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Dual-unitary circuits are a class of quantum systems for which exact calculations of various quantities
are possible, even for circuits that are nonintegrable. The array of known exact results paints a compelling
picture of dual-unitary circuits as rapidly thermalizing systems. However, in this Letter, we present a
method to construct dual-unitary circuits for which some simple initial states fail to thermalize, despite the
circuits being “maximally chaotic,” ergodic, and mixing. This is achieved by embedding quantum many-
body scars in a circuit of arbitrary size and local Hilbert space dimension. We support our analytic results
with numerical simulations showing the stark contrast in the rate of entanglement growth from an initial
scar state compared to nonscar initial states. Our results are well suited to an experimental test, due to the
compatibility of the circuit layout with the native structure of current digital quantum simulators.
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Introduction.—Understanding how thermalization arises
in closed quantum systems is a fundamental problem in
many-body physics. Currently, our best understanding is
based on the eigenstate thermalization hypothesis, which
roughly states that thermalization occurs because the
individual eigenstates of the unitary propagator appear
thermal with respect to local observables [1–5]. In this
framework, failure to thermalize is due to the presence of
nonthermal eigenstates. Strong ergodicity breaking occurs
in systems where a significant fraction of all the eigenstates
are nonthermal, while weak ergodicity breaking arises if
the fraction of nonthermal eigenstates is exponentially
small in system size [6–9]. Strong ergodicity breaking is
generally observed in systems with an extensive number
of local conserved quantities, such as integrable [10] or
many-body localized (MBL) systems [11,12], while weak
ergodicity breaking is usually observed in systems with
nonthermal eigenstates known as quantum many-body
scars (QMBS) [7–9,13–17].
Because of the complex nature of interacting many-body

dynamics, exact results are notoriously hard to come by.
Significant progress has been made in recent years, by
studying a special class of models, called dual-unitary
(DU) circuits. These are a class of quantum circuits
constructed as a brickwork pattern of two-qudit gates,
which are unitary in both temporal and spatial directions.
This special property enables the exact calculation of some
system properties that would ordinarily be prohibitively
hard to calculate [18–35].
For example, exact calculation of the spectral form factor

has shown that interacting DU circuits are “maximally
chaotic,” in the sense that the spectral form factor agrees

with the predictions of random matrix theory at all time-
scales [19,26]. Exact results also indicate that DU circuits
are fast scramblers of quantum information, since two-time
correlation functions and out-of-time correlators spread at
their maximal possible velocities [20,21]. In a similar spirit,
from a certain class of solvable initial states it has been
shown that entanglement growth occurs at the maximal rate
[23,25,32] and that any finite subsystem thermalizes to its
maximally mixed (i.e., infinite temperature) reduced den-
sity matrix in a short finite time [25]. Moreover, the exact
results on two-time correlation functions allow a rigorous
classification of DU circuits in terms of their ergodic and
mixing properties [20,29].
The above exact properties seem to indicate that generic

DU circuits are rapidly thermalizing systems [36]. This is
further supported by the observation that it is impossible to
induce MBL through disorder in DU circuits [19,26],
leaving integrability as the only known mechanism of
strong ergodicity breaking in DU circuits. However, to the
best of our knowledge, so far there has been no demon-
stration of weak ergodicity breaking in DU circuits nor any
arguments against it as in the case of MBL.
In this Letter, we show that weak ergodicity breaking

is indeed possible in DU circuits. Using a projector-
embedding approach, initially proposed for continuous-
time dynamics [6], we provide an explicit construction to
insert QMBS in DU circuits of arbitrary system size and
arbitrary local Hilbert space dimension. We demonstrate
our construction with examples that embed a single, a few,
or exponentially many QMBS in this class of circuits. Our
construction shows that provably maximally chaotic, ergo-
dic, and mixing systems can support QMBS. Despite the
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rapid scrambling properties of such systems, if the system
is initialized in the QMBS subspace, then all quantum
information remains localized in the subspace. Our ana-
lytical results are supported by numerical calculations for
the entanglement growth, showing a striking difference
in the dynamics between scar and nonscar initial states. Our
work paves the way for future theoretical as well as
experimental investigations of weak ergodicity breaking
in quantum circuits, where dual-unitarity can be leveraged
[37,38]. Because of the native structure of current digital
quantum simulators, some of the proposed models can be
adapted directly to current devices.
Dual-unitary circuits.—The basic building blocks of the

circuits considered in this work are unitary operators Û,
acting on two qudits of arbitrary local Hilbert space
dimension d. The dual Ũ of a unitary is defined by a
reordering of the subsystem indices hkj ⊗ hljŨjii ⊗ jji ¼
hjj ⊗ hljÛjii ⊗ jki [20] and can be physically interpreted
as an exchange of the spatial and temporal dimensions
of Û. A gate Û is DU if and only if both Û and its dual Ũ
are unitary. Any two-qudit gate of the form

ÛDU;1 ¼ ðûþ ⊗ û−ÞŜ V̂ðv̂− ⊗ v̂þÞ ð1Þ

is dual-unitary [35,39]. (See Supplemental Material [40],
Sec. I, for further details.) Here, Ŝjii ⊗ jji ¼ jji ⊗ jii is
the SWAP operator, û� and v̂� are arbitrary single-qudit
unitaries, and

V̂ ¼ exp

�
i
Xd−1
j¼0

ĥðjÞ ⊗ jjihjj
�

ð2Þ

is an entangling gate with arbitrary single-qudit Hermitian
operators ĥðjÞ. We rewrite the nonentangling unitaries as

ûþ ⊗ û− ¼ expfiðf̂þ ⊗ Î þ Î ⊗ f̂−Þg; ð3Þ

v̂− ⊗ v̂þ ¼ expfiðĝ− ⊗ Î þ Î ⊗ ĝþÞg; ð4Þ

in terms of the single-qudit Hermitian operators f̂� and ĝ�.
With this parametrization, a dual-unitary gate is specified
by ff̂�; ĝ�; ĥðjÞg. Note that, for any ÛDU;1, the gate

ÛDU;2 ¼ ŜÛDU;1Ŝ ð5Þ
is also DU. Generally, this expression is not expressible in
the form of Eq. (1), thus giving a distinct parametrization.
A DU circuit is a quantum circuit in a “brickwork”

geometry, in which all of the two-qudit gates are DU. We
consider an even number N of qudits, where each qudit has
a local Hilbert space Cd. The qudit sites are labeled by
n ¼ 0; 1; 2;…; N − 1, and we impose periodic boundary
conditions n≡ nþ N. The basic building blocks of the
dynamics are local DU gates Ûn;nþ1. A single time step is

implemented by a Floquet unitary operator Û ¼ ÛoÛe

which is a layer of DU gates across even-odd bonds Ûe ¼
⊗N=2−1

j¼0 Û2j;2jþ1 and a layer of DU gates across odd-even

bonds Ûo ¼⊗N=2
j¼1 Û2j−1;2j. We set all gates in the even layer

to be identical to each other and in the form of Eq. (1),
Û0;1 ¼ Û2;3 ¼ � � � ¼ ÛDU;1, and all gates in the odd layer
to be identical to each other and in the form of Eq. (5),
i.e., Û1;2 ¼ Û3;4 ¼ � � � ¼ ÛDU;2 ¼ ŜÛDU;1Ŝ. However, this
two-site translation invariance is not essential for our
results, which are also valid if the gates vary from site
to site. Evolution for t∈Z time steps is generated by
powers of the Floquet operator Ût.
Embedding QMBS in DU circuits.—In order to construct

DU circuits with QMBS, we employ a projector embedding
method, similar to the construction initially proposed by
Shiraishi and Mori for continuous-time dynamics in
Ref. [6]. The essential idea is to use projectors in the
generators of the unitary gates in Eqs. (2)–(4) so that a
chosen set of target states evolves by an elementary
brickwork circuit of two-qudit swap gates, while states
outside the target set evolve by more complicated
dynamics.
Let P̂n;nþ1 denote two-qudit projectors acting on neigh-

boring sites n and nþ 1 and define the extended projectors
acting on the total system of N qudits as P̂n;nþ1≡
Î0;n−1 ⊗ P̂n;nþ1 ⊗ Înþ2;N−1, where Îi;j is the identity acting
on all qudits in the range i; iþ 1;…; j − 1; j. The common
kernel of all projectors is the set of states that are
simultaneously annihilated by all projectors:

K ¼ fjψi∶P̂n;nþ1jψi ¼ 0; ∀ ng: ð6Þ

Our target set of states T , which we wish to embed in our
circuit as QMBS, is the subset of K that is invariant under
the action of even and odd layers of SWAP gates:

T ¼ fjψi∶jψi∈K; Ŝejψi∈K; Ŝojψi∈Kg; ð7Þ

where Ŝe ¼⊗N=2−1
j¼0 Ŝ2j;2jþ1 is the even layer of SWAP gates

and Ŝo ¼⊗N=2
j¼1 Ŝ2j−1;2j is the odd layer.

We now outline a construction to embed T as a set of
scars in our DU circuit. To do this, we impose three
conditions on the generators ff̂�; ĝ�; ĥðjÞg that define the
DU gates in Eqs. (1)–(5) and on the projectors fP̂n;nþ1g
that define the target subspace:

P̂n;nþ1ðf̂þn ⊗ Î þ Î ⊗ f̂−nþ1ÞP̂n;nþ1 ¼ f̂þn ⊗ Î þ Î ⊗ f̂−nþ1;

ð8Þ

P̂n;nþ1ðĝ−n ⊗ Î þ Î ⊗ ĝþnþ1ÞP̂n;nþ1 ¼ ĝ−n ⊗ Î þ Î ⊗ ĝþnþ1;

ð9Þ
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P̂n;nþ1

�Xd−1
j¼0

ĥðjÞn ⊗ jjihjjnþ1

�
P̂n;nþ1 ¼

Xd−1
j¼0

ĥðjÞn ⊗ jjihjjnþ1:

ð10Þ

Clearly, two-qudit gates satisfying conditions (8)–(10) are
still of the DU form in Eq. (1). Conditions (8)–(10) ensure
that the unitaries ûþn ⊗ û−nþ1, v̂

þ
n ⊗ v̂−nþ1, and V̂n;nþ1 act

trivially on all states in the kernel K of the projectors
P̂n;nþ1. However, the dynamics are not necessarily closed in
the subspace K. This is because the parametrization of
Eq. (1) includes the SWAP operators Ŝn;nþ1 which can
potentially take states out of K. So, the QMBS subspace is
the subspace T ⊂ K that is invariant under even Ŝe and odd
Ŝo layers of SWAP operators. For any initial state jψi∈ T ,
the circuit will then act as Ûjψi ¼ Ŝjψi, where Ŝ ¼ ŜoŜe,
corresponding to integrable dynamics in the target subspace
T , even if the overall circuit Û is nonintegrable and results
in complicated dynamics for initial states that are not in T .
The action of Û in T can, thus, be seen as a permutation of
the qudits, and many dynamical properties can, therefore,
be studied exactly.
This prescription embeds QMBS in a DU circuit, which

allows us to use all known exact results for these models.
One of the key results for DU circuits is the rigorous
classification in terms of their ergodic and mixing proper-
ties, based on the spectrum of a map M which determines
the dynamical correlation functions [20,29]. We can show
that our construction leads to QMBS in provably ergodic
and mixing many-body systems, since all dynamical
correlation functions decay to their infinite temperature
values at long times. Further details are provided in
Supplemental Material [40], Sec. II.
Example A: Single QMBS.—We first illustrate our

construction with the simplest possible example, for which
the set of projectors is

P̂n;nþ1 ¼ În;nþ1 − j0ih0jn ⊗ j0ih0jnþ1; ð11Þ

for all n ¼ 0; 1;…; N − 1. The common kernel K of all
projectors consists of a single state j0i⊗N , which is
invariant under the action of any SWAP gates so that the
target space is the single state T ¼ fj0i⊗Ng.
We choose ff̂�; ĝ�; ĥðjÞg to be random Hermitian

matrices, apart from some rows and columns hijf̂�j0i ¼
hijĝ�j0i ¼ hijĥð0Þj0i ¼ 0, i∈ f0; 1;…; d − 1g, that are set
to zero to ensure that conditions (8)–(10) are satisfied (see
Supplemental Material [40], Sec. III, for further details).
This choice gives a generic DU gate which we expect to
give a rapidly thermalizing circuit. Moreover, we can prove
that for this example our circuit is ergodic and mixing
[20,29] (see Supplemental Material [40], Sec. II). However,
by our construction the target state j0i⊗N will be a non-
thermal eigenstate of the circuit Ûj0i⊗N ¼ j0i⊗N .

Although this construction embeds a QMBS for any
system size N, we demonstrate our results with numerical
simulations on finite size systems. In Fig. 1(a), we plot
the half-system bipartite entanglement entropy SðjφαiÞ ¼
−Tr½ρ̂α logðρ̂αÞ� of the eigenstates jφαi of the Floquet
unitary Û. Here, ρ̂α ¼ Tr0;ðN=2Þ−1jφαihφαj is the reduced
density matrix of the eigenstate obtained by tracing out the
first N=2 qudits of the system. We see the single QMBS
j0i⊗N with zero entanglement, separated from the rest of

FIG. 1. Embedding a single QMBS (A) and an exponential
number of QMBS (B) in a DU circuit. The top row (a),(d) shows
the bipartite entanglement of eigenstates jφαi of the Floquet unitary
Û in each case. The second row (b),(e) shows the growth of bipartite
entanglement, starting from different separable states. The gray line
is the average entanglement growth for 100 randomproduct states of
the form jψð0Þi ¼ ji0; i1;…; iN−1i, in ∈ f0; 1;…; d − 1g, while
the surrounding gray region shows the 5–95 percentile range. The
dashed black line in (a), (b), (d), and (e) is the Page entropy,
SPage ¼ ½N lnðdÞ − 1�=2. The dotted line in (b) and (d) shows the
maximum possible rate of entanglement growth, saturating at the
maximum value Smax ¼ N lnðdÞ=2. “Solvable” initial states have
this maximal entanglement growth in the thermodynamic limit
[23,25,43]. The bottom row (c),(f) shows the overlap with the initial
state FðtÞ ¼ jhψð0ÞjψðtÞij. The blue line in (b), (c), (e), and
(f) shows the results for jΨ1i¼j0iN−1⊗ ½ðj0iþjd−1iÞ= ffiffiffi

2
p �,

and the green line for jΨ2i ¼ j0; 0; d − 1; d − 1i⊗N=4−1 ⊗ j0; 0;
d − 1i ⊗ ðjd − 1i þ j1iÞ= ffiffiffi

2
p

. [Parameters: N ¼ 8 and d ¼ 3.]
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the spectrum. All the other eigenstates are concentrated
around the Page entropy SPage, which is the expected value
of entanglement entropy for a random pure state [42].
Further evidence of the QMBS can be seen in the dynamics.
In Fig. 1(b), we show that, for the initial QMBS state
jψð0Þi ¼ j0i⊗N , the bipartite entanglement S½jψðtÞi� does
not grow in time and in Fig. 1(c) that the fidelity FðtÞ ¼
jhψð0ÞjÛtjψð0Þij remains constant at F ¼ 1. By contrast, a
typical random initial product state of the form jψð0Þi ¼
j⃗ii≡ ji0; i1;…; iN−1i, with in chosen uniformly at random
from the set f0; 1;…; d − 1g, will give rapid growth in
entanglement that saturates at the Page value SPage and will
give a fidelity that decays rapidly to zero.
We further devise an initial state with intermediate slow

dynamics. We consider the product state jψð0Þi ¼ jΨ1i≡
j0iN−1 ⊗ ½ðj0i þ jd − 1iÞ= ffiffiffi

2
p �. This initial state is partly

overlapping with the QMBS j0i⊗N and is partly over-
lapping with the thermalizing state j0i⊗ðN−1Þ ⊗ jd − 1i.
Correspondingly, the entanglement entropy saturates to a
value intermediate between zero and the thermal value,
while the fidelity approaches F ≈ 1=2 after t ∼ 1 time step.
This construction can be extended to embed k < d

QMBS of the form fjii⊗Ngk−1i¼0 into a DU circuit with
local Hilbert space dimension d. The main adjustment is,
instead of Eq. (11), to use the set of projectors P̂n;nþ1 ¼
În;nþ1 −

P
k−1
i¼0; ji; iihi; ijn;nþ1. We provide numerical dem-

onstrations for the k ¼ 2 case in Supplemental Material
[40], Sec. V, as well as a discussion on how the circuit can
be modified to break the eigenphase degeneracy between
the QMBS [40], Sec. IV. We also show that the QMBS in
the Floquet unitary Û have counterpart dual QMBS in the
dual Floquet unitary Ũ [40], Sec. VI.
Example B: Exponentially many QMBS.—A more com-

plex example is obtained by using the projectors:

P̂n;nþ1 ¼ În;nþ1 − j0ih0jn ⊗ j0ih0jnþ1

− j0ihd − 1jn ⊗ jd − 1ih0jnþ1

− jd − 1ih0jn ⊗ j0ihd − 1jnþ1

− jd − 1ihd − 1jn ⊗ jd − 1ihd − 1jnþ1; ð12Þ

for all n. We choose the DU gate generators ff̂�; ĝ�; ĥðjÞg
to be random, apart from a few rows and columns that are
set to zero to ensure that conditions (8)–(10) are satisfied
[hijf̂�jji ¼ hijĝ�jji ¼ hijĥðjÞjji ¼ 0, j ∈ f0; d − 1g, i ∈
f0; 1;…; d − 1g].
The common kernelK of the projectors in Eq. (12) is the

2N-dimensional space spanned by the set of all N-qudit
product states of the form j⃗ii ¼ ji0; i1;…; iN−1i with
in ∈ f0; d − 1g. We note that this space, though exponen-
tially large in the system size N, is still an exponen-
tially small fraction ð2=dÞN of the full Hilbert space when
d > 2. Therefore, the fraction of nonthermal eigenstates

constitutes a measure-zero set in the thermodynamic limit
and, thus, leads to weak ergodicity breaking, consistent
with the definition in Refs. [7,14]. It is also invariant under
the action of Ŝe=o, so that our target space is T ¼ K.

However, this does not mean that the product states j⃗ii,
in∈f0;d−1g, are QMBS since, in general,
Ûj⃗ii ¼ Ŝj⃗ii ≠ j⃗ii. Instead, the QMBS are found by diag-
onalizing the SWAP circuit Ŝ in the subspace spanned
by fj⃗iigin ∈ f0;d−1g.
In Fig. 1(d), we plot the entanglement entropy of the

eigenstates of Û. The bulk of the eigenstates have an
entropy close to the Page value SPage. However, the 2N

states in T have a lower entanglement. There are, in fact,
four QMBS that have zero entanglement. These are j0i⊗N ,
jd − 1i⊗N , j0; d − 1i⊗N=2, and jd − 1; 0i⊗N=2, which are
eigenstates of the SWAP circuit Ŝ. The remaining 2N − 4
QMBS have nonzero entanglement but are still clearly
separated from the bulk of the spectrum. In Supplemental
Material [40], Sec. VII, we prove that the entanglement
entropy of these QMBS can be bounded by S ≤ logðN=2Þ,
a subvolume law scaling [44].
The presence of exponentially many QMBS can also be

observed in the dynamics, as shown in the entanglement
entropy growth and fidelity dynamics in Figs. 1(e) and 1(f).
When the system is initialized in a typical random product
state (gray in the plot), it rapidly thermalizes to a highly
entangled state. Conversely, for an initial product state
in the QMBS subspace T , the entanglement growth is
completely suppressed, since the SWAP circuit Ŝ can map
only product states to product states. For instance, the
initial states jψð0Þi ¼ j0i⊗N and jψð0Þi ¼ jΨ1i≡
j0iN−1 ⊗ ðj0i þ jd − 1iÞ= ffiffiffi

2
p

[red and blue lines, respec-
tively, in Fig. 1(e)] show zero entanglement growth, as they
are both in the QMBS subspace T .
However, the frozen entanglement from initial product

states in T does not capture all the information about the
dynamics in the QMBS subspace nor the variety of
dynamical behaviors that are possible. For instance, evolu-
tion from jψð0Þi¼jΨ1i¼j0iN−1⊗ðj0iþjd−1iÞ= ffiffiffi

2
p

is
characterized by an oscillating fidelity F¼jhψð0ÞjψðtÞij.
This is due to the fact that jΨ1i, although it is in the QMBS
subspace, is a superposition of multiple QMBS. The j0i⊗N

component of jΨ1i is a QMBS and does not decay,
while the j0i⊗N−1 ⊗ jd − 1i component is a superposition
of QMBS and leads to fidelity oscillations with a pe-
riod T ¼ N=2. Alternatively, by initializing in jΨ2i¼
j0;0;d−1;d−1i⊗N=4−1⊗ j0;0;d−1i⊗ ðjd−1iþj1iÞ= ffiffiffi

2
p

(green in Fig. 1), the system undergoes more rapid
oscillatory dynamics. This initial state is an equal super-
position of a state j0; 0; d − 1; d − 1i⊗N=4 which is in the
QMBS subspace and one that is not j0; 0; d − 1;
d − 1i⊗N=4−1 ⊗ j0; 0; d − 1; 1i. While the former leads to
revivals in fidelity with period T ¼ 2, the latter contribution
rapidly decays to zero.

PHYSICAL REVIEW LETTERS 132, 010401 (2024)

010401-4



In Supplemental Material [40], Sec. VIII, we report
further numerical results, including the dynamics of local
observables, illustrating the presence of QMBS.
Discussion.—Dual-unitary circuits are a paradigmatic

model for investigations into many-body phenomena due to
the abundance of available exact results. In this Letter, we
have shown that these models can host QMBS, which lead
to weak ergodicity breaking in a provably maximally
chaotic system. We provide a systematic way to embed
QMBS into DU circuits and highlight the contrast with the
rest of the spectrum via numerical simulations.
The presented results motivate several fundamental

questions with respect to QMBS, DU circuits, and chaotic
quantum many-body systems, in general. Because of the
fact that for d > 2 the used parametrization is not complete
for DU gates, we expect that there are more DU circuit
instances which can host QMBS. However, it is not certain
whether the proposed embedding approach will work for
DU circuits constructed with gates which lie outside the
used form in Eq. (1) for d > 2. Furthermore, even with our
parametrization, our embedding approach is probably not
exhaustive. Further theoretical investigations are required
to obtain a more complete picture of QMBS in DU circuits
and their properties.
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