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Global infrastructure robustness and local transport efficiency are critical requirements for transportation
networks. However, since passengers often travel greedily to maximize their own benefit and trigger traffic
jams, overall transportation performance can be heavily disrupted. We develop adaptation rules that
leverage optimal transport theory to effectively route passengers along their shortest paths while also
strategically tuning edge weights to optimize traffic. As a result, we enforce both global and local
optimality of transport. We prove the efficacy of our approach on synthetic networks and on real data. Our
findings on the international European highways suggest that thoughtfully devised routing schemes might
help to lower car-produced carbon emissions.
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Introduction.—Transport networks are ubiquitous in
nature and engineering, spanning from living organisms
to cities and telecommunications. Many of these systems
can be modeled by adaptation rules that follow the principle
of minimum energy, regulating edge flows to optimize
transportation costs. Examples in biology are plants, whose
profiles emerge from a trade-off between minimization of
hydraulic resistance and carbon cost [1], and leaves, shaped
by the interplay of nutrients’ transport efficiency and
robustness to damage [2–4].
Similarly, adaptation rules have been employed to model

traffic flows in urban transportation by jointly minimizing
the energy dissipated by the passengers and the construc-
tion cost of the infrastructure [5–11]. While these models
set forth a first approach to simulate traffic flows using
adaptation, they crucially neglect that passengers in a
transportation network do not move cohesively to minimize
a unique cost. Instead, they choose their routes greedily to
maximize their benefit (Wardrop’s first principle) [12–14].
As a consequence, transport networks may be globally
inefficient.
In this Letter, we propose a set of adaptation equations to

find traffic flows that mitigate congestion, considered as a
proxy for global efficiency, while trading off against the
shortest routes.
We frame the problem in a bilevel optimization setup,

which poses a competition between greedy passengers
and a network manager. The passengers minimize their

origin-destination path cost seeking for the user equilib-
rium [15] (lower-level problem), whereas the network
manager guarantees global efficiency by mitigating traffic
bottlenecks on edges to achieve the system optimum
(upper-level problem), while implicitly accounting for
passengers’ shortest path. We tackle the optimization
problem by alternating optimal transport- (OT) inspired
adaptation rules for the lower-level optimization and a
projected stochastic gradient descent (PSGD) scheme for
the upper-level optimization.
In detail, greedy passenger flows are found by solving a

dynamical system that governs the evolution of edge
capacities, variables that control passenger allocation, so
that these travel on their shortest paths.Adaptation rules are a
well-established mechanism for route assignment on net-
works [3,5–11,16–21] and in continuous domains [22–26].
Classically, user equilibrium greedy flows can be found with
the Frank-Wolfe algorithm [27] or, alternatively, with recent
methods accounting for passengers’ travel budgeting [28].
Here, we propose a model that exploits OT theory to prove
that, at convergence, passengers move along the shortest
path. Particularly, our dynamical system admits a Lyapunov
functional [24] that asymptotically converges to the shortest
path (Wasserstein) distance between entry and exit distribu-
tions of passengers [16,17,29].
Traffic mitigation is performed by minimizing a quadratic

loss function that penalizes edges whose traffic exceeds a
prefixed threshold. The minimization problem can be
treated analytically by assuming that the network edges
are endowed with capacities and weights (resistances) and
their flows are the gradient of a scalar potential, as for
electrical networks. We derive closed-form gradients for the
weights, which can be interpreted as the cost that passengers
pay for traveling. In practice, network managers would
implement these weights by strategically designing incen-
tives or disincentives, e.g., assigning road tolls, to encourage

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Open access publication funded by the Max Planck
Society.

PHYSICAL REVIEW LETTERS 131, 267401 (2023)

0031-9007=23=131(26)=267401(6) 267401-1 Published by the American Physical Society

https://orcid.org/0000-0003-4866-8088
https://orcid.org/0000-0002-8634-0211
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.131.267401&domain=pdf&date_stamp=2023-12-26
https://doi.org/10.1103/PhysRevLett.131.267401
https://doi.org/10.1103/PhysRevLett.131.267401
https://doi.org/10.1103/PhysRevLett.131.267401
https://doi.org/10.1103/PhysRevLett.131.267401
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


passengers to relocate from jammed edges. The task of
traffic mitigation has been addressed using several methods.
These include belief propagation [30–32], adaptive dynami-
cal networks [33], Markov chainMonte Carlo schemes [34],
cellar automata [35,36], and heuristic routing models [37].
A bilevel optimization problem similar to the one studied

here was solved using message passing [38]. While the
problem’s setting is similar to ours, the methodologies
differ since we alternate adaptation rules for the capacities
with global descent for the weights, whereas message
passing uses local updates for flows. Our approach outputs
individual passengers’ optimal paths, whereas the formu-
lation in Li et al. [38] can only extract aggregate routes.
We find that our method effectively trades off traffic

mitigation against the shortest passenger routes. Namely,
both on synthetic topologies and real roads, it returns
optimal transport networks where congestion is heavily
reduced. We argue that this result is beneficial for reducing
the carbon footprint of roads. We also show that the
uncoordinated actions of the network manager and pas-
sengers can be counterproductive, i.e., they may increase
traffic, with an outcome opposite to that intended.
Problem.—We take a network GðV; EÞ where M ≥ 1

groups of greedy passengers i can travel from origin nodes
Oi (one node per group) to possibly multiple destination
nodes Di. Stationary numbers of entry and exit passengers
are stored in a mass matrix with entries S̃iv > 0 for each
v ¼ Oi, S̃iv < 0 for v∈Di, and S̃iv ¼ 0 otherwise. We
assume that the system is isolated, i.e., that passengers
entering the network must also exit. This condition isP

v S̃
i
v ¼ 0 for all i. When traveling along an edge, pas-

sengers pay a cost w̃e > 0, and finally, each edge is equipped
with a capacity that controls the rate at which passengers i
are allocated along each edge e; c̃ie ≥ 0. Intuitively,
one could think of capacities as the space occupied by
passengers of type i, i.e., larger space accommodates more
passengers. All problem variables have been introducedwith
units, however, these can be nondimensionalized to derive
scale-independent adaptation rules (see Supplemental
Material [39]). We denote dimensional quantities with a
tilde and dimensionless ones without.
Lower-level optimization.—The lower-level problem

allows us to find the cheapest routes from Oi to Di. In
order to model traffic flows, we introduce the fluxes Fi

e,
specifying the displacement of Si along an edge e. In
analogy with electrical networks, we assume that there
exists an auxiliary pressure potential pi

v on each node v due
to index i. We interpret them as the travel demand from
passengers traveling from v. With this, we define the
potential-based fluxes for all e ¼ ðu; vÞ and i, i.e.,
Poiseuille’s law, as

Fi
e ¼

cie
we

ðpi
u − pi

vÞ: ð1Þ

Fluxes must obey Kirchhoff’s law. We can write it asP
e BveFi

e ¼ Siv, where B is a conventionally oriented
incidence matrix of the network. Substituting Eq. (1) in
Kirchhoff’s law, the potential becomes a function of c and
w, namely, pi

v ¼
P

uðLi†ÞvuSiu, where † denotes the
Moore-Penrose inverse and Li

uv ¼
P

eðcie=weÞBueBve are
entries of the network weighted Laplacian. With this
substitution, F≡ Fðc; wÞ is also a function of only c
and w, the only independent problem’s variables.
For any fixed set of weights, we write the lower-level

problem as

Jðc; wÞ ¼
X
ei

wejFi
ej; ð2Þ

min
c≥0

Jðc; wÞ: ð3Þ

The convex OT cost J in Eq. (2) is the sum overM indexes
of the w shortest path costs Ji ¼ P

e wejFi
ej [16,17]. Its

only minimizer is the overlap of M shortest paths from all
Oi to Di, which are found with c using Eq. (1) and
Kirchhoff’s law.
Upper-level optimization.—The upper-level problem

formalizes the task of the network manager of tuning w
to mitigate traffic jams triggered by the passengers. We
measure traffic by penalizing congested links whereP

i jFi
ej exceeds a threshold θ ≥ 0, above which infra-

structural failures may occur. Conveniently, we intro-
duce Δe ¼

P
i jFi

ej − θ.
Analogously to Eqs. (2) and (3), for any set of capacities,

the upper-level optimization is

Ωðc; wÞ ¼ 1

2

X
e

Δ2
eHðΔeÞ; ð4Þ

min
w≥ϵ

Ωðc; wÞ; ð5Þ

where H is the Heaviside step function. In Eq. (4),
other objective functions, e.g., the hinge loss, can be
utilized [38,46]; we do not explore this here. Furthermore,
the weights are constrained to be larger than a small ϵ > 0.
This means that passengers cannot profit (w < 0) or travel
for free (w ¼ 0). Practically, this ensures that the Laplacian
L is well defined.
Bilevel optimization.—We combine the two optimization

problems into one. Suppose that the network manager is
regularly informed of the passengers’ routes and, using
such information, the weights are tuned to mitigate traffic.
After each update, passengers reroute according to the
updated weights.
Formally, this translates into the problem

min
w≥ϵ

Ωðw; ĉÞ; ð6Þ

such that ĉ ¼ argmin
c≥0

Jðc;wÞ; ð7Þ
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where the equality in Eq. (7) comes from the convexity
of J [16,17]. In Eq. (6) we explicitly state the dependence
on w as a variable and on c as a parameter [conversely
for Eq. (7)].
Optimal transport dynamics.—To find the shortest paths

required for the lower-level problem, we couple fluxes and
capacities with the ordinary differential equations

dcie
dt

¼ Fi2
e

cie
− cie; ð8Þ

where fluxes obey Kirchhoff’s law. In Eq. (8), edges with
high flux enlarge, whereas those where the negative
decaying term prevails shrink. Crucially, asymptotic sol-
utions converge to the minimum OT cost J in Eq. (2), being
the Wasserstein distance between passengers’ entry and
exit distributions [39] and whose minimizers are origin-
destination shortest paths. Beside Kirchhoff’s law and
positivity, capacities in Eqs. (2) and (3) are otherwise
unconstrained. One can potentially add additional con-
straints, e.g., a limited budget, by employing recent ideas in
the context of adaptation equations [40]. We do not explore
this here.
Projected stochastic gradient descent.—Minimization of

Eq. (6) is performed using stochastic gradient descent with
a projection step to enforce w ≥ ϵ. Importantly, we can
derive a closed-form expression for the gradients Ψe ¼
∂Ω=∂we [39]. To explore the nonconvex landscape of the
minimization in Eqs. (6) and (7), we update the weights
with dropout at each step, i.e., setting to zero jEjð1 − qÞ
random gradients, where 0 ≤ q ≤ 1. For q ¼ 1 we get
vanilla gradient descent.
Bilevel optimization scheme.—In order to find the

optimal c and w, and hence F, we iterate between Eq. (8)
and PSGD recursively. The scheme is repeated until J and
Ω converge. A diagram outlining the optimization method
is in Fig. 1; we also provide an open-source code (Bilevel
routing on networks with optimal transport, BROT) [47].
Experimental setup.—We analyze BROT’s optimal net-

works against two baselines. The first, referred to as OT,
consists of finding passengers’ shortest paths without any
intervention from the network manager. We assume a
unitary cost per unit of length fare, i.e., we set w ¼ l
with l the Euclidean lengths of the edges, and numerically
integrate Eq. (8). The second, referred to as PSGD, reflects
the scenario of a network manager that tunes w only relying
on the shortest paths taken when w ¼ l and that disregards
how fluxes redistribute while updating w. In practice, this
corresponds to running PSGD only, with initial conditions
being wð0Þ ¼ lþ ξ and cie ≃ jFi

Dij;ej [39], and then to
integrating Eq. (8), with w ¼ w⋆

PSGD being the optimal
weights returned by the network manager. Here, ξ is a small
zero-sum uniform noise, FDij are the shortest path fluxes
computed with Dijkstra’s algorithm, and the approximation
arises because, to avoid numerical instabilities, a small

nonzero cie is allocated to all edges. We fix BROT’s initial
conditions to wð0Þ ¼ lþ ξ and cieð0Þ ¼ SiOi .
Synthetic experiments.—First, we study a network of size

jVj ¼ 300, jEj ¼ 864, with nodes placed uniformly at
random in the unitary disk and edges extracted from their
Delaunay triangulation. Entry and exit inflows are SiOi ¼þ1

on an origin node at the center, and SiDi ¼ −1=D, onD ¼ 4,
8 destinations Di on the disk edge. Since M ¼ 1, there is
only a single index i. Here we discuss results forD ¼ 8, for
experiments with varying q for D ¼ 4, 8; see Supplemental
Material [39].
We evaluate J andΩ at convergence for all methods with

different q and ranging θ from θ ¼ 0 to a large value θ⋆

where few edges are congested. Results are in Fig. 2(a).
Since for OT the network manager does not intervene, J

is constant for all θ, and it is the origin-destination shortest
length. Its profile changes when the network manager
influences passengers’ routes by tuning the weights.
Specifically, for PSGD J drops when reducing θ, making
it cheaper for the passengers to move. On the contrary,
lower θ corresponds to a larger J for BROT. This behavior
seemingly favors an uninformed network manager (PSGD)
over an informed one (BROT). However, the profile of Ω
shows that, even though the traveling cost of PSGD is
cheaper, all transport networks at convergence are highly
congested (largeΩ). BROT successfully trades off the cost of
traveling against traffic, outputting low values ofΩ for all θ,
with only a mild increase as θ approaches zero. This is
clarified in Fig. 2(c), where BROT generates ramified loopy
networks.
The dropout parameter q allows us to explore the

minimization landscape of Eqs. (6) and (7). By decreasing
q, i.e., setting more gradients to zero, BROT returns lower Js
at all θ, whereas PSGD gives higher ones, conversely forΩ.
This impacts the network topologies, which are less
ramified and akin to OT trees [48], when q is lower and
for the same θ [39]. The trade-off between J and Ω is
further laid out in Fig. 2(b) where we show J − JOT against
Ω −Ω0, Ω0 ¼ 0. We highlight in red the nondominated
points (also referred to as maximal points) at four values of
θ, computed over all q [as in Fig. 2(a)] and 25 random

FIG. 1. Bilevel optimization scheme on a lattice. Entry and exit
inflows are the red and blue nodes, respectively. Initially, (green)
fluxes distribute minimizing the travel cost weðt ¼ 0Þ ¼ le,
being the length of an edge. If they exceed θ they get penalized;
hence, the network manager tunes the weights to encourage
rerouting over more expensive (red) or cheaper (blue) edges (for a
companion figure, see Supplemental Material [39]).
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initializations of BROT. Such points are the best J-Ω trade-
off attained by the experimental runs [39].
For all q and sufficiently low θ, the price of anarchy

(PoA) [49] is greater for PSGD than for OT, i.e., the
network manager’s intervention increases traffic conges-
tion, having the opposite effect to that intended. We
illustrate exemplary networks at convergence in Fig. 2(c).
The parameter ρ ¼ w⋆

X − l (X ¼ BROT, PSGD), express-
ing the variation of cost, indicates that the uninformed
network manager naively—and significantly—decreases
the cost of a small fraction of edges [square in Fig. 2(d)].
This encourages fluxes to largely concentrate on them, thus
creating congestion.
To further discern the nature of congestion, we propose

two additional metrics. First, the Gini coefficient of the
fluxes, Gini¼P

mn jxm−xnj=2jEj2x̄, where x̄¼
P

e xe=jEj
and xe ¼

P
i jFi

ej. Gini ¼ 0 corresponds to uniformly
distributed fluxes and larger Gini corresponds to high
congestion. Second, the total travel time TθðsÞ ¼P

ei tθ;eðsÞjFi
ej, computed with an affine latency function

for overtrafficked edges [38,50], namely, tθ;eðsÞ ¼ leð1þ
sΔe=θÞ=v∞ if

P
i jFi

ej ≥ θ, and tθ;eðsÞ ¼ le=v∞ otherwise.
Here v∞ ¼ 1 is a (conventionally fixed) free-flow velocity,
and s is a sensitivity coefficient to penalize traffic. Results
are in Fig. 3.
The Gini coefficient of PSGD fluctuates slightly around

the high values attained by the congested shortest path
network of OT. For BROT, as θ decreases—more flux gets
penalized—Gini sharply drops, yielding progressively
distributed networks. The total travel time reveals once
again that the uncoordinated action of passengers and the
network manager may be detrimental compared to having
no tuning of w. In fact, times for PSGD are higher than
those for OT. BROT keeps TθðsÞ small for any value of θ and
for both low and high sensitivity. Finally, as θ increases,
traffic gradually mitigates, with limθ→þ∞TθðsÞ ¼ T∞
(T∞ ¼ JOT) being the travel time for infinite capacities,
when all passengers flow freely.

The E-road network.—We study the methods on a graph
extracted from the international European highways
(E-road) [51,52], of size jVj ¼ 541 and jEj ¼ 712. Entry
inflows of passengers are populations of 15 large cities. We
assume that all passengers travel from one city to another.
Thus, we set forOi and v∈Di (being also origin nodesOj)
the exiting number of passengers S̃v to be proportional to
the product rv ¼ S̃Oi S̃Oj , properly normalized to ensure
conservation of mass. In this way, cities with high inflows
have large outflows, and vice versa for small ones. The total
number of passengers to be routed is

P
i S̃Oi ≃ 3 × 107. We

fix θ̃ (dimensionalized by Sc) so that 43% of the passengers
reroute from their congested shortest path, found with
Dijkstra’s and w ¼ l.
Results are in Fig. 4. We observe that, in the shortest path

configuration of OT, a large volume of passengers travels
between the two most populous cities, Madrid and Berlin,
on the southernmost region of the network. The uninformed
network (PSGD) heavily increases the price of the con-
nections to Milan [39]. This causes a heavy rerouting from
Madrid to the north and congests the roads connecting
Madrid to Paris and then from Paris to Berlin. In contrast,
BROT distributes traffic over a ramified road network.

FIG. 2. Overview of the routing schemes. (a) J andΩ against θ. (b) Trade-off J − JOT vsΩ − Ω0 with varying ðθ; q; ξÞ. Nondominated
points for θ=θ⋆ ≃ f0.06; 0.2; 0.3; 0.4g are in red. (c) BROT’s networks at different θ. Edge widths are proportional to the average fluxes in
50 runs of the algorithm. Gray edge contours are fluxes’ standard deviations. (d) Cost (left) and flux (right) networks for all methods and
θ=θ⋆ ¼ 0.4. Flux networks are as in (c), whereas edges in the cost networks are colored with ρ and their widths are proportional to the
fluxes. The black rectangle frames a region where the network manager triggers high congestion. We conveniently normalize θ⋆ and ρ.

FIG. 3. Measuring traffic congestion, D ¼ 8. (a) Gini coeffi-
cient against θ. (b) TθðsÞ against θ. Solid lines correspond to low
sensitivity s ¼ 1 and dashed ones to s ¼ 50; in red we draw T∞
(free flow). Shades are standard deviations over 50 realizations of
the algorithms.
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We study the average travel time for all routing
schemes. This is hT̃ θ̃ðsÞi ¼

P
ei t̃e;θ̃ðsÞjF̃i

ej=
P

ei jF̃i
ej,

where t̃θ̃ is a dimensionalized latency function computed
using el, the Euclidean distance between cities, and
v∞ ¼ 100 ðkm=hÞ.
Results for s ¼ 1, 5 in Fig. 4 show that the average travel

time of BROT is substantially lower than that of OT and
PSGD. Particularly, for low sensitivity BROT’s hT̃ θ̃ðsÞi is
approximately 1.7 h), while OT’s and PSGD’s are 2.3 and
3.1 h. Here, BROT leads to a reduction in traveled time of
approximately 26% and 45% compared to OT and PSGD.
This result becomes starker if the sensitivity increases, here
BROT reduces hT̃ θ̃ðsÞi of 48% compared to OT—from 5 to
2.6 h—and of 74% compared to PSGD—whose heavy
congestion gives hT̃ θ̃ðsÞi ≃ 10 h. Once again, the PoA (the
travel time) is higher if the network manager’s intervention
is uncoordinated with the passengers (PSGD), as opposed
to when there is no intervention (OT).
Experiments on the E-road network for q ¼ 0.25, 0.5,

and 0.75 are in the Supplemental Material [39].
Conclusion.—BROT relies on theoretical assumptions that

can be challenging to meet in real-world traffic control [53],
e.g., passengers rerouting more unpredictably than
expected by theoretical models. Nevertheless, our analysis
on the E-road network demonstrates how an informed
tuning of road tolls—where the network manager factors in
passengers’ rerouting—can be beneficial for reducing the
carbon footprint of roads, since traffic jams, and hence
longer travels, critically impact greenhouse gas emissions
of vehicles [54–56].

To facilitate practitioners using our algorithms, we open
source our code [47].
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