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Topological defects in active polar fluids can organize spontaneous flows and influence macroscopic
density patterns. Both of them play an important role during animal development. Yet the influence of
density on active flows is poorly understood. Motivated by experiments on cell monolayers confined to
disks, we study the coupling between density and polar order for a compressible active polar fluid in the
presence of a þ1 topological defect. As in the experiments, we find a density-controlled spiral-to-aster
transition. In addition, biphasic orientational phases emerge as a generic outcome of such coupling. Our
results highlight the importance of density gradients as a potential mechanism for controlling flow and
orientational patterns in biological systems.
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Active matter is composed of individual constituents
able to extract energy from their local environment to
produce mechanical work [1,2]. This feature gives rise to
collective phenomena that play an important role in many
biological systems, such as the emergence of polar flock-
ing, motility-induced phase separation or spontaneous
flows [1,2]. For instance, spontaneous flows generated
by gradients of active stress have been observed in various
systems, including cytoskeleton assays [3–5] or multicel-
lular ensembles [6–10]. All these systems can organize into
out-of-equilibrium phases with domains featuring orienta-
tional order. This order can locally be disrupted by
disclinations, often called topological defects, which are
associated with rotational flow patterns [2,11,12].
Both theoretical and experimental studies have demon-

strated that the interplay between topological defects and
active processes concentrates mechanical stress, leading to
the formation of density gradients [7,8,13–18]. Recipro-
cally, cell density variations influence orientational order
[19,20]. Given the growing recognition of topological
defects as organizing centers during morphogenesis
[7,8,17,21], understanding how density gradients and
orientational order interact is essential.
A density-controlled transition between different þ1

topological defects was observed in monolayers of pola-
rized cells confined to a disk [17]. At low cell density,
spontaneous rotational flows emerged in a spiral multicel-
lular arrangement; whereas for increasing cell density, a
transition occurred to an aster arrangement without rota-
tional flows, Fig. 1(a). Steeper cell density gradients were
found for asters compared to spirals, Fig. 1(b). In the

hydrodynamic description of an incompressible active
polar fluid, an aster-to-spiral transition arises from the
competition between the active stress and orientational
elasticity [22]. The transition corresponds to a spontaneous
flow instability, relevant for both polar [23–25] and nematic
[26–28] systems, where density does not appear explicitly
as a control parameter.

(a) (c)

(b) (d)

FIG. 1. Density-driven transition of a confined polar tissue.
(a) Phase-contrast image of a confined monolayer of C2C12
myoblasts, showing a spiral (left) or an aster (right) polar state.
Scale bar is 50 μm. Modified from [20]. (b) Radial cell density
profile for spirals and asters. Data extracted from [17]. (c) Sche-
matic representing a polar tissue confined to a disk of radius R,
described as a 2D compressible polar fluid with velocity v,
polarity p with radial angle ψ , and density n. (d) Schematic
representing the effect of the DPC, see Eq. (2).
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In this Letter, we study a coupling between density
gradients and orientational order, in the case of þ1 topo-
logical defects in confined active polar fluids, Fig. 1(d). In
spreading cell monolayers, this density-polarity coupling
(DPC) expresses a tendency of cells to polarize away from
high density regions [29–31]. First, we identify conditions
for a density-controlled spiral-to-aster transition. Second,
we show that biphasic orientational phases are a generic
feature of compressible polar fluids. Finally, we discuss the
relevance of DPC for monolayers of polarized cells.
To describe a two-dimensional compressible active polar

fluid, we use active gel theory [22,32]. The system is
characterized by velocity vðr; tÞ, polarity pðr; tÞ, and par-
ticle density n ¼ n0n̄ðr; tÞ fields, where n0 is the preferred
particle density, Fig. 1(c).
The equilibrium physics is captured by an effective free

energy F ¼ R
A dAf with free-energy density

f ¼ B
2
ð1 − n̄Þ2 þ G

2
j∇n̄j2 þ K

2
j∇pj2 þ χ

2
p2 þ fDPC: ð1Þ

The first two terms penalize density variations with elastic
coefficients B;G > 0. The second two terms tend to sup-
press polarity variations with elastic coefficients K; χ > 0.
Thus, we favor a disordered phase in the bulk. We use the
one-constant approximation [33] for simplicity and leave
the general case for future studies.
The last term, fDPC, accounts for the coupling between

density and polarity. The lowest order term in powers of
ðp;∇n̄Þ with polar symmetry reads

fDPC ¼ Jpn0ðp · ∇Þn̄; ð2Þ

which is related to a density-dependent spontaneous splay
term of the Frank free energy [31,33,34]. Previous works
identified a linear instability of an ordered state associated
with this coupling [35–38]. Negative (positive) values of
the coupling coefficient Jp favor (anti)alignment of polarity
to density gradients, Fig. 1(d). From now on, we use
Jpn0 ≡ jp as control parameter.
The evolution of the fields n̄, v, and p is determined by

the continuity equation, the polarity dynamics, and the
local force balance,

∂tn̄ ¼ −∂βðn̄vβÞ; ð3aÞ

Dtpα ¼
hα
γ
− ν

�
vαβ −

1

2
vγγδαβ

�
pβ; ð3bÞ

ξvα ¼ ∂βðσeαβ þ σdαβÞ; ð3cÞ

where h ¼ −δF=δp is the molecular field, vαβ ¼ ð∂αvβ þ
∂βvαÞ=2 and ωαβ ¼ ð∂αvβ − ∂βvαÞ=2 are the symmetric
and antisymmetric parts of the velocity gradient tensor,
and Dtpα ¼ ∂tpα þ vβ∂βpα þ ωαβpβ is the corotational

derivative. For simplicity, we focus on solutions for which
the torque generated by friction force (ξv) vanishes and
then make the limit ξ → 0. Our results are unchanged to
adding a small friction force, see Supplemental Material,
A and B [39]. The stress is decomposed into the Ericksen
and the deviatoric components that read

σeαβ ¼ −Pδαβ − ðG∂βn̄þ jppβÞ∂αn̄ − K∂αpγ∂βpγ; ð4aÞ

σdαβ¼2η

�
vαβ−

1

2
vγγδαβ

�

þν

2
ðpαhβþpβhα−pγhγδαβÞþ

1

2
ðpαhβ−pβhαÞ

−
1

2
ζ0Δμpγpγδαβ−ζΔμ

�
pαpβ−

1

2
pγpγδαβ

�
; ð4bÞ

with the pressure P ¼ μn̄ − f containing the chemi-
cal potential μ ¼ δF=δn̄ and the free-energy density f,
Eq. (1), and the chemical potential difference extracted
from fuel consumption Δμ. The phenomenological para-
meters are the rotational viscosity γ, the flow alignment
coefficient ν, the shear viscosity η, and the active isotropic
(anisotropic) coefficient ζ0 (ζ). The isotropic active stress
only renormalizes the pressure in incompressible fluids, but
plays an important role in the dynamics of compressible
systems.
As in the experimental system of Ref. [17], we consider

an active fluid confined to a disk of radius R, Fig. 1(c). We
use polar coordinates ðr; θÞ with rotational invariance,
∂θ ¼ 0. The polarity field is decomposed into the polar
order S and the angle ψ with respect to the radial direction,
so that p ¼ S cosψer þ S sinψeθ, where er and eθ are the
unit polar vectors. Because our theoretical description is
achiral, we can restrict the range of angles to ψ ¼ ½0; π�.
Using the convention that outward polarity corresponds to
ψ < π=2, þ1 topological defects are classified into out
aster ψ ¼ 0, out spiral 0 < ψ < π=2, vortex ψ ¼ π=2, in
spiral π=2 < ψ < π, and in aster ψ ¼ π.
The evolution equations for the fields n̄, S, ψ , vr, and vθ

are solved over time until steady state is reached and are
detailed in the Supplemental Material, A [39]. Motivated
by the experiments in [17], spatial boundary conditions at
r ¼ R are set to S ¼ 1 (boundary-induced order), ∂rψ ¼ 0
(free orientation), vr ¼ 0 (absence of particle flux), and
σθr ¼ 0 (absence of shear stress). At equilibrium, the last
boundary condition at r ¼ R is obtained from a mini-
mization of the free energy (1), which yields ∂rn̄ ¼
−jp cosψ=G. We assume that this condition also holds
out of equilibrium. At r ¼ 0, regularity of the solution
imposes that S ¼ ∂rψ ¼ ∂rn̄ ¼ vr ¼ vθ ¼ 0.
Parameters are nondimensionalized by using R ¼ K ¼

γ ¼ 1. In the following, B ¼ 12, G ¼ 2, η ¼ 2, and
ν ¼ −1.5 are fixed, and χ, jp, ζΔμ, and ζ0Δμ are varied.
In numerics, the initial polarity is oriented outward
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[i.e., ψðr; t ¼ 0Þ < π=2], and the total particle densityR
A dAn=A is set to n0. For more details on the numeri-
cal scheme and initial conditions, see Supplemental
Material, B [39].
First, we consider the case of vanishing activity

ζΔμ ¼ ζ0Δμ ¼ 0. In this case, the equilibrium states are
in and out asters, Fig. 2(a), which have the same total
energy and are selected through spontaneous symmetry
breaking. The corresponding density gradients have oppo-
site signs, see Supplemental Material, H [39].
Next, in the case of vanishing DPC jp ¼ 0, spontaneous

flows occur when ζΔμ > 0, Fig. 2. Specifically, in and out
asters transition to rotating spirals when anisotropic activity
switches from contractile ζΔμ < 0 to extensile ζΔμ > 0,

Figs. 2(a)–2(c). Unlike in past works [22,23], here the
instability threshold vanishes because of the absence of
boundary anchoring. Spirals feature counterrotating flows
with a vanishing net torque because forces are internal, see
Fig. 2(b). Their steady-state orientation angle ψðrÞ ¼ ψL
satisfies the relation ν cosð2ψLÞ ¼ 1 [40], where ψL is the
Leslie angle, see Fig. 2(c). Gradients of density are
sustained by active processes in both spirals and asters,
with their direction set by n̄0 ∼ −½ζ cosð2ψÞ þ ζ0�Δμ for
uniform ψ [41], see Fig. 2(d) for an extensile spiral.
Based on the above results, when jp ≠ 0 and ζΔμ > 0,

we expect competition between DPC, promoting radial
configurations, and the active anisotropic stress driving the
polarity toward the Leslie angle. Solving numerically our
hydrodynamic equations (3), a spiral-to-aster transition is
found at a threshold value of jp, Figs. 2(a) and 2(c). As jjpj
increases near the threshold value, density gradients
become steeper and the angle ψ approaches zero as for
the out-aster state thanks to DPC, Figs. 2(c) and 2(d). In
contrast, the polar order parameter remains approximately
independent of jp, Fig. 2(e). Importantly, this transition
now occurs at a finite threshold of activity, Fig. 2(a).
To further understand this competition, we analyzed

the linear stability of an out aster to perturbations in the
angle ψ , see Supplemental Material, C [39]. Neglecting
gradients of orientation, Fig. 2(c), the linear dynamics for
the angle perturbation δψ reduces to

∂tδψ ∝
�
jpn̄0a þ

2ζΔμγð1 − νÞS3a
4ηþ γS2aðν − 1Þ2

�
δψ ; ð5Þ

where SaðrÞ and n̄aðrÞ are, respectively, the steady-state
polar order and reduced density for an out aster. Assuming
that the instability originates from the boundary, we replace
these profiles by their boundary values Sa ¼ 1 and n̄0a ¼
−jp=G in Eq. (5) and obtain the analytical threshold

jj�pj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ζΔμGγð1 − νÞ
4ηþ γð1 − νÞ2

s
: ð6Þ

This threshold suggests that an out aster is linearly unstable
for ζΔμð1−νÞ>0 and an intermediate range of the DPC co-
efficient jjpj < jj�pj. Expression (6) is in qualitative agree-
ment with numerics, Fig. 2(a). In conclusion, DPC can
suppress the spontaneous flow transition and stabilize asters
in active polar fluids.
Let us reconsider the equilibrium case. There, linear

stability analysis shows that DPC alone can destabilize a
uniform ordered state [35–38,42]. In the special case
G ¼ 0, equilibration of density fluctuations leads to an
effective Frank free energy with a renormalized splay
constant Ks ¼ K − j2p=B, whereas the bend constant
remains unchanged Kb ¼ K, see Supplemental Material,
D [39]. If jjpj > jj†pj ¼

ffiffiffiffiffiffiffi
KB

p
, splay distortions are favored.

(a)

(b) (c)

(d) (e)

FIG. 2. Spiral-to-aster transition induced by DPC. (a) Density
plot of the peripheral angle ψR ¼ ψðRÞ at steady state, as a
function of anisotropic activity (ζΔμ) and DPC (jp) coeffi-
cients. Blue curve, threshold jjpj ¼ jj�pj from Eq. (6). (b)–
(e) Radial profiles of azimuthal velocity vθðrÞ (b), angle ψðrÞ
(c), density variation δn̄ ¼ n̄ðrÞ − 1 (d), and polar order SðrÞ
(e), for ζΔμ ¼ 2 and jp varies as indicated in legend (e) and
black arrow (a),(c). Gray line in (c), Leslie angle ψL.
Parameters are χ ¼ 4 and ζ0Δμ ¼ 0.
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For a one-dimensional system, one expects a homogeneous
state to evolve toward a density bump with opposite
polarities on the sides by minimizing fDPC, Eq. (2). For
our two-dimensional system, this instability gives rise to a
coexistence of radial orientation phases, Fig. 3, named
biphasic aster hereafter. In this case, the threshold j†p is
modified by material parameters, like disorder stiffness, see
Supplemental Material, C [39], or activity and boundary
conditions.
Beyond the spontaneous splay instability, in- and out-

aster states coexist, Fig. 3(a). This biphasic aster is
characterized by a nonmonotonic density profile, favoring
nonuniform orientations due to DPC, Fig. 3(a), and a sharp
interface with strong orientation gradients (Rj∇ψ j ≫ 1).

Because the positive bend constant Kb ¼ K prevents large
gradients of ψ , the polar order S needs to be sufficiently
small to stabilize the interface, Fig. 3(a), inset. This can be
achieved in the disordered limit

ffiffiffiffiffiffiffiffiffi
K=χ

p
≪ R, such that

polar order is localized at the disk periphery, see Fig. 3(a).
Below the spontaneous splay instability, double spirals

can be found at nonvanishing activity. They are charac-
terized by a gradual gradient of orientation (Rj∇ψ j ∼ 1),
Fig. 3(b). This gradient results from a competition between
active alignment and DPC, modulated by the local ampli-
tude of polar order S. Indeed, if anisotropic activity
dominates over DPC at the periphery (S ∼ 1), spirals are
stabilized for ζΔμ > 0, Fig. 3(b). Away from the periphery,
where order is weak (S ≪ 1), DPC always dominates,
favoring out asters for inward density gradients, Fig. 3(b).
Contrary to Figs. 2(c) and 2(e), where polar order remains
large near the center, locally attenuating the competition
between active alignment and DPC, here the disordered
limit

ffiffiffiffiffiffiffiffiffi
K=χ

p
≪ R results in larger orientational gradients.

These states can be characterized by the peripheral angle
ψR ¼ ψðRÞ and the angle difference between the periphery
and the center Δψ ¼ ψðRÞ − ψð0Þ. Whereas Fig. 3(d) is
apparently similar to Fig. 2(a), the state diagram for the
angle difference in Fig. 3(e) reveals biphasic asters and
double spirals with Δψ ≠ 0, see Supplemental Material,
C [39]. Activity is not required for biphasic asters to exist
but it can modulate density gradients as in Fig. 3(a), and
therefore it modifies the spontaneous splay threshold j†p.
Whereas density gradients n̄0ðRÞ are set by DPC at the
periphery, in the bulk, they scale as n̄0 ∼ −ðζ þ ζ0ÞΔμwhen
activity dominates. Therefore, biphasic asters are favored
when jp > 0 and ðζ þ ζ0ÞΔμ < 0 or vice versa, in agree-
ment with state 2 in Fig. 3(e) when ζ0Δμ ¼ 0 or in Fig. 3(g)
when ζ0Δμ ≠ 0.
At low values of jjpj, double spirals can emerge, states 4,

6, and 8 in Figs. 3(e) and 3(g). Whereas peripheral
orientation remains outward when ζ0Δμ ¼ 0, Fig. 3(e),
large isotropic activity can induce inward oriented states 7
and 8 in Figs. 3(f) and 3(g). These states can no longer be
understood from peripheral angle dynamics alone. They
appear when anisotropic active stresses overcome DPC at
the periphery, in combination with outward (inward) bulk
density gradients to promote inward orientation for jp > 0

(jp < 0). Increasing ζ0Δμ to positive values changes the
direction of bulk density gradients and reverses the central
angle from inward to outward through the sequence of
states 8 → 6 → 4 for jp > 0, see Figs. 3(c) and 3(g).
In summary, a local coupling between polarity and

density gradients can account for the observed transition
between rotating spirals and nonflowing asters as cell
density increases, Fig. 1. In addition, these results provide
an alternative interpretation of this transition, in terms of a
transition from a double spiral to an aster, black arrow in
Fig. 3(g). In this case, for low densities, a double spiral with

(a)

(b)

(c)

(d) (e)

(f) (g)

FIG. 3. Orientational patterns induced by DPC. (a),(b) Radial
profiles of angle (left), density variation (middle), and polar order
(right), for biphasic asters (a) and double spirals (b). Inset: polar
order near disk center. (c) Schematics of orientation states. (d)–
(g) Steady-state density plots: peripheral angle ψR ¼ ψðRÞ (d),(f)
and angle difference between periphery and center Δψ ¼ ψðRÞ −
ψð0Þ (e),(g). Dashed lines in (d)–(g), jp ¼ � ffiffiffiffiffiffiffi

KB
p

; black arrow in
(g), double spiral-to-aster transition; parameters χ ¼ 81, ζ0Δμ ¼
0 for (d),(e) and ζΔμ ¼ 20 for (f),(g).
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asterlike orientation ψ ≃ 0 in the center is found, Figs. 3(b)
and 3(g). With increasing density, this inner phase expands
until it fills the entire disk and the angle becomes ψ ¼ 0.
This double-spiral state delays the relaxation of the
peripheral angle toward zero, which is consistent with
experiments, see the Appendix.
The spiral-to-aster transition discussed above crucially

relies on the choice of the free-energy term fDPC, Eq. (2).
Possible alternative forms are fDPC ¼ −jpn̄∇ · p [36,38] or
fDPC ¼ −jpðn̄ − 1Þ∇ · p [31,35]. These terms only modify
the boundary conditions for p and n̄, in particular,
∂rn̄ðRÞ ¼ 0. In this case, we find the same biphasic
orientational phases with different transition lines, see
Supplemental Material, F and G [39]. Yet another form
of the free energy is f̃DPC ¼ |̃pðp · ∇Þn̄ where the constant
|̃p is density independent. In this case, a spiral-to-aster
transition occurs if ζΔμ decreases with density, below a
threshold value that increases with |̃p, Fig. 3(d). Then, other
parameters like isotropic active stress need to depend on
density to match the observed density profiles in Fig. 1(b).
In general, no systematic approach exists to determine the
density dependency of parameters, and how they affect the
behavior of active compressible fluids deserves more
attention. See Supplemental Material, G [39] for additional
discussion.
DPC not only provides an explanation for the dynamics

of polar tissues on disks, Fig. 1, but also proposes a
mechanism for collective states found in giant epithelial
cell monolayers [30]. There, a radially spreading tissue
develops azimuthal flows in the central region, and density
gradients become nonmonotonic. In our framework, this
state resembles biphasic asters except for an outward spiral
orientation near the center in Ref. [30]. We expect this
difference to originate from a global polar order, which is
able to sustain bulk active stresses contrary to our disor-
dered system. Validation of these hypotheses requires a
precise measurement of the cell polarity field and comple-
mentary theoretical analysis.
To our knowledge, the above experimentalworks represent

the first evidences of DPC in cellular systems. To further
investigate this coupling experimentally, one could control
density gradients using optogenetic tools [43] and generate
specific flow or polarity patterns. Although we have focused
on systems with polar symmetry, it is also interesting to
consider couplings between density gradients and other types
of orientational order, like nematic systems [44].

We are grateful to Jean-François Joanny and Ram Adar
for insightful discussions, Ricard Alert for pointing out
Ref. [30], and Ludovic Dumoulin for help on numerical
methods. The computations were performed at University
of Geneva on Baobab HPC cluster. C. A. D. acknowledges
funding from the EMBO fellowship ALTF 886-2022, and
P. G. acknowledges support from the Human Frontiers of
Science Program (Grant No. LT-000793/2018-C).

Appendix: Time evolution of the peripheral angle.—
Here we compare the evolution of the peripheral angle ψR
between experiment and theory. Experiments in Ref. [17]
first show a spiral maintained over one day, followed by a
rapid transition to an aster, see Fig. 4(b). In theory,
assuming uniform angle ψ ¼ ψR and transition controlled
by boundary effects, we obtain an expression for the angle

cosð2ψRÞ ¼
1

ν

1

1 − j2

�
1 −

j2

2

�
4η

γ
þ ν2 þ 1

��
; ðA1Þ

see Supplemental Material, E [39]. The critical value j�p at
which spiral-to-aster transition occurs is given by Eq. (6).
Comparison between experiments and Eq. (A1) shows
agreement for η=γ ≪ 1, see Fig. 4(a). Previous quantitative
analysis [20,41] suggests that η=γ ∼ 1.
In the main text, we showed the existence of double

spirals, Fig. 3(b). For high values of activity coefficients
ζΔμ, ζ0Δμ, and increasing jp > 0 [black arrow in Fig. 3(g)],
spiral orientation is maintained at the periphery, while
asterlike orientation develops in the center. Compared to
uniform angle states, this delays the spiral-aster transition
time, see Fig. 4(b). Thus, the double spiral itself can also
quantitatively reproduce experimental data.
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