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We study experimentally and numerically the noisy evolution of multipartite entangled states, focusing on
superconducting qubit devices accessible via the cloud. We find that a valid modeling of the dynamics
requires one to properly account for coherent frequency shifts, caused by stochastic charge-parity
fluctuations. We introduce an approach modeling the charge-parity splitting using an extended Markovian
environment. This approach is numerically scalable to tens of qubits, allowing us to simulate efficiently the
dissipative dynamics of some large multiqubit states. Probing the continuous-time dynamics of increasingly
larger and more complex initial states with up to 12 coupled qubits in a ring-graph state, we obtain a good
agreement of the experiments and simulations. We show that the underlying many-body dynamics generate
decays and revivals of stabilizers, which are used extensively in the context of quantum error correction.
Furthermore, we demonstrate the mitigation of 2-qubit coherent interactions (crosstalk) using tailored
dynamical decoupling sequences. Our noise model and the numerical approach can be valuable to advance
the understanding of error correction and mitigation and invite further investigations of their dynamics.
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State-of-the-art qubit devices for quantum computation
have been realized with tens and hundreds of qubits on
single chips [1-4]. In many of those devices the models
describing the control and environment errors are often
similar, even when the underlying physical mechanisms are
quite different. The noise sensitivity of the individual qubits
and gate operations make quantum error correction codes
an essential goal in the field, en route to harnessing the full
power of quantum algorithms [5—11].

Many quantum codes are based on storing information in
delocalized, entangled N-qubit states (N > 1), and meas-
uring n-qubit (nQ) operators (of low weight, n < N) for
the detection of local errors and the application of correc-
tions. A lot of effort is devoted to the development of
numerical tools and characterization procedures, focusing
both on the microscopic qubit dynamics and the high-level
gates, and the question of whether the noise is Markovian
(memoryless) or the contrary [12-23]. In general, it is hard
to model faithfully the interplay of various decoherence
mechanisms and the continuous dynamics of coupled
qubits. One of the outstanding challenges is the incorpo-
ration of noise parameters measured at the few-qubits level,
in the regime of multiqubit-state dynamics.

In this Letter, we develop a fundamental noise model that
is extensible to the many-body regime of qubit dynamics.
We experimentally and numerically study the continuous-
time dynamics of multiqubit graph states [24,25]. Our
experiments are conducted using giskit-experiments [26]
on IBM Quantum superconducting transmon qubits acces-
sible via the cloud [27]. We characterize the 1Q and 2Q
parameters relevant in the studied setup, together with state
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preparation and measurement (SPAM) errors. Identifying
errors that may appear non-Markovian, but can in fact be
described using an appropriate Markovian environment, we
employ a high-performance numerical solver [28—-30] that
allows us to efficiently handle the density matrix of many-
qubit states. The simulation gives us access to state char-
acteristics that are otherwise inaccessible.

Figure 1 shows a schematic depiction of the setup
studied in this Letter. The dynamical model that we
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FIG. 1. (a) This Letter focuses on the dynamics of an open

quantum system with a density matrix p(¢) of 12 qubits in a ring.
(b) For superconducting qubits, the qubit levels (with frequency
;) are split due to charge-parity fluctuations that manifest
effectively as a Bernoulli stochastic variable shifting the qubit
frequency by £v;. (c) To model the charge-parity splitting in a
many-body simulation reproducing the experiment dynamics,
each qubit Q; is coupled to a fictitious two-level system [with
levels denoted by e, o (even, odd)] initialized to a diagonal
mixed state, which is traced over at the end of a calculation. The
model further includes energy relaxation time (7' ;), dephasing
time (7,;), and 2-qubit ZZ crosstalk ({;;)—see the text for
details.
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consider applies generally to the decoherence of quantum
memory states relevant for many physical systems. We start
from the term in the dynamics specific to superconducting
qubits, describing charge-parity oscillations. In essence,
each qubit’s frequency is shifted according to the charge
parity (even or odd) of the qubit’s junction electrodes,
which switches due to quasiparticle tunneling. This split-
ting has been treated in the context of single-qubit experi-
ments [31-38], and in this Letter we present an approach
for its inclusion as part of the basic noise model of many-
body dynamics of superconducting qubits, essential for
accurate simulations.

As an example demonstrating the parity oscillations of a
single qubit we consider a simple Ramsey experiment,
wherein a qubit is prepared in the |+) = (|0) + [1))/V/2
state (along the +x direction of the Bloch sphere), and then
its time evolution is probed with measurements in the x, y,
and z bases repeatedly to collect the probability of
measuring the positive eigenstate. The magnitude of the
qubit’s Bloch vector projection on the xy plane is plotted in
Fig. 2(a) as a function of the time, together with (z). Here
and in the rest of the Letter, experimental data points and
error bars indicate the mean and 1 standard deviation of
1024 measurements (shots) [39]. The observed oscillations
of the qubit’s Bloch vector norm could be assumed to result
from an interaction (with a neighboring qubit or an
uncontrolled degree of freedom) or a non-Markovian noise
process, but this is, in fact, not the case here.

1.0F
0.5F
0.0F FEEET
1.0F
0.5
0 50 100 150
time [ps]
FIG. 2. (a) A single qubit’s mean xy projection of the Bloch

vector (v/(X)? + (Y)?) as a function of time after being initial-
ized to the |+) state in a Ramsey experiment, plotted together
with (Z) whose amplitude grows as the qubit’s ground state
becomes populated at a rate equal to 1/7;. The shrinking of the
xy projection and its revival is reminiscent of a non-Markovian
process. (b) A characterization of v and A of Eq. (1) together with
the decoherence time 7, from the data points in an identical
Ramsey experiment with the lines showing a fit of the data
according to Egs. (2) and (3).

With superconducting qubit devices, each qubit’s fre-
quency is first characterized to determine the microwave
drive frequency to which each qubit is locked in experi-
ments to follow. In the rotating frame with respect to this
predetermined frequency, each of the parity states (de-
noted hereafter by a subscript a € {e, 0}) is subject to a
Hamiltonian with a shifted frequency,

1
Ha/fzziwa(l—az), w,=A+v, w,=A-v, (1)

where A is the mean drift (or detuning) of the qubit’s
frequency from the microwave frame fixed previously, and
v the parity oscillations’ frequency. Equation (1) adopts the
convention that the qubit’s ground state obeys ¢°|0) = |0),
while for the excited state 6°|1) = —|1), and the higher
levels beyond the first two are neglected.

The probabilities of even and odd parities have been taken
in earlier experiments as being equal over appropriate time-
scales [34—-37]. We test the consistency of this assumption
with our model in the current device. Assuming that during
each shot of the experiment the qubit’s charge parity is even
or odd but constant, its density matrix p(#) can be described
as a convex sum of the independent parity contributions,
p =bp,+ (1-=">)p,, where we introduce b to parametrize
the fraction of shots with even parity. By fitting b as a free
parameter, we find that b~ 0.5 almost always (within
statistical noise), although we also find rare deviations
(see Supplemental Material [41]). We set b = 1/2 hereafter,
describing well our data.

Figure 2(b) presents an example of a similar Ramsey
experiment as described above, fitting the parameters of
Eq. (1) using the probabilities of measurements along the x
and y directions. Each of the signals can be written as the
product of two decaying oscillations [41],

P, = Aexp(—t/T,) cos[(A + w,)t + ¢] cos(vt) + B, (2)
P, = Aexp(—t/T,) sin[(A + w,)t + ¢]cos(vt) + B, (3)

where w; is the “intended” frame detuning offset added to
improve the signal, and T, is the dephasing time. In
addition ¢, A, and B are fitting parameters accounting
for the SPAM errors, which ideally would be 0, 1/2, and
1/2, respectively. We find that the model is consistent
with the experiment data without requiring an additional
Gaussian decay envelope corresponding to a 1/f noise
[41,42]. The characterized values of v are consistent with
the theoretical charge dispersion [43,44] of our used
transmon qubits [41].

Once v is characterized for each qubit, the Hamiltonians
H, and H, can be constructed numerically and the
dynamics of the system can be simulated. However, an
N-qubit simulation accounting for the charge-parity split-
ting would have to average the results of 2V different time
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evolutions with their modified parameters corresponding to
the initial conditions of even or odd parity. This quickly
becomes intractable, and here we choose instead a different
approach that allows us to scale our simulations to tens of
qubits under relevant conditions. For the purpose of
simulation, we can map the problem of a qubit whose
frequency is a (Bernoulli) random variable onto an open
system with an additional fictitious “qubit” whose ground
state labels the even parity, while its excited state relates to
the odd parity. The Hamiltonian of the system can then be
written as

Hh=3 YA tusli-o). @)

1

where o7 is the Pauli z matrix of the actual qubit, and &7 is
the Pauli z matrix corresponding to the parity. The parity
qubit can be described by a diagonal density matrix
(parametrized with b), which naturally remains invariant
under the time evolution. In this approach, the system
dimension apparently increases (exponentially) as com-
pared with sampling of simulations with even and odd
parameters. However, the Hamiltonian in Eq. (4) is natu-
rally suitable for a solver based on matrix product states
(MPSs) and matrix product operators, since the fictitious
qubits do not develop entanglement with the system qubits
and only increase the computational requirements by a
small amount.

In addition to the one-body Hamiltonian of Eq. (4), we
run standard characterization experiments of the effective
(approximate) ZZ interaction strength of every pair of idle
qubits connected according to the device topology, taking
the form [45,46]

Hafh=3 3 Gl =a)(=c).  (5)
(i)

where the summation is over the nearest neighbors. The total
Hamiltonian of the idle qubits is therefore H = H| + H,. To
gain some understanding of the Hamiltonian dynamics, we
consider the effect of tracing out all qubits except qubit i,
which has n; nearest neighbors. The resulting 1Q density
matrix evolution can be described as a mixture of 2!'*"
effective qubits (see Supplemental Material [41]), each osci-
llating coherently with different frequency w; € {A P
> (LE1)E; }, where the sum is over the qubit’s neighbors.
Incorporating the dissipative dynamics is more complex
[47] and, to capture the full dynamics, evolved numerical
tools are needed [29,48]. We solve a Lindblad master
equation for p(t), accounting for evolution with the
Hamiltonian H together with standard noise operators
fed with the T, (lifetime due to spontaneous emission
toward the ground state) and 7, values of each qubit,

op =~ [H.p] + Dlo*] + Dl (6)

In Eq. (6) the dissipators take a standard form, D[o™]
describes relaxation (spontaneous emission) toward each
qubit’s ground state, and D[c?] describes dephasing [41].
We have validated that a heating term can be neglected,
since under typical conditions of superconducting qubits it
is significantly suppressed [41]. The initial state in the
experiment is characterized accurately (self-consistently)
and fed into the simulation, parametrized for each qubit by
the three Bloch vector coordinates [49]. Single-qubit read-
out errors are accounted for and mitigated (in the mean) in
the experimental results by assuming uncorrelated errors,
observed to be a very good approximation in current
devices [49,50]. The continuous dynamics together with
intermediate gates are solved with a high precision (see
Supplemental Material [41]).

In the rest of this Letter, we describe the results of
experiments and simulations probing the dynamics of
increasingly larger and more complex initial states. The
parameters {v;,A;,Ty;,T,;.{;;} and SPAM parameters
are determined by characterization experiments. We use the
mean values of the estimated parameters for the simula-
tions. The values are given in [41]. In Fig. 3(a) we plot the
time evolution of the middle qubit of three, initialized and
simulated starting from the product state |+)®3. The choice
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FIG. 3. (a) Dynamics of the middle qubit among three that are
initialized to the product state |+)®3. The experiment measure-
ments are given by the points (with statistical error bars) and the
lines are taken from simulation data. The multiple frequencies
visible in the oscillations of the shown qubit result from the
combination of its parity oscillations, detuning error, and ZZ
coupling to two neighbors (with different coupling strengths)—
see the text for a detailed discussion. (b) The dynamics of the
Z1X,Z5 stabilizer of a similar 3Q chain initialized in a graph state
and of the middle qubit’s (X). In this figure and in Fig. 4, the lines
show simulation data that, once the Hamiltonian and noise
parameters have been determined, do not involve any adjustable
parameters.
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of an initial state in the equatorial plane of the Bloch sphere
reveals the presence of multiple frequencies in the dynam-
ics, visible in Fig. 3(a). Because of the ZZ coupling, the
qubits develop some entanglement, while the competing
incoherent processes damp the oscillations. The simulation
captures this dynamics very precisely, and this is the result
of focusing on data with a successful fitting of the
parameters and the absence of drifts and jumps over the
experiment duration or interactions with uncontrolled
degrees of freedom (see Ref. [41]).

In the next step, we perform a similar experiment and
simulation, replacing the initial state by a 3-qubit linear
graph state, which is equivalent up to local rotations to a
Greenberger-Horne-Zeilinger (GHZ) state [51], a maxi-
mally entangled state of three qubits. This graph state can
be written explicitly as |g) = (CZ,,CZ,3)|+)®3, where
CZ, ; is the controlled-Z gate applied to qubits i and j. An
N-qubit graph state can be characterized also as the unique
eigenstate of all N stabilizers with an eigenvalue 1, i.e.,
Stlg) = |g), where S, is a stabilizer of the graph state if it is
the product of an X operator on qubit k and Z operators on
all of its neighbors in the graph [24]. As in quantum error
correction, these stabilizers generate a commutative sub-
group of the Pauli group that does not contain —1 [52]. In
Fig. 3(b) we present the dynamics of the stabilizer S, =
Z,X,Z5 of the initial graph, where in this notation a
capitalized letter from {X, Y, Z, I'} identifies a Pauli matrix
or the identity, and the index indicates the qubit. The initial
value of the stabilizer (Z,X,Z3) in Fig. 3(b) differs from 1
in our experiments due to preparation errors (see
Supplemental Material [41]). At intermediate times, the
stabilizer’s oscillations are closely related to those of (X,),
which result from the combination of all Hamiltonian
parameters as discussed above.

We now turn to the largest setup studied in this Letter and
our main result. We consider the dynamics of 12 qubits in a
ring topology found in current IBM Quantum devices
[27,53-56], as depicted schematically in Fig. 1(a). On such
a ring, a translation-invariant graph state can be created
efficiently using two layers of parallel CZ gates [41],
minimizing the initialization errors. The 12 state stabilizers
are Z;_X;Z,;,,, where the X; operator is shifted along all
qubits, and their expectation value can be measured using
just two measurement setups, X;Z,X3Z4...X{1Z;, and
Z1X,73X,4...211X 15, and then tracing out the irrelevant
qubits [57]. This makes the (destructive) characterization of
the state using its stabilizers very practical experimentally,
and the relevance of the local stabilizers for characterizing
complex states is well motivated in the context of error
correction codes. In Fig. 4(a) we present a global measure
of the deviation of the 12 stabilizers from their ideal
expectation value of 1, derived by averaging over the
positive quantities (1 + (S;))/2, giving the mean of the
corresponding projection operators, to define P = (1/N)x
>3 (1+(S;)). In the equilibrium (steady) state to which
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FIG. 4. (a) The dynamics of the 12Q-ring graph-state stabiliz-
ers’ mean decoherence, as measured in the experiment (points)
and extracted from simulations (lines). The presented measure
that ideally equals 1 is shown with and without intermediate
dynamical decoupling sequences, which cancel the effect of
frequency shifts, charge-parity fluctuations, and ZZ coupling; see
the text for details. (b) Using the data of the same simulations, we
can see how the fidelity of p(7) with the ideal 12Q state is
significantly improved when using the DD sequence canceling
the coherent Hamiltonian errors.

the system approaches for ¢ > T ; (which is close to the
Hamiltonian ground state), we have (Z;_;X;Z; ) = 0 for
all stabilizers. Therefore, P = 1 is the ideal case of a perfect
pure state, while in the ground state P = 1/2. The
presented experimental dynamics of P are reproduced well
in the simulation, and the individual 12 stabilizers are
shown in the Supplemental Material [41].

A natural next step is to consider the effect of dynamical
decoupling (DD) in the current experiment. As follows
from Eq. (1), both the detuning (frame) errors and parity
oscillations can be canceled by standard 1Q DD sequences.
The ZZ (crosstalk) interactions can be treated in parallel by
staggering the single-qubit X gates across the device
according to a two coloring of the interaction edges (a
similar protocol including Y gates has been demonstrated in
[58]). The total delay time T, is sliced to npp = Tina/T
repetitions of DD sequences. Within each slice of delay
time 7', an X gate is applied on each of the qubits of the first
colored subgraph at times 7/2 and T, and on the second
subgraph the X gates are applied at T/4 and 37 /4 [41].
Figure 4(a) shows the stabilizer dynamics obtained by
adding this DD sequence. We measure the state at several
different times npp7T according to the number of DD
repetitions npp = 0,1,...,9 with constant time slices 7.
Compared with the idle data, we measure less points in
order to reduce the amount of error introduced into the
experiment by the DD gates themselves (which can result,
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e.g., from gate inaccuracies, leakage of qubit wave func-
tions out of the qubit manifold, and induced interactions).
The improvement in P is clear and consistent. Although not
all measured stabilizers agree exactly with the simulated
ones (as can be seen by examining each of them in the
Supplemental Material [41], where we discuss in more
detail the discrepancies), the high degree of correspondence
makes it plausible that the simulations capture the hardware
dynamics to a large extent. This gives us a new powerful
tool allowing us to calculate nonlocal quantities that are
hard to track experimentally. As an example, we take the
data from the same simulations described above and show
in Fig. 4(b) the evolution of the full many-body fidelity of
the noisy state with the ideal intended graph state. The
fidelity is very sensitive to errors and the simulations
indicate an improvement by about 2 orders of magnitude
with the DD sequence.

To conclude, we have demonstrated the characterization
of noisy dynamics of multipartite entangled states of
superconducting qubits, together with a model and a
numerical approach allowing for an accurate corresponding
simulation. We find that the modeling of charge-parity
oscillations is essential for a precise description of super-
conducting qubits. We emphasize that hardware dynamics
often deviate from a Markovian model—qubit parameters
drift and fluctuate on various timescales and are subject to
interactions with uncontrolled degrees of freedom [59-61].
In fact, the accuracy of the model in the presented cases is
encouraging and could even be considered as surprising.
We therefore consider this model as a first approximation
that should constitute the fundamental dynamical model
and be further elaborated.

The presented simulation method is scalable to tens of
qubits in a Markovian environment, provided that the
structure of entanglement in the simulated states is limited
as imposed by typical tensor-network constraints. For
example, GHZ states serve as a standard benchmark of
quantum computers and can also be efficiently simulated
with MPSs, which holds for their dissipative dynamics as
well [62]. The Hamiltonian and dissipative dynamics in
many qubit devices are similar to those we have considered
or can be accounted for with some modifications [63—-68].
The realized graph state can be considered as a (simple)
representative of a logical state of an error correction code
[69]. We show that the underlying many-body dynamics
generate decays and revivals of the stabilizers, reflecting
the different contributions of coherent versus incoherent
error mechanisms and emphasizing the importance of
properly modeling them.

Our entire experiment and simulation software is acces-
sible as open source [40] and can be used as a starting point
for a detailed study of qubit dynamics during quantum error
correction protocols.
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