
Measurement-Induced Quantum Synchronization and Multiplexing

Finn Schmolke and Eric Lutz
Institute for Theoretical Physics I, University of Stuttgart, D-70550 Stuttgart, Germany

(Received 12 July 2023; revised 8 December 2023; accepted 12 December 2023; published 3 January 2024)

Measurements are able to fundamentally affect quantum dynamics. We here show that a continuously
measured quantum many-body system can undergo a spontaneous transition from asynchronous stochastic
dynamics to noise-free stable synchronization at the level of single trajectories. We formulate general
criteria for this quantum phenomenon to occur and demonstrate that the number of synchronized
realizations can be controlled from none to all. We additionally find that ergodicity is typically broken,
since time and ensemble averages may exhibit radically different synchronization behavior. We further
introduce a quantum type of multiplexing that involves individual trajectories with distinct synchronization
frequencies. Measurement-induced synchronization appears as a genuine nonclassical form of synchrony
that exploits quantum superpositions.
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Synchronization is a universal concept in science and
technology. Synchronous motion typically arises in
coupled nonlinear oscillators when they collectively adjust
their individual frequencies [1–8]. Such phase-locking
processes are omnipresent in physical, chemical, biologi-
cal, and engineering systems. Synchronization occurs in
classical [1–8] as well as in quantum [9–23] systems. In
both cases, three general synchronization mechanisms are
commonly distinguished: Synchronized behavior may
(i) spontaneously appear in interacting systems owing
to their mutual coupling, (ii) be forced by an external
periodic drive, or (iii) be induced by noise [1–23].
However, classical and quantum theories are fundamen-
tally different. An essential question is, therefore, to
identify purely nonclassical forms of synchrony, determine
their distinct quantum properties, and explore their poten-
tial applications.
An intrinsic feature of quantum mechanics is measure-

ment backaction that randomly perturbs the state of a
measured system [24–26]. As a consequence, observing a
quantum object may dramatically affect its dynamics in a
nonclassical manner. A case in point is the quantum Zeno
effect, where frequent measurements slow down time
evolution [27]. While detection backaction is often detri-
mental, limiting measurement accuracy and causing
decoherence [24–26], it has recently been realized that it
may also be used to control complex many-body systems.
Quantum measurements may indeed trigger phase transi-
tions, such as entanglement phase transitions [28–38] and
topological phase transitions [39–41], when the measure-
ment rate, or strength, is varied. These measurement-
induced phase transitions originate from the nontrivial
interplay between unitary dynamics and the monitoring
action of a detector, underscoring the potential constructive
role of quantum measurements [28–41].

We here demonstrate measurement-induced synchroni-
zation in a continuously monitored quantum system. We
concretely show that an otherwise closedmany-body system
may undergo a spontaneous transition from stochastic asyn-
chronous dynamics to noise-free stable (anti)synchroniza-
tion at the level of individual trajectories, when subjected to
standard homodyne detection [24–26]. We formulate
general criteria for measurement-induced synchronization
in generic quantum systems based on the existence of
decoherence-free subspaces [42–46]. Decoherence-free
subspaces are special parts of a system’s Hilbert space that
play an important role in quantum information science, since
information encoded in them is protected from the envi-
ronment [42–46]. Whereas (anti)synchronization appears
along all trajectories in classical systems, we show that the
number of synchronized quantum trajectories is controlled
by the overlap between the initial state and the decoherence-
free subspaces. We reveal that synchronization may appear
at the trajectory level while being absent at the ensemble
level—and vice versa. In general, knowledge of the ensem-
ble average is, hence, not sufficient to provide information
about the synchronized behavior of single realizations. We
characterize this breaking of ergodicity by evaluating the
fidelity between ensemble and time-averaged states [47].We
further introduce a quantum form of multiplexing [48],
where individual synchronized trajectories at multiple
frequencies are possible by engineering coherent super-
positions of decoherence-free subspaces with distinct
frequencies. Linear superposition, an essential resource of
quantum theory [49], thus appears as a useful feature for
quantum synchronization. Finally, we illustrate our results
by analyzing measurement-induced synchronization in a
quantum spin chain [50].
Measurement-induced synchronization.—We consider a

closed quantum system with Hamiltonian H that is
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continuously monitored using a standard homodyne detec-
tion scheme [24–26]. Its stochastic density operator ρW
evolves according to the Itô stochastic master equation

dρW ¼ −i½H; ρW �dtþ
�
LρWL† −

1

2
fL†L; ρWg

�
dt

þ ðLρW þ ρWL† − hLþ L†iρWÞdWðtÞ; ð1Þ

where L denotes the measurement operator and dW is a
Wiener noise increment satisfying dWðtÞ2 ¼ dt [24–26].
We focus on a single measurement operator, but the
analysis may easily be extended to an arbitrary number
of them. The density operator ρW describes a particular
realization of the quantum process. Taking the ensemble
average over all trajectories, Eq. (1) reduces to the usual
Lindblad master equation ρ̇ ¼ −i½H; ρ� þD½L�ρ, where
ρ ¼ E½ρW � is the averaged density operator and D½L�• ¼
L • L† − fL†L; •g=2 denotes the dissipator [24–26]. We
note that quantum synchronization has been mostly inves-
tigated at the ensemble level so far [9–23]. The fluctuating
statistics of synchronization have been examined for
coupled mechanical oscillators (including nonlinear Van
der Pol oscillators) by unraveling their dynamics in
Refs. [51,52]; in both cases, the evolution is ergodic (since
there is a unique steady state), and the corresponding
trajectories remain stochastic.
We begin by seeking conditions for stable measurement-

induced (anti)synchronization, corresponding to local sys-
tem observables that oscillate at the same frequency (and
with stable amplitude), to occur along an individual
quantum trajectory (we will see below that different
trajectories may possibly exhibit different synchronization
frequencies and amplitudes). This dynamical synchroniza-
tion criterion has been widely used at the ensemble level
[53–59]. However, the averaged dynamics does not allow
one to draw conclusions about individual realizations,
which is why one needs to go beyond existing conditions
for quantum synchronization [59] that are no longer
applicable. In particular, the occurrence of synchronization
in the mean does generally not imply synchronization along
single trajectories, and vice versa. Typically, the temporal
behavior of a continuously monitored system remains
stochastic throughout the whole evolution. Thus, to ensure
stable synchronization, we require the onset of unperturbed
oscillations with constant amplitude. A sufficient condition
is the existence of a decoherence-free subspace (DFS),
such that Ljqki ¼ ckjqki, where jqki are eigenstates of
the Hamiltonian and ck are complex numbers [42–46]
(different constants ck generally correspond to distinct
decoherence-free subspaces). This follows from the
observation that a decoherence-free subspace remains
decoherence-free along a trajectory (1), since dρDFSW ¼
−i½H; ρDFSW �dt. Contrary to (averaged) Lindblad dynamics,
where the state space needs to be considered as a whole,

here, each (decoherence-free) subspace must be treated
independently to be able to properly account for synchro-
nization along an individual trajectory. A sufficient con-
dition for stable (anti)synchronization is, thus, that the
decoherence-free subspace contains only a single eigen-
mode, in which case (anti)synchronization appears at the
frequency of that eigenmode [60].
We next examine the dynamics of the synchronization

process by first assuming the presence of a single
decoherence-free subspace. To that end, we show that,
when the measurement operator is Hermitian, the proba-
bility that individual realizations get spontaneously
trapped in the decoherence-free subspace is equal to the
initial support on that subspace. We start by writing
the solution of the stochastic master equation (1) as
ρWðtÞ ¼

P
m umjΨmðtÞihΨmðtÞj, where um is the probabil-

ity to prepare the pure state jΨmð0Þi.We further partition the
system Hilbert space into the decoherence-free subspace
(with basis states fjqkig) and its orthogonal complement
(with basis states fjplig). Any pure state jΨðtÞimay then be
expanded as jΨðtÞi ¼ P

k qkðtÞjqki þ
P

l plðtÞjpli, with
qkðtÞ ¼ hqkjΨðtÞi and plðtÞ ¼ hpljΨðtÞi (we omit the state
index m for convenience). The probabilities to find the
system at time t in the decoherence-free subspace or its
complement are, thus, respectively, jqðtÞj2 ¼ P

k jqkðtÞj2
and jpðtÞj2 ¼ P

l jplðtÞj2 ¼ 1 − jqðtÞj2, since total proba-
bility is conserved. By additionally assuming that L ¼ L†,
we obtain using Eq. (1) the differential for the probability
jqðtÞj2 (Supplemental Material [61]):

dðjqj2Þ ¼ 2jqj2
�
cðtÞð1 − jqj2Þ −

X
m;n

p�
mpnLmn

�
dW; ð2Þ

where we have defined
P

k jqkðtÞj2ck ≡ jqðtÞj2cðtÞ and
Lmn ¼ hpmjLjpni. Equation (2) describes the temporal
evolution of the overlap with the decoherence-free subspace
for individual realizations. It has the form of a free Brownian
motion with state-dependent diffusion [66]. The corre-
spondingFokker-Planck equation for the probability density
Pðjqj2; tÞ is accordingly [66]

∂P
∂t

¼ 2
∂
2

∂ðjqj2Þ2
�
jqj4

�
cðtÞð1 − jqj2Þ −

X
m;n

p�
mpnLmn

�
2

P

�

ð3Þ

with steady-state solution (Supplemental Material [61])

Psðjqj2Þ ¼ �
1 − jqð0Þj2�δðjqj2Þ þ jqð0Þj2δðjqj2 − 1Þ: ð4Þ

A single stochastic trajectory will, therefore, asymptotically
select the decoherence-free subspace jqj2 ¼ 1 (and become
unitary) with probability jqð0Þj2 or the orthogonal comple-
ment jqj2 ¼ 0 (and remain stochastic) with probability
1 − jqð0Þj2. When a trajectory gets trapped indefinitely in
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a decoherence-free subspace, the quantum system under-
goes a spontaneous transition from random to noiseless
evolution, which may support (anti)synchronization. These
results can be easily extended to arbitrary mixed states and
multiple decoherence-free subspaces (Supplemental
Material [61]). The above scenario bears similarities with
dissipative freezing, which has recently been investigated
for quantum jump processes [67–69]. However, dissipative
freezing entails freezing into arbitrary symmetry sectors
where the evolution is generally stochastic, and stable
synchronization is, therefore, absent.
Example of a quantum spin chain.—The above discus-

sion is valid for generic quantum many-body systems. We
now apply our findings to an XY chain of N spins in a
transverse field [50]. The corresponding Hamiltonian is

H ¼ J
2

XN−1

j¼1

ðσxjσxjþ1 þ σyjσ
y
jþ1Þ þ h

XN
j¼1

σzj; ð5Þ

where σx;y;zj are the usual Pauli operators, J is the
interaction constant, and h ¼ 1 is the field strength. The
quantum XY chain is an important system in statistical

physics and quantum information science [50]. For con-
creteness, we consider a chain of N ¼ 8 spins and perform
a homodyne measurement of the polarization of the third
spin by setting L ¼ ffiffiffi

Γ
p

σz3, where Γ is the measurement
strength. This model admits two two-dimensional
decoherence-free subspaces with c1 ¼ −1 and c2 ¼ 1
(Supplemental Material [61]). Both subspaces support
antisynchronization, at the same frequency, of the average
polarizations, hσz1iW and hσz8iW , of the two edge spins, with
hσzjiW ¼ Tr½σzjρW � (the dynamics of the remaining magne-
tizations are presented in Supplemental Material [61]). To
illustrate the nonintuitive behavior of the system and
highlight its quantum properties, we compare two scenar-
ios: (i) In the first case, the system is initially in a statistical
mixture of the first decoherence-free subspace and the
orthogonal complement, jq1ð0Þj2 ¼ 2=5, jq2ð0Þj2 ¼ 0,
jpð0Þj2 ¼ 3=5 [Figs. 1(a)–1(c)], whereas (ii) in the second
case, the initial state is chosen such that the chain is in a
linear superposition of the first and second decoherence-
free subspaces, jq1ð0Þj2 ¼ jq2ð0Þj2 ¼ 1=2, jpð0Þj2 ¼ 0
[Figs. 1(d)–1(f)]. Figure 1(a) demonstrates measurement-
induced stable quantum antisynchronization, where the first

FIG. 1. Stable measurement-induced antisychronization along quantum trajectories. Evolution of the end magnetizations, hσz1iW and
hσz8iW , of a XY spin chain [Eq. (5)] with N ¼ 8 spins subjected to homodyne measurement of the third z polarization with measurement
operator L ¼ ffiffiffi

Γ
p

σz3. (a) Spontaneous transition (red arrow) from noisy asynchronous to noiseless antisynchronization, when the system
gets trapped in the first decoherence-free subspace with probability jq1j2 ¼ 1. The system is initially prepared in a mixture of the first
decoherence-free subspace and the orthogonal complement, jq1ð0Þj2 ¼ 2=5 and jpð0Þj2 ¼ 3=5. (b) No synchronization occurs when the
system gets trapped in the orthogonal complement with probability jpj2 ¼ 1. (c) Antisynchronization also appears at the ensemble level
for this configuration. (d),(e) When the state is initially prepared in a superposition of the two decoherence-free subspaces, jq1ð0Þj2 ¼
1=2 and jq2ð0Þj2 ¼ 1=2, stable antisychronization occurs at the trajectory level, when the system gets spontaneously trapped in either
one of the decoherence-free subspaces. (f) However, in this case, there is no synchronization at the ensemble level. The reduced
measurement strength is Γ=J ¼ 0.7=π.

PHYSICAL REVIEW LETTERS 132, 010402 (2024)

010402-3



and the last spins oscillate with identical frequencies. As
predicted by Eqs. (3) and (4), two-fifths of the trajectories
undergo a spontaneous transition (inset) from random
asynchronous to noiseless antisynchronized evolution, as
they get trapped in the first decoherence-free subspace. The
remaining trajectories, by contrast, end up in the orthogonal
complement, stay noisy, and do not synchronize [Fig. 1(b)].
The two end spins also exhibit antisynchronization at the
ensemble level, with average polarizations hσzji ¼ Tr½σzjρ�
[Fig. 1(c)]. On the other hand, in case (ii), half of the
trajectories get localized in each decoherence-free sub-
space, implying that antisynchronization occurs along all
realizations [Figs. 1(d) and 1(e)]. However, here anti-
synchronization is completely absent at the ensemble
level [Fig. 1(f)], indicating that individual realizations
can strongly deviate from the mean. This genuinely non-
classical phenomenon is a consequence of quantum
superposition. It may be experimentally observed in super-
conducting circuits that have been used to realize spin
chains [70,71] and monitor individual trajectories of con-
tinuously measured qubits [72,73].
Ergodicity breaking and classical noise.—The identified

difference between trajectory and ensemble properties is
related to ergodicity breaking [74]. We quantify nonergodic
behavior with the mean fidelity, E½Fðρ̄W; ρsÞ� ¼
E
	
Tr
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ̄W
p

ρs
ffiffiffiffiffiffi
ρ̄W

pp 

2


, between the time-averaged state,

ρ̄W ¼ limT→∞
R
T
0 dt ρW=T, and the ensemble-averaged

state ρs [47], for a given initial condition. When one
decoherence-free subspace exists and the operator L is
Hermitian, the system Hilbert space may be decomposed
into two mutually orthogonal subspaces that can be
associated to orthogonal blocks of the density matrix [75].
When more decoherence-free subspaces are present,
additional orthogonal subspaces may be identified. We
assume that every block j has a unique steady state ρsj.
These asymptotic states are orthogonal [75,76]. The
ensemble-averaged density matrix can then be written as
ρs ¼ P

j wjρ
s
j, where wj is the probability that the initial

state is prepared in block j. Since each block contains
exactly one stationary state ρsj, every trajectory localizes
into one of them with probability wj, where the evolution is
ergodic [77]. As a result, ρ̄W;j ¼ ρsj, and we obtain [78]

E½Fðρ̄W; ρsÞ� ¼
X
k

wkF

�
ρ̄W;k;

X
j

wjρ
s
j

�
¼

X
k

w2
k: ð6Þ

The mean fidelity is, thus, given by the inverse participation
ratio, a prominent measure of localization [80,81], of the
initial state over the subspaces. Equation (6) is lower
bounded by 1=N, where N is the number of blocks
(Supplemental Material [61]). The dynamics is accordingly
ergodic only when the system starts in one of the subspaces.
Figure 2(a) displays the mean fidelity (6) as a function of
the overlap with the first decoherence-free subspace,

jq1ð0Þj2, for the example of the quantum spin chain (5).
Taking the initial state ρð0Þ ¼ wq1 jq1ihq1j þ wpjpihpj,
with wq1 ¼ jq1ð0Þj2 and wp ¼ jpð0Þj2, the mean fidelity
is simply given by E½Fðρ̄W; ρsÞ� ¼ w2

q1 þ ð1 − wq1Þ2 (pur-
ple line), in perfect agreement with numerical simulations
of the quantum trajectories (purple dots).
It is instructive to further compare synchronization

induced by quantum (measurement) noise and by classical
noise [23]. Setting L ¼ −i

ffiffiffi
Γ

p
σz3, the randomness no

longer depends on the state of the system, leading to
stochastic unitary dynamics, ρ̇ξ ¼ −i½H þ ffiffiffi

Γ
p

ξðtÞσz3; ρξ�
(in Stratonovich convention), with classical white noise
with zero mean and unit variance hξðtÞξðt0Þi ¼ δðt − t0Þ
[25]. Figure 2(a) shows that, for classical noise, the
evolution is always ergodic (pink line and diamonds) for
any initial overlap jq1ð0Þj2 with the first decoherence-free
subspace. In this situation, there is no (anti)synchronization
along single trajectories [Fig. 2(b)], although for finite
jq1ð0Þj2, synchronous behavior appears at the ensemble
level [23]. The effects of classical and quantum noises on
the system, hence, differ significantly.
Application to quantum multiplexing.—Multiplexing is a

standard technique in classical communication by which
signals with different frequencies are simultaneously trans-
mitted through the same medium [48]. Measurement-
induced synchronization allows for a quantum form of
multiplexing by preparing the system in a superposition of
multiple decoherence-free subspaces with distinct frequen-
cies. According to Eq. (4), the initial overlap with each
subspace then controls the amount of trajectories that are
(anti)synchronized at the respective frequencies. Figure 3
presents an example of quantum multiplexing using the
quantum XY chain [Eq. (5)] with N ¼ 9 spins and the
polarization of the fifth spin, L ¼ ffiffiffi

Γ
p

σz5, being measured.
Contrary to the previous example, this system supports

FIG. 2. Ergodicity breaking. (a) Mean fidelity between time and
ensemble-averaged states [Eq. (6)] as a function of the overlap,
wq1 ¼ jq1ð0Þj2, with the first decoherence-free subspace, for
quantum (measurement) noise (purple line). Dynamics is non-
ergodic unless the chain starts in one of the subspaces (dots show
simulations with 100 trajectories). Dynamics is always ergodic
for classical noise (pink). (b) Corresponding trajectories are not
synchronized (shown for wq1 ¼ 0.3).
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stable synchronized trajectories at various frequencies. It
indeed possesses two eight-dimensional decoherence-free
subspaces with the same eigenmodes and eigenfrequencies
given by Λ1 ¼ J, Λ2 ¼

ffiffiffi
5

p
J, Λ3 ¼ ½ ffiffiffi

5
p þ 1�J, and Λ4 ¼

½ ffiffiffi
5

p
− 1�J. To implement multiplexing, we prepare a

superposition of the two subspaces, jΨð0Þi ¼ ½jq1ðΛjÞiþ
jq2ðΛkÞi�=

ffiffiffi
2

p
, where jqiðΛjÞi indicates a state with eigen-

frequency Λj in the subspace belonging to ci. Depending
on the choice of the eigenmodes, one half of the trajectories
can be synchronized at frequency Λj and the other half at
frequency Λk [Figs. 3(a)–3(d)]. More frequencies could be
superposed in configurations with more decoherence-free
subspaces.
Conclusions.—Classical synchronization plays an impor-

tant role for classical communication systems [82,83]. The
study of nonclassical types of synchrony and the exploration
of their potential applications for quantum communication
purposes are, hence, of great interest.We have here analyzed
quantum synchronization induced by continuous (homo-
dyne) measurements. In particular, we have shown that a
many-body system may undergo a spontaneous transition
from random asynchronous dynamics to stable noise-free
(anti)synchronization at the level of individual trajectories.
The number of (nonergodic) synchronized realizations is
given by the initial overlap with a decoherence-free sub-
space and can, thus, be controlled by preparing a linear
superposition of states living in different subspaces. A
quantum form of frequency multiplexing is consequently
possible when these decoherence-free subspaces are asso-
ciated with different eigenfrequencies. These results high-
light the significance of coherent superpositions for
quantum synchronization.
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