
Twistronics of Kekulé Graphene: Honeycomb and Kagome Flat Bands

Michael G. Scheer and Biao Lian
Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

(Received 15 June 2023; accepted 10 November 2023; published 26 December 2023)

Kekulé-O order in graphene, which has recently been realized experimentally, induces Dirac electron
masses on the order of m ∼ 100 meV. We show that twisted bilayer graphene in which one or both
layers have Kekulé-O order exhibits nontrivial flat electronic bands on honeycomb and kagome lattices.
When only one layer has Kekulé-O order, there is a parameter regime for which the lowest four bands at
charge neutrality form an isolated two-orbital honeycomb lattice model with two flat bands. The
bandwidths are minimal at a magic twist angle θ ≈ 0.7° and Dirac massm ≈ 100 meV. When both layers
have Kekulé-O order, there is a large parameter regime around θ ≈ 1° and m≳ 100 meV in which the
lowest three valence and conduction bands at charge neutrality each realize isolated kagome lattice
models with one flat band, while the next three valence and conduction bands are flat bands on
triangular lattices. These flat band systems may provide a new platform for strongly correlated phases
of matter.
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Introduction.—Moiré systems formed by twisting and
stacking two-dimensional (2D) materials often exhibit flat
electronic bands. The physics in flat bands is dominated by
interactions, so strongly correlated phases often appear. A
paradigmatic example is twisted bilayer graphene (TBG) at
the magic angle θ ≈ 1.05° [1], which hosts flat bands with
fragile topology [2–5] and exhibits a variety of topological
and interacting phases including correlated insulators,
Chern insulators, and superconductors [6–13]. Similar flat
band physics has been observed in moiré systems of
multilayer graphene [14–16] and transition metal dichal-
cogenides [17–21].
An important class of flat bands consists of those arising

in tight-binding models due to wave function interference
effects [22–24]. Examples include the flat bands in the
kagome lattice one-orbital and honeycomb lattice two-
orbital tight-binding models [25,26]. Recently, we showed
that such flat bands may be realized in moiré heterobilayers
of graphene and certain 2D materials with lattice constant
approximately

ffiffiffi
3

p
times that of graphene [27,28]. This

motivates us to search for flat bands in the twistronics of
Kekulé graphene, which is graphene with a

ffiffiffi
3

p
×

ffiffiffi
3

p
distortion. Kekulé graphene has been experimentally real-
ized via epitaxial growth on a copper surface [29], lithium
or calcium intercalation [30–32], or dilute lithium deposi-
tion [33,34]. Kekulé orders have also been observed in
graphene in a magnetic field [35,36] and in correlated
insulator phases of TBG [37].
In this Letter, we focus specifically on graphene with

the Kekulé-O bond order illustrated in Fig. 1(a), which
can be realized by intercalation or dilute deposition of
lithium [32,34] and exhibits massive Dirac electrons at low

FIG. 1. (a) Kekulé-O bond order in graphene. The red
and gray bonds indicate hoppings of different magnitudes
between neighboring on-site carbon pz orbitals. (b) TBG
(top) and possible realizations of TGKG (middle) and TBKG
(bottom) using intercalated or dilutely deposited lithium atoms
(red) and graphene monolayers (gray). (c) The top (l ¼ þ)
and bottom (l ¼ −) layer graphene BZs before development of
Kekulé-O order are labeled BZl. The Kekulé-O order induces
Dirac masses ml which couple the Kl and −Kl points, as
indicated. (d) The larger hexagon labeled BZM is the moiré
BZ for TBG and TGKG. The smaller hexagon labeled BZKek

M
is the Kekulé moiré BZ for TBKG. The moiré qj vectors
[defined in panel (c)] and high symmetry momenta in both BZs
are shown.
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energy [33,38] (see Supplemental Material [39] Sec. II).
We derive a continuum model for TBG with or without
Kekulé-O distortions and study two cases: (i) twisted
graphene on Kekulé-O graphene (TGKG), in which only
one layer has a Kekulé-O distortion, and (ii) twisted bilayer
Kekulé-O graphene (TBKG), in which both layers have
Kekulé-O distortions. Possible realizations of these systems
are illustrated in Fig. 1(b).
Despite the Kekulé-O distortion, the moiré unit cell of

TGKG is the same as that of TBG. For twist angle θ near 1°
and Dirac mass m≲ 200 meV in one layer, TGKG exhi-
bits an isolated two-orbital honeycomb lattice flat band
model at charge neutrality. In particular, there is a magic
angle θ ≈ 0.7° and Dirac mass m ≈ 100 meV for which
the second valence and conduction bands become extre-
mely flat.
In the case of TBKG, the moiré unit cell is enlarged to affiffiffi
3

p
×

ffiffiffi
3

p
supercell relative to TBG when both layers have

nonzero Dirac mass. For twist angle θ near 1° and Dirac
mass m≳ 100 meV in both layers, the lowest valence and
conduction bands in TBKG at charge neutrality are one-
orbital kagome lattice flat bands, with bandwidths that
generally decrease with increasingm and decreasing θ. The
next two sets of connected valence and conduction bands in
this regime are flat bands on triangular lattices.
Generic continuum model.—We consider a twisted

bilayer moiré system in which each layer is either graphene
or Kekulé-O graphene. We denote the top and bottom
layers by l ¼ þ and l ¼ −, respectively. Layer l is rotated
by angle −lθ=2 relative to the aligned configuration, and

the twist angle θ is small. We denote the lattice constant of
layer l by al, and define the interlayer biaxial strain
ϵ ¼ lnða−=aþÞ. The hexagonal Brillouin zone (BZ) of
graphene layer l before the development of Kekulé-O
order is shown in Fig. 1(c) and is denoted BZl.
The electrons at low energies in graphene layer l and valley

η ¼ � without Kekulé-O order have a Dirac Hamiltonian
hl;ηðpÞ ¼ ℏvlðησxpx þ σypyÞ at small momentum p ¼
pxx̂þ pyŷ measured from ηKl, where the high symmetry
momenta Kl ¼ ð4π=3alÞR−lθ=2x̂ are shown in Fig. 1(c).
Here,vl is theFermivelocity of layer l, σ0 is the2 × 2 identity
matrix, and σx, σy, and σz are the Pauli matrices. The
Hamiltonian hl;ηðpÞ is written in the graphene sublattice
basis α ¼ þ and α ¼ −, which indicate sublattices A and B,
respectively. We neglect spin degrees of freedom for
simplicity.
A Kekulé-O order in layer l modifies the Fermi velocity

vl and induces an intervalley hopping term mlσx [33,38]
(see Supplemental Material [39] Sec. II). This intervalley
term produces a Dirac electron energy gap of 2ml, and we
refer to ml as the Dirac mass. Additionally, we consider a
potential energy difference EΔ between the two layers,
which can arise from chemical dopants or an out-of-plane
displacement field.
In the continuum (i.e., small jpj) limit, we denote the real

space basis for Dirac electrons at position r in layer l, valley
η, and sublattice α by jr; l; η; αi. The continuum
Hamiltonian of this moiré system then takes the form
H ¼ R

d2rjriHðrÞhrj, where

HðrÞ ¼

0
BBB@

EΔσ0 − iℏvþσ · ∇ mþσx TðrÞ 0

mþσx EΔσ0 þ iℏvþσ� ·∇ 0 T�ðrÞ
T†ðrÞ 0 −iℏv−σ ·∇ m−σx

0 TTðrÞ m−σx iℏv−σ� ·∇

1
CCCA; ð1Þ

we have defined the basis row vector

jri ¼ �jr;þ;þ;þi jr;þ;þ;−i jr;þ;−;þi jr;þ;−;−i jr;−;þ;þi jr;−;þ;−i jr;−;−;þi jr;−;−;−i�; ð2Þ

and σ ¼ σxx̂þ σyŷ is the Pauli matrix vector. The inter-
layer moiré potential takes the same form as that in TBG
[1,5], namely,

TðrÞ ¼
X3
j¼1

Tqje
iqj·r; qj ¼ RζjðK− −KþÞ;

Tqj ¼ w0σ0 þ w1ðσx cos ζj þ σy sin ζjÞ: ð3Þ

Here, ζj ¼ ð2π=3Þðj − 1Þ, Rζ is the rotation matrix of angle
ζ, and w0 and w1 are the interlayer hoppings at AA and AB

stacking positions, respectively. The qj vectors are illus-
trated in Fig. 1(c).We have neglected the−lθ=2 rotations of
the Dirac Hamiltonians in Eq. (1), which is a valid
approximation for small θ [1,5]. When EΔ ¼ 0 and
aþ ¼ a−, H has a particle-hole symmetry PHP−1 ¼ −H,
where P is given by

Pjr; l; η; αi ¼ ηljRx̂r; l; η;−αi; ð4Þ

and where Rx̂ is the reflection matrix for the yz plane. As
discussed in Supplemental Material [39] Sec. I, this is
different from but related to the particle-hole transformation

PHYSICAL REVIEW LETTERS 131, 266501 (2023)

266501-2



previously discussed for TBG [4,5]. Note that when
mþ ¼ m− ¼ EΔ ¼ 0, vþ ¼ v−, and aþ ¼ a−, Eq. (1) re-
duces to the two-valley model for TBG.
To a good approximation, one can neglect any changes

of parameters in Kekulé-O graphene compared to normal
graphene except for the Dirac mass ml. We take a� ¼
aGr ¼ 0.246 nm and v� ¼ vGr where ℏvGr=aGr ¼ 2.5 eV,
so that the interlayer biaxial strain ϵ ¼ 0. We use
w1 ¼ 110 meV and w0=w1 ¼ 0.8, which are typical param-
eters for TBG near θ ¼ 1° [1,42]. Additionally, we take
EΔ ¼ 0 for simplicity. Results with different parameter
choices including various values of w0=w1 and nonzero
values of EΔ and ϵ are given in Supplemental Material [39]
Sec. IV. Note that the sign of each Dirac mass ml in Eq. (1)
can be flipped by applying a unitary change of basis. As a
result, we take ml ≥ 0 without loss of generality.
TGKG.—We first consider the TGKG system illustrated

in Fig. 1(b), in which the top layer is Kekulé-O graphene
with mþ ≥ 0 and the bottom layer is normal graphene with
m− ¼ 0. In this case, the Hamiltonian commutes with the
translation operators

TRjr; l; η; αi ¼ eiðq1·RÞηðl−1Þ=2jrþR; l; η; αi ð5Þ

for R in the moiré superlattice LM, which is defined as the
reciprocal of the Bravais lattice PM generated by q1 − q2

and q1 − q3. As a result, TGKG has the same moiré unit
cell as TBG. The moiré BZ of TGKG is the larger hexagon
BZM in Fig. 1(d).
TGKG generally has magnetic space group P610

(No. 168.110 in the BNS setting [43]) generated by TR
for R∈LM, C6z (rotation by π=3 about ẑ), and T
(antiunitary spinless time reversal). These operators are
given in Supplemental Material [39] Table S1.
Figure 2(a) shows the band structure of TGKG with

θ ¼ 0.7° and mþ ¼ 100 meV. We use band index n ≠ 0 to
denote the jnjth conduction (valence) band for n > 0
(n < 0). The four connected bands −2 ≤ n ≤ 2 around
charge neutrality (shown in red) are isolated from higher
bands, and the two bands n ¼ �2 are extremely flat. Using
magnetic topological quantum chemistry (MTQC) [44–46],
we find that these four bands are consistent with elementary
band corepresentation (EBCR) ð1E2EÞ2b of P610. A full
table of EBCRs for each magnetic space group can be
found on the Bilbao Crystallographic Server [17,46].
EBCR ð1E2EÞ2b corresponds to a system with two orbitals
per site on a honeycomb lattice Lhc. These four bands can
be approximately described by the honeycomb lattice tight-
binding model

Hhc ¼
X

l;l0¼�1

tl·l0
X

hj;j0i∈Lhc

eiðl−l
0Þφj0 ;j jj0;l0ihj;lj: ð6Þ

Here, tþ and t− are real hopping parameters, jj;li is an
orbital with angular momentum lmodulo 3 on site j, hj; j0i

runs over all nearest neighbors in Lhc, and φj0;j is the angle
from an arbitrary fixed axis to the ray from site j to site j0.
When jtþj ¼ jt−j, the highest and lowest bands of this
model are exactly flat [24,25,28]. See Supplemental
Material [39] Sec. III for a construction of the compact
localized states and noncontractible loop states for the flat
bands in this case [47].
Although the Wannier orbitals for bands −2 ≤ n ≤ 2

must form a honeycomb lattice, their total charge density,
shown in Fig. 2(c), is peaked on the triangular lattice
formed by the AA stacking positions. A similar phenome-
non occurs in magic angle TBG, in which case it is known
that each Wannier orbital has a three-lobed “fidget spinner”
shape [48–50].
Figure 3(a) shows the bandwidth of the n ¼ �2 two-

orbital honeycomb lattice flat bands as a function of θ and
mþ. We observe two stripes in the parameter space in
which the bandwidth reduces to approximately 1 meV.

FIG. 2. (a) Band structure of TGKG with the magic parameters
θ ¼ 0.7° and mþ ¼ 100 meV. Bands −2 ≤ n ≤ 2 (shown in red)
have the symmetries of a two-orbital honeycomb lattice model.
(b) Band structure of TBKG with θ ¼ 1° and m� ¼ 200 meV.
Bands −3 ≤ n ≤ −1 (shown in orange), −5 ≤ n ≤ −4 (shown in
blue), and n ¼ −6 (shown in magenta) have the symmetries of
one-orbital kagome lattice, two-orbital triangular lattice, and one-
orbital triangular lattice models, respectively. The dashed black
lines indicate the Fermi level at charge neutrality, which must be 0
because of the particle-hole symmetry in Eq. (4). (c)–(f) The total
charge density of the bands shown in red [in panel (a)], orange,
blue, and magenta [in panel (b)], respectively. In each plot, the
white hexagon is a unit cell for the moiré superlattice LM of
TGKG. Note that (d)–(f) which are plots for TBKG show
periodicity with respect to a

ffiffiffi
3

p
×

ffiffiffi
3

p
enlarged superlattice.
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In particular, bandwidth minima are achieved in two
regimes: near θ ¼ 1°, mþ ¼ 0, which is the magic angle
TBG regime, and near θ ¼ 0.7°, mþ ¼ 100 meV, which
we call the magic TGKG regime and illustrate in Fig. 2(a).
The experimentally measured Dirac masses are approx-
imately 200 meV with lithium intercalation [32] and
100 meV with dilute lithium deposition [34]. Therefore,
the magic TGKG regime for honeycomb lattice flat bands is
experimentally realistic.
TBKG.—Wenow consider theTBKGsystem illustrated in

Fig. 1(b), in which both layers are Kekulé-O graphene. For
simplicity, we assume equal Dirac masses mþ ¼ m− ≥ 0.
When bothm� are nonzero, theHamiltonian only commutes
with the translation operators TR in Eq. (5) for R in the
Kekulé moiré superlattice LKek

M , which is defined as the
reciprocal of the Bravais latticePKek

M generated by q1 and q2.
LKek
M is a

ffiffiffi
3

p
×

ffiffiffi
3

p
superlattice of LM and the Kekulé moire

BZ is the smaller hexagon BZKek
M in Fig. 1(d).

TBKG generally has magnetic space group P610 just
like TGKG. In the special case considered here in which
mþ ¼ m− and EΔ ¼ 0, the magnetic space group expands
to P62210 (No. 177.150 in the BNS setting [43]) because of
the C2x (rotation by π about the x̂) symmetry generator.
However, we will use P610 to emphasize that our results are
stable against small C2x symmetry breaking perturbations.
The P610 symmetry operators are given in Supplemental
Material [39] Table S1.
Figure 2(b) shows the band structure of TBKG with

θ ¼ 1° and m� ¼ 200 meV. There are 12 low energy
bands, which result from folding the four low energy
bands of TBG into BZKek

M and then adding the Dirac masses
m�. The six valence bands form three groups of connected
bands. Using MTQC, we identify bands −3 ≤ n ≤ −1
(shown in orange), −5 ≤ n ≤ −4 (shown in blue), and
n ¼ −6 (shown in magenta) with EBCRs ðBÞ3c, ð1E2

2E2Þ1a,
and ðAÞ1a of P610, respectively. The conduction bands are
related to the valence bands by the particle-hole trans-
formation P in Eq. (4) and their EBCRs are given in
Supplemental Material [39] Table S1. It is evident that
bands n ¼ �1;�4;�5;�6 are extremely flat.
We now consider the three groups of valence bands

separately. First, EBCR ðBÞ3c corresponds to a system with
a single orbital per site on a kagome lattice Lkag.
Accordingly, bands −3 ≤ n ≤ −1 can be approximately
described by the kagome lattice tight-binding model

Hkag ¼ t
X

hj;j0i∈Lkag

jj0ihjj; ð7Þ

where t is a real hopping parameter, jji is the orbital on site
j, and hj; j0i runs over all nearest neighbors in Lkag. This
Hamiltonian always has an exactly flat band [24,26,28]
composed of compact localized states and noncontractible
loop states [47], as explained in Supplemental Material [39]

Sec. III. Figure 2(d) shows the total charge density of bands
−3 ≤ n ≤ −1, which is peaked at kagome lattice sites.
Next, EBCR ð1E2

2E2Þ1a corresponds to a system with
two orbitals per site on a triangular lattice Ltri. Therefore,
bands −5 ≤ n ≤ −4 can be approximately described by the
triangular lattice tight-binding model

Htri-2 ¼
X

l;l0¼�1

tl·l0
X

hj;j0i∈Ltri

eiðl−l
0Þφj0 ;j jj0;l0ihj;lj: ð8Þ

The parameters and notations here are identical to those in
Eq. (6) except that the sites j here form a triangular lattice.
Figure 2(e) shows the total charge density of bands
−5 ≤ n ≤ −4, which is peaked at triangular lattice sites.
Finally, EBCR ðAÞ1a corresponds to a system with a

single orbital per site on a triangular lattice Ltri. As a result,
band n ¼ −6 can be approximately described by the
triangular lattice tight-binding model

Htri-1 ¼ t
X

hj;j0i∈Ltri

jj0ihjj: ð9Þ

The parameters and notations here are identical to those in
Eq. (7) except that the sites j here form a triangular lattice.
Figure 2(f) shows the total charge density of band n ¼ −6,
which has peaks surrounding triangular lattice sites.
Figures 3(b)–3(d) show the bandwidths of the n ¼ �1

one-orbital kagome lattice, −5 ≤ n ≤ −4 or 4 ≤ n ≤ 5 two-
orbital triangular lattice, and n ¼ �6 one-orbital triangular
lattice flat bands, respectively, as a function of θ and m�.

FIG. 3. (a) The bandwidth of band n ¼ �2 for TGKG as a
function of θ and mþ. (b)–(d) The bandwidth of band n ¼ �1,
bands −5 ≤ n ≤ −4 or 4 ≤ n ≤ 5, and band n ¼ �6 for TBKG,
respectively, as a function of θ and m�. In (a)–(d) the nongray
regions show parameters for which MTQC analysis indicates
EBCR ð1E2EÞ2b, ðBÞ3c, ð1E2

2E2Þ1a, and ðAÞ1a of P610 for TGKG
bands −2 ≤ n ≤ 2, TBKG bands −3 ≤ n ≤ −1, TBKG bands
−5 ≤ n ≤ −4, and TBKG band n ¼ −6, respectively.
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The one-orbital kagome lattice and two-orbital triangular
lattice bandwidths generally decrease with increasing m�
and decreasing θ. One the other hand, the one-orbital
triangular lattice bandwidth is smallest for 0.8°≲ θ ≲ 1.1°
and 100 meV≲m� ≲ 200 meV. The Dirac masses
required to realize kagome lattice and triangular lattice
flat bands in TBKG are thus experimentally realistic.
Discussion.—We have shown that for twist angles near

θ ¼ 1° and Dirac masses ml within an experimentally
realistic range, TGKG exhibits a two-orbital honeycomb
lattice flat band model at charge neutrality, while TBKG
exhibits both kagome and triangular lattice flat band
models at low energies which are quite robust against
parameter variation. When interactions are included, the
nontrivial flat bands of the honeycomb and kagome lattice
models become promising highly tunable platforms for the
realization of strongly correlated phases such as Mott
insulators, charge or spin density waves, and spin
liquids [51,52]. We leave for future work the possibility
of inducing spin-orbit coupling or magnetism through
substrate coupling or other means. These effects generically
produce flat (spin) Chern bands [28], in which fractional
Chern or topological insulators may be realized [53].
For TGKG, when the Dirac mass is large

(mþ ≳ 500 meV), the Kekulé-O graphene layer has a
sufficiently large gap to allow a perturbative treatment. As
explained in [28], an effectivemoiré model can be derived for
the non-Kekulé layer, inwhich the twovalleys are coupled by
a moiré potential. However, this perturbative model gives
qualitatively incorrect band structures for small Diracmasses
mþ, and in such cases the full model in Eq. (1) is required.
In an ideal realization of TGKG or TBKG, care must be

taken to avoid charge transfer from the adatoms inducing
Kekulé-O order into the graphene layers, since the flat bands
are near the charge neutrality point of pristine graphene. In
Ref. [34] the authors used a dilute concentration of lithium
adatoms with negligible charge transfer to the graphene
layer, and observed a well-resolved Kekulé-O order despite
the disordered adatom arrangement [33]. Charge transfer
may also be avoided through intercalation or deposition of
both donor and acceptor atoms, for instance, hydrogen and
lithium atomswhich hole-dope and electron-dope graphene,
respectively [32,34]. First-principles calculations and exper-
imental studies are needed to address these issues.
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Spandar, T. Matthé, M. Schneider, S. Zhdanovich, U. Starke,
C. Gutiérrez, and A. Damascelli, Ubiquitous defect-induced
densitywave instability inmonolayer graphene, Sci. Adv. 8, 1
(2022).

[35] S. Y. Li, Y. Zhang, L. J. Yin, and L. He, Scanning tunneling
microscope study of quantum Hall isospin ferromagnetic
states in the zero Landau level in a graphene monolayer,
Phys. Rev. B 100, 085437 (2019).

[36] X. Liu, G. Farahi, C. L. Chiu, Z. Papic, K. Watanabe, T.
Taniguchi, M. P. Zaletel, and A. Yazdani, Visualizing
broken symmetry and topological defects in a quantum
Hall ferromagnet, Science 375, 321 (2022).

[37] K. P. Nuckolls, R. L. Lee, M. Oh, D. Wong, T. Soejima, J. P.
Hong, D. Călugăru, J. Herzog-Arbeitman, B. A. Bernevig,
K. Watanabe, T. Taniguchi, N. Regnault, M. P. Zaletel, and
A. Yazdani, Quantum textures of the many-body wave-
functions in magic-angle graphene, Nature (London) 620,
525 (2023).

[38] O. V. Gamayun, V. P. Ostroukh, N. V. Gnezdilov, I.
Adagideli, and C.W. Beenakker, Valley-momentum locking
in a graphene superlattice with Y-shaped Kekulé bond
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