixed number of gates [6].
For the sake of experimental convenience, the random

layer Ûr comprises a tensor product of single-qubit gates
denoted as û1 ⊗ û2;…;⊗ ûNsys

. These gates are sampled
from an ensemble

E¼f½wi;Ûr;i ¼ ûi1ðα1
i Þ⊗ ûi2ðα2

i Þ;…;⊗ ûiNsys
ðαNsys

i Þ�g; ð2Þ

where i ¼ 1; 2;…; Nr labels different elements, and wi is
the corresponding weight with

P
i wi ¼ 1. Each single-

qubit gate is parametrized by generators of SU(2) with
three-dimensional real vector αq

i (q∈ f1; 2;…; Nsysg).
Both fwig and fαq

i g are trainable parameters. It is also
straightforward to introduce multiple random layers into
the full architecture of QNNs. Importantly, it is worth
noting the differences between our definition and typical
random measurement protocols. First, our random layer
can be added at any point in the quantum circuit, not
necessarily before the final measurement. Second, our
definition of E allows for nontrivial correlations between
single-qubit gates on different sites, which is typically
absent in random measurement protocols. Both features are
necessary for achieving a high expressivity in QNNs.
We consider a dataset fðjψmi; T mÞg in which

m∈ f1; 2;…; NDg labels different data, and T m is the
target information for the corresponding state jψmi. For
each unitary Ûr;i in the ensemble E, we perform projective
measurements in the computational basis for k ∼Oð1Þ
qubits. The small number of measured qubits would avoid
the barren plateaus, which can be caused by global
measurements [43]. In Fig. 1, we set k ¼ 2, and the
measurement yields the probability distribution given by

pss0
i;m ¼ hψmjÛ†

1Û
†
r;iÛ

†
2ðP̂2

s ⊗ P̂3
s0 ÞÛ2Ûr;iÛ1jψmi; ð3Þ

where the projection operator cPq
s ¼ ð1þ sσ̂qz Þ=2 for

s ¼ �1. Because of the constraint
P

ss0 p
ss0
i;m ¼ 1, there

are only three nontrivial components of pss0
i;m denoted by the

vector pi;m. We then use a classical computer to apply a
general function fβð:Þ parametrized by β, to the probability
distribution pss0

i;m, which yields a single outcome denoted by
Pi;m ¼ fβðpi;mÞ. The classical function can be described by
elementary functions in the simplest setting, but is more
generally described by classical neural networks. We
further average the outcome over the ensemble E to obtain
the final prediction for the input state jψmi as

Pm ¼
XNr

i¼1

wiPi;m ¼
XNr

i¼1

wifβðpi;mÞ: ð4Þ

We use the mean square error (MSE) as the loss function
L ¼ ð1=NDÞ

P
mðPm − T mÞ2 with a data size of ND

during the training process. We apply the gradient descent
algorithm to optimize the parameters fθlld ; wi;α

q
i ; βg to

minimize the loss function L, and set the numerical criteria
as L < 10−5 to characterize the accurate prediction. Our
method to compute gradients of parameters is explained in
the Supplemental Material [42]. In the following sections,
we focus on demonstrating high expressivity for random-
ized QNNs. Our examples range from simple physical
tasks including observable learning and Rényi entropy

FIG. 1. An illustration is provided for the proposed architecture
of randomized quantum neural networks. In this example, the
circuit contains two deterministic layers Û1ð2Þ and one random
layer Ûr in between, with the final measurement performed on
two qubits. As demonstrated in this Letter, this architecture shows
randomness-enhanced expressivity for a variety of general
learning tasks.
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measurement, to standard machine learning tasks such as
image recognition.
Observable learning.—To show the high expressivity of

randomized QNNs, let us consider a simple scenario where
the target T m is an expectation of a physical observable Ô
with T m ¼ hψmjÔjψmi. For simplicity, focusing on single-
qubit measurement with k ¼ 1, we first investigate whether
the randomized QNNs as proposed in Fig. 1 can approxi-
mate the target function T m as accurately as possible for
sufficiently deep circuit structures with sufficiently large
Nr. As physical observables are linear in density matrices, a
linear function fβðxÞ ¼ β0 þ β1x will be applied to the
measurement result. Explicitly, we introduce Ûtot;i for a
random realization i of the quantum circuit. As an example,
we have Ûtot;i ¼ Û2Ûr;iÛ1. An accurate prediction of the
target function requires that

XNr

i¼1

wiÛ
†
tot;iðβ0σ̂10 þ β1σ̂

1
zÞÛtot;i ¼ Ô; ð5Þ

where σ̂0 is the identity operator, and Pauli matrix σ̂z is the
single qubit’s measurement operator.
For the case of Nr ¼ 1 and w1 ¼ 1, our setup reduces to

the traditional QNN without randomness. In this scenario,
Eq. (5) requires that ðβ0σ̂10 þ β1σ̂

1
zÞ and Ô be related by a

unitary transformation. Since the unitary transformation
preserves the eigenvalues of the operator, the requirement
cannot be satisfied for a general operator Ô. When Nr > 1,
Eq. (5) can be expressed as ΦðΣ̂Þ ¼ Ô, where Σ̂≡ β1σ̂

1
z þ

β0σ̂
1
0 and ΦðX̂Þ is a mixed-unitary channel [44]. For

sufficiently complex circuit structures, we expect Φ to
be generic. In comparison to the Nr ¼ 1 case, there is no
constraint from unitarity. However, we still need to ask
whether Eq. (5) can be satisfied for an arbitrary operator Ô.
In the following, we prove that the answer to this question
is affirmative.
Step 1: Mathematically, if there exists a mixed-unitary

channel Φ such that Y ¼ ΦðXÞ, we say that X majorizes Y,
denoted by Y ≺ X [45]. Thus, for randomized QNNs,
which can accurately predict any observable Ô, we need
to find values of β0 and β1 such that Ô ≺ Σ̂ for any Ô.
Step 2: According to Uhlmann’s theorem for majori-

zation [45,46], Ô ≺ Σ̂ if and only if λÔ ≺ λΣ̂, where λX̂ is
the list of eigenvalues for the operator X̂ in descending
order. Here the majorization between two real vectors y ≺ x
is defined as (i)

Pq
j¼1 xj ≥

Pq
j¼1 yj for arbitrary 1 ≤ q < D

and (ii)
P

D
j¼1 xj ¼

P
D
j¼1 yj. Here, D is the dimension of

the vectors. We note that condition (ii) takes into account
the trace-preserving property of mixed-unitary channels.
Step 3: We can always find β0 and β1 such that

λÔ ≺ λΣ̂. Assuming β1 > 0, the first or last D=2 compo-
nents of λΣ̂ correspond to the values β0 þ β1 or β0 − β1,
respectively. The constant term β0 can then be determined

using condition (ii), which gives β0 ¼ D−1PD
j¼1 λÔ;j.

Moreover, condition (i) can always be satisfied for suffi-
ciently large β1. This proves the existence of β0 and β1 such
that Ô ≺ Σ̂.
Although randomized QNNs have the potential to

express arbitrary operators, it is difficult to determine an
upper bound or a required value for Nr in practical learning
tasks. It is unfavorable to have largeNr or a large number of
random layers, especially in NISQ devices. Therefore, we
turn to numerical simulations of the randomized QNNs,
and investigate practical requirements on Nr. Since the
basis change can be efficiently captured by the determin-
istic layer Û1, we focus on observables Ô that are diagonal
in the computational basis. For simplicity, we further set
Û1 ¼ Î and Û2 composed by L2 units of a brick wall
structure [42]. For each system size Nsys, we test whether a
random diagonal operator Ô can be predicted accurately for
different values of Nr by monitoring the training loss for a
sufficiently large dataset. As an example, we plot the
logarithmic training MSE log10 as a function of the training
epoch for Nsys ¼ 2 in Fig. 2(a). The curves are averaged

FIG. 2. Predicting observables using QNN with a random layer.
(a) The logarithmic training mean square error is shown as a
function of the training epoch for observable learning with
Nsys ¼ 2. The solid lines represent the averaged over the training
process for ten different random target operators with indepen-
dent runs, while the shaded region represents the standard
deviation. The dashed lines are the validation loss with the
dataset containing 200 samples. (b) The logarithmic mean
square error of training dataset for Nsys ∈ f2; 3; 4; 5g and
Nr ∈ f1; 2; 3; 4g. The markers represents the average over ten
different random target operators with random initializations, and
error bars are the standard deviation.
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over ten operators with random eigenvalues from the
uniform distribution ½−2.5; 2.5�. When we increase Nr
from 1 to 3, there is a rapid decrease in the training loss
for large training epochs. The result shows that Nr ¼ 3 is
sufficient for learning general operators for Nsys ¼ 2 where
the loss L can be decreased to 10−14. We further extend the
system size Nsys to study how it affects the number of
required random gates. The results are shown in Fig. 2(b).
Although we are limited to small system sizes
Nsys ∈ f2; 3; 4; 5g, the results clearly show weak depend-
ence of Nr on Nsys. The training results show that Nr ¼ 3

already gives highly accurate predictions for Nsys ¼ 5.
Rényi entropy measurement.—We now consider targets

that are nonlinear functions of density matrices. One
example is the Rényi entropy, which is also of experimental
interest. To compute the Rényi entropy for a subsystem A
consisting of the central Nsub qubits, we first calculate the
reduced density matrix ρ̂A of an input state jψmi by tracing
out the degrees of freedom of the complementary sub-
system A. We then select the target as

T m ¼ TrA½ρ̂nA�; ð6Þ

which is related to the nth Rényi entropy through

SðnÞA ¼ −½1=ðn − 1Þ� lnðT mÞ. Since we are directly meas-
uring a local property of the input wave function, it is
reasonable to fix Û1 and Û2 to the identity matrix Î and
focus on the random layer Ûr with k ¼ Nsub. This approach
provides a minimum guaranteed expressivity of random-
ized QNNs. Because the target T m is proportional to ρn, we
choose the function fβðxÞ to be a polynomial up to the nth
order. However, it is worth noting that lower-order poly-
nomials may also work in certain cases [47]. We prepare a
dataset with random states jψmi, the detailed description of
which is provided in the Supplemental Material [42]. The
numerical results for n ¼ 2; 3, Nsys ¼ 5, and Nsub ¼ 1; 2
are shown in Fig. 3. To achieve accurate predictions, we
need Nr ¼ 3 for Nsub ¼ 1 and Nr ¼ 9 for Nsub ¼ 2. The
blue lines in Fig. 3 demonstrate that the loss L is able to
reach a value of 10−5 and still keep decreasing, indicating
the ability to make accurate predictions. We have also
discussed the saturation of Nr for n ¼ 2; Nsub ¼ 2, and the
required number of Nr if we instead consider n ¼ 3. The
results are shown in the Supplemental Material [42].
It is interesting to compare our results to the proposed

random measurement protocol for Rényi entropies. Our
results indicate that Nr scales as 3Nsub when measuring
Rényi entropies. In comparison, the previous protocol
required each single-qubit gate ûiq to be sampled from
the circular unitary ensemble [18,40]. For n ¼ 2, the
circular unitary ensemble can be replaced by unitary
2-designs, which are known to be the Clifford group.
Since the single-qubit Clifford group contains 24 elements,
the total number of unitary matrices Ûr;i would naively

scale as 24Nsub. However, in practice, this can be signifi-
cantly reduced because randomized measurement protocols
only require Ns snapshots sampled from the full ensemble.
The theoretical bound of Ns for measuring general linear
observables in a subsystem with Nsub qubits using random
Pauli measurements up to an error ϵ is given by Ns ≳
3Nsub=ϵ2 [18,19]. Consequently, in this quantum neural
network structure, the number of unitary matrices Ûr;i that
contribute is at most 3Nsub , as in our randomized QNNs.
Image recognition.—Finally, we turn our attention to

image recognition, a more practical machine learning task,
in order to demonstrate the enhanced expressivity of
randomized QNNs. In this case, we use Google’s “Street
View of House Number” dataset as an example [48]. Each
image in the dataset corresponds to an integer number. For
demonstration purposes, we select two categories of images
containing the numbers “1” and “4.” Initially, we compress
each image into an 8 × 8 pixel format, resulting in a 64-
dimensional real vector, which can be equivalently repre-
sented as a 32-dimensional complex vector. Subsequently,
we encode the image into the input wave function using
Nsys ¼ 5 qubits [42]. Unlike previous tasks, the mapping
between the input and the output is highly complex and
nonlocal, lacking a simple understanding. Consequently,
we allow both Û1 and Û2 to be trainable. After measuring a
single qubit, we choose a fifth-order polynomial for the
function fβðxÞ. Since the image recognition is a two-
category classification task, after obtaining the final ensem-
ble average prediction Pm, we apply a logistic-sigmoid

FIG. 3. Predicting Rényi entropies using QNN with a random
layer. The logarithmic training mean square error is shown as a
function of the training epoch for purity with Nsys ¼ 5 and
(a) n ¼ 2; Nsub ¼ 1, (b) n ¼ 2; Nsub ¼ 2, (c) n ¼ 3; Nsub ¼ 1, or
(d) n ¼ 3; Nsub ¼ 2. The results are averaged over the training
process for ten different random initializations, and the shaded
region represents the standard deviation. The dashed lines are the
validation loss with the dataset containing 200 samples.
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function to restrict the prediction in the region (0,1) with
Gm ¼ 1=½1þ expð−PmÞ�, and we use the cross-entropy as
the loss function L ¼ ð1=NDÞ

P
m −T m logðGmÞ − ð1 −

T mÞ logð1 − GmÞ to optimize the parameters in the ran-
domized QNN. The accuracy F¼ð1=NDÞ

P
m j½signðGm−

0.5Þþ1�=2−T mj for Nr ¼ 1 and Nr ¼ 4 is shown in
Fig. 4. For Nr ¼ 1, the accuracy saturates at approximately
0.8 after a large number of epochs, while the averaged
accuracy for the test dataset reaches 69.8%. The introduc-
tion of a single random layer with Nr ¼ 4 significantly
enhances the accuracy of the predictions. In this case, the
training dataset achieves an accuracy higher than 90%, and
the average accuracy for the test dataset is 82.29%. The
utilization of a nontrivial random layer with Nr ¼ 4
demonstrates a significant improvement in the prediction
capabilities of QNNs, indicating the enhanced expressivity
of our randomized QNN architecture.
Outlook.—This Letter introduces the concept of ran-

domized quantum neural networks, which include random
layers where quantum gates are selected from an ensemble
of unitary matrices. It is proven that these random layers
provide universal expressivity for general physical observ-
ables using Uhlmann’s theorem for majorization.
Numerical simulations further show that this architecture
achieves high expressivity for nonlinear functions of the
density matrix, such as Rényi entropies and image recog-
nition, with small ensemble sizes Nr. These results indicate
that the proposed method has potential for broad applica-
tions in NISQ devices. We remark that adding a random
layer to the QNNs causes an extra computational cost
proportional to Nr. Nonetheless, introducing randomness
to QNNs while maintaining the same computational cost
still improves the learning performance significantly [42].
We further highlight the differences between our architec-
ture and the proposal presented in a very recent paper [49].
Their work also incorporates a series of parametrized
quantum circuits, where the circuit consists of multiple
parametrized (controlled) rotations that share the same

parameter. In contrast, our architecture features only a
few random layers described by a tensor product of single-
qubit gates, making its training process more efficient.
While the focus of this Letter is on parametrized quantum

circuits with brick wall structures, it is straightforward to
combine this novel architecture with other proposals to
further improve expressivity or learning efficiency. For
instance, it is possible to add ancilla qubits and explore
more sophisticated architectures for the deterministic
layers. Additionally, it would be interesting to investigate
the impact of random layers on other quantum machine
learning algorithms beyond traditional quantum neural
networks [50–55], such as quantum autoencoders [50,51].
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