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Twistronics of Kekulé Graphene: Honeycomb and Kagome Flat Bands
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Kekulé-O order in graphene, which has recently been realized experimentally, induces Dirac electron
masses on the order of m ~ 100 meV. We show that twisted bilayer graphene in which one or both
layers have Kekulé-O order exhibits nontrivial flat electronic bands on honeycomb and kagome lattices.
When only one layer has Kekulé-O order, there is a parameter regime for which the lowest four bands at
charge neutrality form an isolated two-orbital honeycomb lattice model with two flat bands. The
bandwidths are minimal at a magic twist angle 6 ~ 0.7° and Dirac mass m ~ 100 meV. When both layers
have Kekulé-O order, there is a large parameter regime around 6 ~ 1° and m Z 100 meV in which the
lowest three valence and conduction bands at charge neutrality each realize isolated kagome lattice
models with one flat band, while the next three valence and conduction bands are flat bands on
triangular lattices. These flat band systems may provide a new platform for strongly correlated phases

of matter.
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Introduction.—Moiré systems formed by twisting and
stacking two-dimensional (2D) materials often exhibit flat
electronic bands. The physics in flat bands is dominated by
interactions, so strongly correlated phases often appear. A
paradigmatic example is twisted bilayer graphene (TBG) at
the magic angle 8 ~ 1.05° [1], which hosts flat bands with
fragile topology [2—5] and exhibits a variety of topological
and interacting phases including correlated insulators,
Chern insulators, and superconductors [6—13]. Similar flat
band physics has been observed in moiré systems of
multilayer graphene [14-16] and transition metal dichal-
cogenides [17-21].

An important class of flat bands consists of those arising
in tight-binding models due to wave function interference
effects [22-24]. Examples include the flat bands in the
kagome lattice one-orbital and honeycomb lattice two-
orbital tight-binding models [25,26]. Recently, we showed
that such flat bands may be realized in moiré heterobilayers
of graphene and certain 2D materials with lattice constant
approximately /3 times that of graphene [27,28]. This
motivates us to search for flat bands in the twistronics of

Kekulé graphene, which is graphene with a /3 x /3
distortion. Kekulé graphene has been experimentally real-
ized via epitaxial growth on a copper surface [29], lithium
or calcium intercalation [30-32], or dilute lithium deposi-
tion [33,34]. Kekulé orders have also been observed in
graphene in a magnetic field [35,36] and in correlated
insulator phases of TBG [37].

In this Letter, we focus specifically on graphene with
the Kekulé-O bond order illustrated in Fig. 1(a), which
can be realized by intercalation or dilute deposition of
lithium [32,34] and exhibits massive Dirac electrons at low
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FIG. 1. (a) Kekulé-O bond order in graphene. The red
and gray bonds indicate hoppings of different magnitudes
between neighboring on-site carbon p, orbitals. (b) TBG
(top) and possible realizations of TGKG (middle) and TBKG
(bottom) using intercalated or dilutely deposited lithium atoms
(red) and graphene monolayers (gray). (c) The top (I = +)
and bottom (I = —) layer graphene BZs before development of
Kekulé-O order are labeled BZ,;. The Kekulé-O order induces
Dirac masses m; which couple the K; and —K; points, as
indicated. (d) The larger hexagon labeled BZ,, is the moiré
BZ for TBG and TGKG. The smaller hexagon labeled BZKek
is the Kekul¢ moir¢ BZ for TBKG. The moiré q; vectors
[defined in panel (c)] and high symmetry momenta in both BZs
are shown.
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energy [33,38] (see Supplemental Material [39] Sec. II).
We derive a continuum model for TBG with or without
Kekulé-O distortions and study two cases: (i) twisted
graphene on Kekulé-O graphene (TGKG), in which only
one layer has a Kekulé-O distortion, and (ii) twisted bilayer
Kekulé-O graphene (TBKG), in which both layers have
Kekulé-O distortions. Possible realizations of these systems
are illustrated in Fig. 1(b).

Despite the Kekulé-O distortion, the moiré unit cell of
TGKG is the same as that of TBG. For twist angle € near 1°
and Dirac mass m < 200 meV in one layer, TGKG exhi-
bits an isolated two-orbital honeycomb lattice flat band
model at charge neutrality. In particular, there is a magic
angle 6~ 0.7° and Dirac mass m ~ 100 meV for which
the second valence and conduction bands become extre-
mely flat.

In the case of TBKG, the moiré unit cell is enlarged to a
V3 x3 supercell relative to TBG when both layers have
nonzero Dirac mass. For twist angle € near 1° and Dirac
mass m 2 100 meV in both layers, the lowest valence and
conduction bands in TBKG at charge neutrality are one-
orbital kagome lattice flat bands, with bandwidths that
generally decrease with increasing m and decreasing 6. The
next two sets of connected valence and conduction bands in
this regime are flat bands on triangular lattices.

Generic continuum model—We consider a twisted
bilayer moiré system in which each layer is either graphene
or Kekulé-O graphene. We denote the top and bottom
layers by [ = 4 and [ = —, respectively. Layer [ is rotated

the twist angle 0 is small. We denote the lattice constant of
layer [ by a;, and define the interlayer biaxial strain
€ =1In(a_/a,). The hexagonal Brillouin zone (BZ) of
graphene layer [ before the development of Kekulé-O
order is shown in Fig. 1(c) and is denoted BZ,.

The electrons at low energies in graphene layer / and valley
n = £+ without Kekulé-O order have a Dirac Hamiltonian
h,(p) = hv,(no,p, +o,p,) at small momentum p =
PxX + p,§y measured from 7K;, where the high symmetry
momenta K; = (4z/3a;)R_;/,X are shown in Fig. 1(c).
Here, v, is the Fermi velocity of layer /, 6 is the 2 x 2 identity
matrix, and o,, 6y, and o, are the Pauli matrices. The
Hamiltonian 7, (p) is written in the graphene sublattice

basis @« = + and o = —, which indicate sublattices A and B,
respectively. We neglect spin degrees of freedom for
simplicity.

A Kekulé-O order in layer / modifies the Fermi velocity
v; and induces an intervalley hopping term m;o, [33,38]
(see Supplemental Material [39] Sec. II). This intervalley
term produces a Dirac electron energy gap of 2m;, and we
refer to m; as the Dirac mass. Additionally, we consider a
potential energy difference E, between the two layers,
which can arise from chemical dopants or an out-of-plane
displacement field.

In the continuum (i.e., small |p|) limit, we denote the real
space basis for Dirac electrons at position r in layer /, valley
n, and sublattice a by |r,l,n,a). The continuum
Hamiltonian of this moiré system then takes the form

by angle —16/2 relative to the aligned configuration, and H = [ &r|r)H(r){r|, where
|
Epog —ihv 6 -V m,o, T(r) 0
m,o, Ejoy + ihv, 6" -V 0 T*(r
T(r) —ihv_6-V  m_o,
0 T (r) m_o, ihv_e* -V
we have defined the basis row vector
Ity = (|r,+. 4+, +) e+, + =) e+, — ) e+ = =) =+ ) e =+ =) e — = ) r =, =, =), (2)

and 6 = 0,X +6,¥ is the Pauli matrix vector. The inter-
layer moiré potential takes the same form as that in TBG
[1,5], namely,

3
T(r)=> Tgew™  q;=Ry (K_-K,),
j=1

Ty, = wooo + W) (6,c0s{; +oysing;). (3)

Here, {; = (27/3)(j — 1), R; is the rotation matrix of angle
¢, and wy and w are the interlayer hoppings at AA and AB

|

stacking positions, respectively. The q; vectors are illus-
trated in Fig. 1(c). We have neglected the —/6/2 rotations of
the Dirac Hamiltonians in Eq. (1), which is a valid
approximation for small 6 [1,5]. When E, =0 and
a, = a_, H has a particle-hole symmetry PHP~! = —H,
where P is given by

P

r,l,n,a) =nl|Rgr, 1, n, —a), (4)

and where Ry is the reflection matrix for the yz plane. As
discussed in Supplemental Material [39] Sec. I, this is
different from but related to the particle-hole transformation
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previously discussed for TBG [4,5]. Note that when
my=m_=FE\=0,v, =v_,and a, =a_, Eq. (1) re-
duces to the two-valley model for TBG.

To a good approximation, one can neglect any changes
of parameters in Kekulé-O graphene compared to normal
graphene except for the Dirac mass m;. We take a, =
ag, = 0.246 nm and v, = vg, where hvg,/ag, = 2.5 eV,
so that the interlayer biaxial strain ¢ =0. We use
wy; = 110 meV and wy/w; = 0.8, which are typical param-
eters for TBG near 0 = 1° [1,42]. Additionally, we take
E, =0 for simplicity. Results with different parameter
choices including various values of wy/w; and nonzero
values of E, and € are given in Supplemental Material [39]
Sec. I'V. Note that the sign of each Dirac mass m; in Eq. (1)
can be flipped by applying a unitary change of basis. As a
result, we take m; > 0 without loss of generality.

TGKG.—We first consider the TGKG system illustrated
in Fig. 1(b), in which the top layer is Kekulé-O graphene
with m > 0 and the bottom layer is normal graphene with
m_ = 0. In this case, the Hamiltonian commutes with the
translation operators

TrIr, Ly, a) = @RM=D21r L R 1 p,a)  (5)

for R in the moiré superlattice L,;, which is defined as the
reciprocal of the Bravais lattice P, generated by q; — q,
and q; — q3. As a result, TGKG has the same moiré unit
cell as TBG. The moiré BZ of TGKG is the larger hexagon
BZ,, in Fig. 1(d).

TGKG generally has magnetic space group P61’
(No. 168.110 in the BNS setting [43]) generated by Ty
for ReL,, Cq (rotation by z/3 about Z), and 7
(antiunitary spinless time reversal). These operators are
given in Supplemental Material [39] Table S1.

Figure 2(a) shows the band structure of TGKG with
0 =0.7°and m, = 100 meV. We use band index n # 0 to
denote the |n|th conduction (valence) band for n > 0
(n < 0). The four connected bands —2 < n <2 around
charge neutrality (shown in red) are isolated from higher
bands, and the two bands n = +£2 are extremely flat. Using
magnetic topological quantum chemistry (MTQC) [44—46],
we find that these four bands are consistent with elementary
band corepresentation (EBCR) ('E?E),, of P61’. A full
table of EBCRs for each magnetic space group can be
found on the Bilbao Crystallographic Server [17,46].
EBCR (!E°E),,, corresponds to a system with two orbitals
per site on a honeycomb lattice Ly,.. These four bands can
be approximately described by the honeycomb lattice tight-
binding model

Hie= Y tep Y, 0001100 (.¢l. (6)

(L=t () €L

Here, 7, and 7_ are real hopping parameters, |j, ) is an
orbital with angular momentum # modulo 3 on site j, (, j’)
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FIG. 2. (a) Band structure of TGKG with the magic parameters
0 =0.7°and m, = 100 meV. Bands —2 < n < 2 (shown in red)
have the symmetries of a two-orbital honeycomb lattice model.
(b) Band structure of TBKG with 0 = 1° and m, = 200 meV.
Bands —3 < n < —1 (shown in orange), —5 < n < —4 (shown in
blue), and n = —6 (shown in magenta) have the symmetries of
one-orbital kagome lattice, two-orbital triangular lattice, and one-
orbital triangular lattice models, respectively. The dashed black
lines indicate the Fermi level at charge neutrality, which must be 0
because of the particle-hole symmetry in Eq. (4). (c)—(f) The total
charge density of the bands shown in red [in panel (a)], orange,
blue, and magenta [in panel (b)], respectively. In each plot, the
white hexagon is a unit cell for the moiré superlattice L, of
TGKG. Note that (d)—(f) which are plots for TBKG show

periodicity with respect to a /3 x 1/3 enlarged superlattice.

runs over all nearest neighbors in Ly, and ¢ ; is the angle
from an arbitrary fixed axis to the ray from site j to site .
When |7,| = |t_|, the highest and lowest bands of this
model are exactly flat [24,25,28]. See Supplemental
Material [39] Sec. III for a construction of the compact
localized states and noncontractible loop states for the flat
bands in this case [47].

Although the Wannier orbitals for bands —2 <n <2
must form a honeycomb lattice, their total charge density,
shown in Fig. 2(c), is peaked on the triangular lattice
formed by the AA stacking positions. A similar phenome-
non occurs in magic angle TBG, in which case it is known
that each Wannier orbital has a three-lobed “fidget spinner”
shape [48-50].

Figure 3(a) shows the bandwidth of the n = 2 two-
orbital honeycomb lattice flat bands as a function of € and
m,. We observe two stripes in the parameter space in
which the bandwidth reduces to approximately 1 meV.
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In particular, bandwidth minima are achieved in two
regimes: near @ = 1°, m = 0, which is the magic angle
TBG regime, and near 6 = 0.7°, m_ = 100 meV, which
we call the magic TGKG regime and illustrate in Fig. 2(a).
The experimentally measured Dirac masses are approx-
imately 200 meV with lithium intercalation [32] and
100 meV with dilute lithium deposition [34]. Therefore,
the magic TGKG regime for honeycomb lattice flat bands is
experimentally realistic.

TBKG.—We now consider the TBKG system illustrated in
Fig. 1(b), in which both layers are Kekulé-O graphene. For
simplicity, we assume equal Dirac masses m, = m_ > 0.
When both m are nonzero, the Hamiltonian only commutes
with the translation operators Tg in Eq. (5) for R in the
Kekulé moiré superlattice LK, which is defined as the
reciprocal of the Bravais lattice PX¢* generated by q, and 5.
LYk is a /3 x /3 superlattice of L), and the Kekulé moire
BZ is the smaller hexagon BZK in Fig. 1(d).

TBKG generally has magnetic space group P61’ just
like TGKG. In the special case considered here in which
m, = m_ and E, = 0, the magnetic space group expands
to P6221’ (No. 177.150 in the BNS setting [43]) because of
the C,, (rotation by z about the X) symmetry generator.
However, we will use P61’ to emphasize that our results are
stable against small C,, symmetry breaking perturbations.
The P61’ symmetry operators are given in Supplemental
Material [39] Table S1.

Figure 2(b) shows the band structure of TBKG with
6 =1° and my =200 meV. There are 12 low energy
bands, which result from folding the four low energy
bands of TBG into BZE and then adding the Dirac masses
m... The six valence bands form three groups of connected
bands. Using MTQC, we identify bands —3 <n < -1
(shown in orange), —5 < n < —4 (shown in blue), and
n = —6 (shown in magenta) with EBCRs (B)5,, (\E;°E5) 1,
and (A),, of P61’, respectively. The conduction bands are
related to the valence bands by the particle-hole trans-
formation P in Eq. (4) and their EBCRs are given in
Supplemental Material [39] Table S1. It is evident that
bands n = £1, £4, £5, £6 are extremely flat.

We now consider the three groups of valence bands
separately. First, EBCR (B),,. corresponds to a system with
a single orbital per site on a kagome lattice Lyy,.
Accordingly, bands —3 <n < —1 can be approximately
described by the kagome lattice tight-binding model

Hkag:t Z |]/><]|’ (7)

<]]/> eLkag

where ¢ is a real hopping parameter, | ;) is the orbital on site
J»and (j, j') runs over all nearest neighbors in L,,. This
Hamiltonian always has an exactly flat band [24,26,28]
composed of compact localized states and noncontractible
loop states [47], as explained in Supplemental Material [39]

Sec. III. Figure 2(d) shows the total charge density of bands
—3 < n < —1, which is peaked at kagome lattice sites.

Next, EBCR ('E,’E,),, corresponds to a system with
two orbitals per site on a triangular lattice L.;. Therefore,
bands —5 < n < —4 can be approximately described by the
triangular lattice tight-binding model

Hyin = Z tey Z i e (] (8)

¢.8'==£1 (jJ') € Lui

The parameters and notations here are identical to those in
Eq. (6) except that the sites j here form a triangular lattice.
Figure 2(e) shows the total charge density of bands
—5 < n < —4, which is peaked at triangular lattice sites.

Finally, EBCR (A),, corresponds to a system with a
single orbital per site on a triangular lattice L;. As a result,
band n = —6 can be approximately described by the
triangular lattice tight-binding model

Heq=1 Y 170l )

(o) € Lusi

The parameters and notations here are identical to those in
Eq. (7) except that the sites j here form a triangular lattice.
Figure 2(f) shows the total charge density of band n = —6,
which has peaks surrounding triangular lattice sites.
Figures 3(b)-3(d) show the bandwidths of the n = +1
one-orbital kagome lattice, =5 <n < —4or4 <n < 5two-
orbital triangular lattice, and n = £6 one-orbital triangular
lattice flat bands, respectively, as a function of 8 and m.
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FIG. 3. (a) The bandwidth of band n = +2 for TGKG as a

function of @ and m_ . (b)—(d) The bandwidth of band n = *1,
bands -5 <n<—-4or4<n<5,and band n = +6 for TBKG,
respectively, as a function of @ and m... In (a)-(d) the nongray
regions show parameters for which MTQC analysis indicates
EBCR ('E’E),,, (B)s,, ('E»*E;),,» and (A),, of P61’ for TGKG
bands —2 <n <2, TBKG bands —3 <n < —1, TBKG bands
—5 < n <-4, and TBKG band n = —6, respectively.

266501-4



PHYSICAL REVIEW LETTERS 131, 266501 (2023)

The one-orbital kagome lattice and two-orbital triangular
lattice bandwidths generally decrease with increasing m..
and decreasing 6. One the other hand, the one-orbital
triangular lattice bandwidth is smallest for 0.8° <8 < 1.1°
and 100 meV <m, <200 meV. The Dirac masses
required to realize kagome lattice and triangular lattice
flat bands in TBKG are thus experimentally realistic.
Discussion.—We have shown that for twist angles near
60 = 1° and Dirac masses m; within an experimentally
realistic range, TGKG exhibits a two-orbital honeycomb
lattice flat band model at charge neutrality, while TBKG
exhibits both kagome and triangular lattice flat band
models at low energies which are quite robust against
parameter variation. When interactions are included, the
nontrivial flat bands of the honeycomb and kagome lattice
models become promising highly tunable platforms for the
realization of strongly correlated phases such as Mott
insulators, charge or spin density waves, and spin
liquids [51,52]. We leave for future work the possibility
of inducing spin-orbit coupling or magnetism through
substrate coupling or other means. These effects generically
produce flat (spin) Chern bands [28], in which fractional
Chern or topological insulators may be realized [53].
For TGKG, when the Dirac mass is large
(m, 2 500 meV), the Kekulé-O graphene layer has a
sufficiently large gap to allow a perturbative treatment. As
explained in [28], an effective moiré model can be derived for
the non-Kekulé layer, in which the two valleys are coupled by
a moiré potential. However, this perturbative model gives
qualitatively incorrect band structures for small Dirac masses
m_, and in such cases the full model in Eq. (1) is required.
In an ideal realization of TGKG or TBKG, care must be
taken to avoid charge transfer from the adatoms inducing
Kekulé-O order into the graphene layers, since the flat bands
are near the charge neutrality point of pristine graphene. In
Ref. [34] the authors used a dilute concentration of lithium
adatoms with negligible charge transfer to the graphene
layer, and observed a well-resolved Kekulé-O order despite
the disordered adatom arrangement [33]. Charge transfer
may also be avoided through intercalation or deposition of
both donor and acceptor atoms, for instance, hydrogen and
lithium atoms which hole-dope and electron-dope graphene,
respectively [32,34]. First-principles calculations and exper-
imental studies are needed to address these issues.
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