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I report on the experimental confirmation that critical percolation statistics underlie the ordering kinetics
of twisted nematic phases in the Allen-Cahn universality class. Soon after the ordering starts from a
homogeneous disordered phase and proceeds toward a broken Z2-symmetry phase, the system seems to be
attracted to the random percolation fixed point at a special timescale tp. At this time, exact formulas for
crossing probabilities in percolation theory agree with the corresponding probabilities in the experimental
data. The ensuing evolution for the number density of hull-enclosed areas is described by an exact
expression derived from a percolation model endowed with curvature-driven interface motion. Scaling
relation for hull-enclosed areas versus perimeters reveals that the fractal percolation geometry is
progressively morphed into a regular geometry up to the order of the classical coarsening length. In
view of its universality and experimental possibilities, the study opens a path for exploring percolation
keystones in the realm of nonequilibrium, phase-ordering systems.
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Phase-ordering kinetics or domain coarsening [1,2] is a
general phenomenon with universal features that plays key
roles in solid alloys [3], soft matter [4], cell biology [5],
bacterial populations [6], and opinion models [7], to
mention but a few examples beyond the classical spin
model systems in condensed matter. Indeed, the most
familiar and iconic example is the ordering of ferromag-
netic phases in the bidimensional kinetic Ising model after a
quench from above to below the critical temperature.
Evolving with single flip kinetics, the mosaic of spin
domains acquires a morphology statistically equivalent
to that of critical percolation [8–11] before developing
the coarsening length, RðtÞ ∼ t1=2, that dynamical scaling
hypothesis in this case relies upon [1,2]; t is the time
elapsed from the quench. At the continuum scaling limit,
such a phenomenology is recast as a nonconserved scalar
field evolved by the time-dependent Ginzburg-Landau
equation (model A) with a symmetric double well potential
with minima at �ϕ0 [1]. The dynamics is concentrated at
the motion of interfaces (i.e., the zeros of the scalar field),
whose curvatures are reduced according to the Allen-Cahn
(AC) equation [3]: v ¼ −Dκ, where v is the normal
velocity of an infinitesimal segment of the interface, κ is
the local curvature, and D is a parameter.
Starting from a homogeneous disordered initial condi-

tion, the low-temperature dynamics of both discrete and
continuum finite-size models quickly visit configurations
characterized by the existence of giant percolating clusters,
whose sizes, occupying a large fraction of the system, are at
variance with the typical domain size kept at the micro-
scopic level [12–14]. Because of the interplay between
energy-conserving and energy-decreasing kinetical moves
[14], however, these initial percolating clusters are broken

and rebuilt multiple times until the dynamics converges to
the random percolation fixed point at a special timescale tp
[12,13]. The underlying percolating structure is then
permanently sealed at this time [12], leaving the role of
smoothing boundaries and coarsening domain areas for the
asymptotic AC dynamics.
Interestingly, from tp onward, the crossing probabilities

for spin domains in the Ising-Glauber model, lying in a
rectangle of aspect ratio r, numerically follow [10,11] the
probabilities exactly derived for critical percolation [15,16].
As I shall show below, such a numerical result is here
experimentally confirmed, along with the first observation
of tp in real systems, in addition to the experimental
confirmation for celebrated Cardy’s formula [17,18]. For
free boundary conditions, a domain that crosses over a
rectangle by means of a vertical spanning component,
without having a horizontal spanning component, occurs
with probability [15]

F h̄vðrÞ ¼
ηðrÞ

Γð1=3ÞΓð2=3Þ 3F2ð1; 1; 4=3; 2; 5=3; ηÞ; ð1Þ

where Γð·Þ and mFnða1;…; am; b1;…; bn; ηÞ are the
Gamma and the generalized hypergeometric functions;
ηðrÞ is defined, and implicitly related to r, as
η¼½ð1−kÞ=ð1þkÞ�2, r∈Rþ, with r¼2Kðk2Þ=Kð1−k2Þ
[10], where KðuÞ is the complete elliptic integral of the first
kind. A π=2 rotation of the rectangle maps the horizontal
direction onto the vertical direction, and vice versa. Then,

F hv̄ðrÞ ¼ F h̄vð1=rÞ: ð2Þ
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The probability for a dual-spanning configuration, F hv, is
obtained from the normalization requirement

2F hvðrÞ ¼ 1 − F hv̄ðrÞ − F h̄vðrÞ; ð3Þ

where the factor 2 enters because a configuration with no
spanning cluster in critical percolation shall be, by the up-
down symmetry, counted as a mosaic of dual-spanning type
for the ordering problem [10]. The crossing probability for
domains containing at least a vertical spanning component
is Cardy’s formula. It reads [17,18]

F hvðrÞþF h̄vðrÞ¼
3Γð2=3Þ
Γð1=3Þ2 η

1=3
2F1ð1=3;2=3;4=3;ηÞ: ð4Þ

By letting a critical percolation configuration, at the
continuum scaling limit, evolve with the curvature-driven
interface motion at zero temperature, one can also derive an
exact expression for the number density of hulls with
enclosed area between A and Aþ dA, nhðA; tÞdA [8],

nhðA; tÞ ¼
2ch

ðAþ λhtÞ2
; ch ¼

1

8π
ffiffiffi
3

p ; ð5Þ

with ch being a universal constant [19]. Equation (5) is
valid for A0 ≪ A ≪ L2 and t ≥ tp, where A0 and L2 denote
a microscopic area and the system area, respectively; λh is a
parameter. Despite being derived from a continuum model,
Eq. (5) describes the evolution of hull-enclosed areas in the
kinetic Ising model with nonconserved dynamics evolving
at low temperatures [8,9]. A power-law decay consistent
with nhðAÞ ∼ A−2 was seen in experiment of chiral smectics
[20], a system different from the one presented below (see
Ref. [21] and Supplemental Material [22]). However, as far
as Eq. (5) is concerned, the universal value 2ch—hallmark
of percolation statistics in coarsening dynamics [8]—has
not been observed yet.
In this Letter, I report on clear experimental evidence that

critical percolation statistics underlie the ordering kinetics
of twisted nematic phases in the Allen-Cahn universality
class [1,21]. I do so by confirming all the exact formulas,
Eqs. (1)–(5), based on percolation theory, including addi-
tional formulas and scaling relations derived from the
interplay between ordering, percolation, and the coarsening
regime. Unlike traditional studies with liquid crystals (that
have focused on the first-order, isotropic-mesophase ther-
mal transition), here one explores the nontrivial electro-
hydrodynamic convection patterns that arise in a class of
nematic layers [24]. While keeping thermal effects finely
controlled in the system, ordering kinetics can be electri-
cally induced by genuine sudden transitions through
second-order-like points. The setup is also versatile: it
allows inducing different types of ordering by transiting,
e.g., between the nonequilibrium steady states in the
electrohydrodynamic convection pattern regime. This trium

of qualities (fast, high-controllable, versatile), associated
with the convenient spatial and temporal scales of liquid
crystalline systems, turns the experimental setup ideal for
addressing universality issues in phase-ordering kinetics.
Below, I describe the specific experimental methods before
presenting the results and discussions. For more detail
on the experimental setup, see Ref. [21] and Supplemental
Material [22].
A twisted nematic liquid crystal (TNLC) cell was pre-

pared by injecting a solution of N-4-methoxybenzylidene-
4-butylaniline (purity > 98%) doped with 0.01 wt% of
tetrabutylammonium bromide in a rectangular region,
12 μm× 16 mm × 16 mm, enclosed by parallel glass
plates and polyester spacers. Inner surfaces of the plates,
coated with indium tin oxide and polyvinyl alcohol, were
mechanically rubbed to set an orientation for the nematic
field right on them. These orientations were made orthogo-
nal between the plates to induce left- and right-hand twisted
nematic conformations along the bulk.
For optical observations, I inserted the cell on the stage

of a IX73 Olympus microscope before illuminating it with
circularly polarized green-filtered light. Images formed by
the light transmitted through the TNLC layer were recorded
by a B1620 Imperx camera. Each image comprises an area
L2 ¼ ð1208 × 1608Þa2 with pixel size a ¼ 1.82 μm. The
temperature of the TNLC layer was kept at 25 °C with
fluctuations of at most 10 mK.
To induce ordering kinetics in the material, a sinusoidal

voltage (70 V; 100 Hz) was applied through the cell to
generate the high density of stringlike topological defects
featuring the Dynamical Scattering Mode 2 (DSM2)
[24,25]. DSM2 provides a nematic-disordered initial con-
dition because the nematic order becomes chaotic with
short correlations in space and time, nearly 1 μm and
10 ms, respectively, for a 50 μm thick nematic layer under
ac electric field (60 V; 150 Hz) [25]. After letting the cell by
2 min in DSM2, the field was suddenly removed—
definition of time t ¼ 0 s—and the stochastic ordering
of twisted nematic phases was kept tracked.
The ordering is quantified by a binary scalar noncon-

served order parameter endowed with nearly symmetric,
AC dynamics; the typical domain size grows as RðtÞ ∼ t1=2

[21]. Measuring the shrinking rate of circular domains, the
timescale of the curvature-driven motion can be quanti-
fied by D ¼ λh=2π ¼ 122ð4Þ μm2 s−1 [21], from where
one reads λh ¼ 767ð25Þ μm2 s−1. Using this setup, I focus
on geometrical aspects of the domain morphology to test
exact predictions based on percolation. To this aim, 1000
independent ordering histories lasting 30 s each were
collected. Images were acquired at 5 s−1 frame rate. In
the analysis, a domain is defined as a connected path of the
same phase. Each domain contains an external contour
defined as its hull. Domains and hull-enclosed areas were
detected by a labeling [23] and a biased-walker algorithm
[9]. The hull perimeter is defined as the number of broken
bonds of each pixel at the hull times the pixel size.
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By following the evolution of the domain morphology in
Fig. 1, we observe that the macroscopic shapes of largest
domains in the panel at 1.4 s are preserved by the dynamics
up to, at least, the latter panel at 30 s. The main changes
during the evolution of these domains take place at their
interfaces and areas: the former becomes smoother because
of the curvature-driven motion, and the last increases as a
result of the shrinking and disappearance of inner domains.
For t ≥ 1.4 s, the largest domain in Fig. 1 crosses over

the opposite sides of the image by spanning it along both of
its horizontal and vertical directions. Crossing events like
this are the rule since all analyzed mosaics have at least a
domain that crosses over the image. Both the crossing event
and the crossing type, however, vary upon the geometry
considered. To quantify these events over a simple geom-
etry, I consider a rectangle of aspect ratio r ¼ lx=1208a,
r ¼ 0.2; 0.3;…; 1, located over the original image. The
rectangle is oriented such that its x and y Cartesian axes are
parallel to the short and long sides of the image, respec-
tively; its upper left corner is fixed at that same corner of the
panels. Since images were taken in a region far from the
borders of the sample, it is checked that different positions
of the rectangle do not alter the results.
Figure 2(a) shows the experimental crossing probabil-

ities for each one of the three crossing types, as function of
r, computed from configurations at 1.4 s. Ordering times
within 1.4 s ≤ t ≤ 4 s yield statistically similar results. The
outcomes are to be compared with the exact results for
percolation theory, Eqs. (1)–(3), shown as dashed or solid
lines in the plot. Notice that the three exact curves have
monotonic behaviors easily distinguishable, one from
another. While F h̄v quickly decreases from 1 (for the thin
slab geometry at r < 0.2) to≈0.18 (for the square geometry
at r ¼ 1), 2F hv varies in an opposite trend, augmenting
from 0 to ≈0.64 along the increasing scale for r. In its
turn, being smaller or at most equal than their counter-
parts, F hv̄ has only a moderate lift with r from 0 until the
meeting point F h̄vð1Þ ¼ F hv̄ð1Þ. By noting the exact re-
sult F hvð1Þ ¼ 1=4þ ð ffiffiffi

3
p

=4πÞ lnð27=16Þ ¼ 0.322… [26],

we can read 2F hvð1Þ ¼ 0.644…. Using this value in
Eq. (3), we find F hv̄ð1Þ ¼ 1=2 − F hvð1Þ ¼ 0.177… [10].
Over the whole range of r, the experimental results

are well described by the exact formulas for critical
percolation—for all the three crossing types. The most
likely values for the probabilities h̄v and hv are in excellent
agreement with Eqs. (1) and (3), correspondingly. Their
uncertainties are relatively small. Given that the measures are
realized on a partial region of the sample, and that the
rectangle defining a crossing event is considerably smaller
than the image, such an agreement is yet more impressive.
The data for the hv̄ crossing type is right on the top of
F hv̄ðrÞ. For the special square geometry, probabilities for the
h̄v and hv̄ types are statistically equal to 0.169(37), a value
that encompasses F h̄vð1Þ ¼ 0.177…. By consistence, the
dual crossing probability in the liquid crystal setup is 0.66(4)
at r ¼ 1, again in agreement with the prediction 2F hvð1Þ ¼
0.644…. Finally, for the meeting point F h̄v ¼ 2F hv ≈ 0.48
at r ≈ 0.63, the closest experimental data available gives
0.49(4) at r ¼ 0.6.
Having seen the accord with percolation solutions for the

fundamental triad of crossing probabilities, the measure-
ments for h̄v and hv crossing types can also be combined to
confirm Eq. (4), Cardy’s formula, shown in Fig. 2(b). All of
this accord, however, is only reached for configurations
from 1.4 s, a fact that unveils tp ¼ 1.4ð1Þ s for a square of
side lx ∼ 103 a.
Now we turn to quantify the evolution of the domain

morphology. Figure 3(a) shows results for nhðA; tÞ after
exclusion of domains that touch a border of the image. At
fixed t, nhðA; tÞ is formed by three parts along the A axis. In
the smallest area part, 10 μm2 < A < 50 μm2 ≈ 15a2,
nhðA; tÞ probes tiny bubblelike clusters in addition to
thermal domains that are not related to the coarsening

1 mm

1.4 s 5 s 30 s

FIG. 1. Mosaics of domains during the ordering of twisted
nematic phases. In a panel, each domain is artificially painted in a
unique color. The 1st, 2nd, 3rd, and 4th largest clusters are
coherently painted in green, blue, orange, and magenta colors,
respectively. Times elapsed from the quench are shown below
each panel.
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FIG. 2. Exact crossing probabilities for percolation theory
(lines), as a function of the aspect ratio of a rectangular arena,
describe experimental data for ordering kinetics (symbols).
(a) Probabilities for only vertical (□), only horizontal (∘), and
dual-spanning (⋄) configurations. (b) Cardy’s formula—right-
hand side of Eq. (4)—compared with the experimental measure-
ments. Uncertainties correspond to 1 standard deviation in (a),
and to the error propagation of standard deviations through the
left-hand side of Eq. (4) in (b). Measurements taken at 1.4 s.
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dynamics [9]. Because of thermal domains, nh manifests a
temperature-dependent decreasing with A that numerically
can be accounted for by equilibrium distributions [9]. After
such an initial decreasing with A, nh has a plateau region.
The extension of this plateau is delimited by the time-
dependent coarsening area, R2ðtÞ ∼ t. Because of the
curvature-driven motion, small domains at this regime
shrink and disappear first than those having unusually
large sizes. As a result, nhðA; tÞ plateau shifts down as time
elapses. Unlike in [20], this temporal dependence is here
clearly observed. Residing on large areas, on the other
hand, are the structures similar to critical percolation
clusters [12,13]. After tp, relaxation of these large structures
becomes much slower than that of typical domains, so that
nhðA; tÞ power-law decay is essentially time-independent.
In Fig. 3(a), I also plot the exact predictions from Eq. (5)

using the most likely value for the experimental settings
(assumed hereafter), λh ¼ 767 μm2 s−1. Remarkable agree-
ment with theory is seen for both the plateau and the power-
law regimes, 15a2 ≪ A ≪ L2 ∼ 106a2, covering nearly
one decade of variation in time. Minor deviations at small
and large areas are due to the finite thermal length and
system size, respectively [8,9]. In its master and universal
form, Fig. 3(b), the results respect the dynamical scaling
hypothesis over the full spatial and temporal ranges.
Noteworthy, the plateau’s level is compatible with
2ch ¼ 0.0459…, thus passing through the stringent test
of Eq. (5)—see [8]. The typical area, A ∼ λht, demarcates
the crossover to the power law inherited from the universal
percolation statistics, nhðA; tÞ ∼ A−2 at λht ≪ A ≪ L2.
The morphing of clusters into regular (i.e., nonfractal)

structures due to the ensuing ordering can be observed
through a simple relation for hull-enclosed areas and
associated perimeters [9],

A
λht

≃ b

�
pffiffiffiffiffiffi
λht

p
�

α

: ð6Þ

The typical length,
ffiffiffiffiffiffi
λht

p
, is used as a normalization factor;

b is a parameter, while α ¼ 2 for regular hull geometry, but

α < 2 for fractal hull geometry. Figure 4(a) shows the
experimental outcomes for the pairs of hull-enclosed area
versus associated perimeter, after bin average, in their
dynamical scaling form, Eq. (6). Domains that touch a
border of the image are excluded from the statistics. The
data indeed collapse onto a master function made of two
power laws, y ∼ xα, with y ¼ A=λht and x ¼ p=

ffiffiffiffiffiffi
λht

p
: one

power law below, and the other above, the crossover scale
xc ≈ 7. To quantify them, the local slopes αlocðxÞ ¼
dðln yÞ=dðln xÞ from the master curves are averaged
over the following regions to find: α ¼ 2.04ð20Þ over
0.3 < x < 5; and α ¼ 1.16ð10Þ over 20 < x < 200 (uncer-
tainties are 1 standard deviation of the local slopes).
Amplitudes are b ≈ 0.046 and 0.25, respectively. Note that
α ¼ 1.16ð10Þ agrees with the exact value for percolation
hulls, α ¼ 8=7 ¼ 1.142…, obtained from α ¼ 2=df [27]
with the hull fractal dimension df ¼ 7=4 [28]. Therefore,
the fractal geometry of hulls in the data is progressively
morphed into a regular geometry, α ¼ 2. This occurs
because of the spreading of correlations set up to the order
of the coarsening length RðtÞ ∼ ffiffiffiffiffiffi

λht
p

: interfaces are smooth
up to such length, while larger boundaries, keeping the
memory of the critical percolation state, are largely rough.
To conclude the analysis, we also studied the number

density of hulls with perimeters between p and pþ dp,
nhðp; tÞdp. Using nhðA; tÞ from Eq. (5), and Aðp; tÞ from
Eq. (6), one can derive the exact expression proposed in [9]:

ðλhtÞ3=2nhðxÞ ≃ 2αbch
xðp; tÞα−1
ð1þ bxαÞ2 ; ð7Þ

for xðp; tÞ far from xc. Equation (7) describes hull
perimeters arising in the kinetic Ising model after a quench
from infinite to zero temperature [9].
Figure 4(b) shows nhðp; tÞ computed in the twisted

nematic setup. The plot displays the data in the collapsed,

101 102 103 104 105

A [μm2]

10-12

10-10

10-8

n h(
A,

t) 
[μ

m
-4

]

2 s
4 s
8 s
16 s

(a)

10-2 10-1 100 101 102

A / λht

10-6

10-4

10-2

( λ
ht)

2
n h(

A,
t)

(b)

FIG. 3. (a) Number density of hull-enclosed areas in the liquid
crystal data (symbols) at several times compared with the corres-
ponding proposed formula (lines), Eq. (5) with λh¼767μm2 s−1.
(b) Master scaling form of data in (a). Error bars are 1 standard
deviation of the mean.
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FIG. 4. (a) Hull-enclosed areas versus associated perimeters in
a master scaling form, Eq. (6), after bin average. Solid lines are
guide to eyes and indicate slopes expected for regular (2) and
percolationlike (8=7) geometries. (b) Number density of hull
perimeters formed by twisted nematic phases (symbols) com-
pared with exact predictions (lines), Eq. (7), far from the
crossover p=ðλhtÞ1=2 ≈ 7. In both plots, λh ¼ 767 μm2 s−1. Error
bars are 1 standard deviation of the mean.
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dynamical scaling form fðxÞ ¼ ðλhtÞ3=2nhðxÞ. Aside from a
temperature-dependent region related to thermal domains at
0.03 ≤ x ≤ 0.3 (not shown), the universal scaling function
fðxÞ comprises two parts along the x axis, from x ¼ 0.3
onward: a smooth increase that ends at a local maximum
f≈0.006 for x� ≈ 3, and a power-law decay, fðxÞ∼x−ðαþ1Þ,
in the tail x ≫ xc. Both regimes are described by Eq. (7).
The formulas are consistently generated with values
extracted from the analysis of Fig. 4(a). Explicitly, we
use b ¼ 0.046 and α ¼ 2 for small scales, 0.3 < x < 5;
while b ¼ 0.25 and α ¼ 1.25 (best result) for large scales
20 < x < 200. Theoretical curves, shown as solid lines in
Fig. 4(b), agree with the experimental results over their full
extension of validity, which happens far from xc ≈ 7.
In conclusion, the ordering kinetics of twisted nematic

phases in the Allen-Cahn universality class, starting from a
homogeneous disordered initial condition, acquires a
domain morphology statistically equivalent to that of the
critical percolation model soon after the ordering begins.
On theoretical grounds, this connection has allowed theo-
retical physicists to propose a set of exact formulas for the
class of bidimensional nonequilibrium systems with a
nonconserved scalar field. As we have seen, many of these
formulas are here experimentally confirmed: (i) the cross-
ing probabilities formulas for rectangular geometries [15–
18], (ii) the evolution for the number density of hull-
enclosed areas [8], and (iii) the evolution for the number
density of hull perimeters [9]. In addition, I also have
observed (iv) the existence of tp in a real system; besides
measuring that (v) the fractal percolation geometry is
progressively morphed into a regular geometry along with
the spreading of correlations—the crossover from regular
to irregular shapes occurring at the order of the coarsening
length. The fact that exact solutions proposed for simple
models work well in a complex and real system is a far from
trivial result in view of their conceptual and micro-
scopic differences. The observed agreements, conversely,
elegantly exemplify the powerful concept of universality
built on the pillars of symmetries, conservation laws, and
dimensionality. Thermal effects below the clearing point of
the liquid crystal are expected to merely renormalize
nonuniversal constants yet preserve exponents and master
scaling functions [1]. Unusual dynamics should arise when
the final applied voltage is set in the regime of electro-
hydrodynamic convection.
Other important aspects of percolation [29,30], including

the connection to Schramm-Loewner evolution [31], are
appealing directions for assessment in nonequilibrium
systems. The emergence of critical percolation in coarsen-
ing phenomena implies a new exponent tp ∼ Lzp [12–14] to
appear in the dynamical scaling hypothesis. A measure-
ment of the exponent zp in continuum models or real
systems is a key piece required to complete the picture. The
early fluctuating formation and reshaping of percolating
clusters, as well as the universal behavior for the dynamical

cluster size heterogeneity at this regime [32,33], also
constitutes an important path for future research.
Observations of critical percolation even in coarsening
models containing quenched disorders [8], conserved
dynamics [34], and long range interactions [35], indicate
the possible generality of the phenomenon here experi-
mentally reported.
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