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Multifractals arise in various systems across nature whose scaling behavior is characterized by a
continuous spectrum of multifractal exponents Δq. In the context of Anderson transitions, the multi-
fractality of critical wave functions is described by operators Oq with scaling dimensions Δq in a field-
theory description of the transitions. The operators Oq satisfy the so-called Abelian fusion expressed as a
simple operator product expansion. Assuming conformal invariance and Abelian fusion, we use the
conformal bootstrap framework to derive a constraint that implies that the multifractal spectrum Δq (and its
generalized form) must be quadratic in its arguments in any dimension d ≥ 2.
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Multifractal (MF) measures with intricate scaling arise in
such diverse subjects as dynamical chaos [1,2], weather and
climate [3], turbulence [4–8], fractal growth [9–12], critical
clusters in statistical mechanics [13–15], disordered mag-
nets and other random critical points [16,17], Anderson
transitions (ATs) [18–25], mathematical finance [26,27],
random energy landscapes [28,29], Gaussian multiplicative
chaos [30], and rigorous approaches to conformal field
theory (CFT) [31,32].
A MF measure μðrÞ is characterized by the scaling of its

moments with the system size L:
R
ddr μqðrÞ ∼ L−τq , with a

continuum of exponents τq that depend nonlinearly on q. MF
momentsμqðrÞ canbe representedby local operatorsOqðrÞ in
a scale-invariant field theory, with scaling dimensions, also
called the MF spectrum, Δq ≡ τq − dðq − 1Þ þ qΔ1 [33].
Similar to critical phenomena, one may expect the scale

invariance to be enhanced to conformal invariance (though
this is not guaranteed [34,35]), in which case, MF proper-
ties can be described by a CFT. Our main result is that in
this situation, and under the assumption of Abelian fusion
[see Eq. (4)] that is valid for ATs, in any dimensionality
d ≥ 2, the MF spectrum Δq must be parabolic; see Eq. (6)
below. Our result is general and should apply to all MF
measures that obey conformal invariance and Abelian
fusion.
Our Letter is motivated by and of particular significance

to the study of MF wave functions at ATs [18,36], where
the parabolicity of Δq was predicted in a d ¼ 2 CFT [37].
This prediction was tested analytically and numerically,
and was found to be violated at two-dimensional (2D) ATs
in various symmetry classes [38–44]. This has led to the
understanding that conformal invariance might be lost at
these critical points. Similarly, numerical studies of multi-
fractality in d ¼ 3, 4, 5 have found strong deviations from
parabolicity [45–48], but there has not been any prediction

in d > 2 from a CFT perspective. Our Letter provides such
a prediction.
Multifractals and field theory.—We first recall properties

of MF spectra that follow from general principles. The
function τq is nondecreasing and convex, which implies the
existence of q� > 0 such that Δq� ¼ 0 [49]. Further con-
straints follow from studying MF correlators in a field
theory via the relation [33,50]

μq1ðr1Þ…μqnðrnÞ ∝ hOq1ðr1Þ…OqnðrnÞi: ð1Þ

The overbar denotes spatial or disorder average, while the
angular brackets denote a field-theory expectation value.
Of crucial importance is the additive, or Abelian, nature

of the operator product expansion (OPE) of two MF
operators Oq1 and Oq2 [33,50,51]:

Oq1ðrÞOq2ð0Þ ∝ jrjΔq1þq2
−Δq1

−Δq2Oq1þq2ð0Þ þ…; ð2Þ

where the ellipsis denotes subleading operators. As a
consequence, a MF correlator hQi OqiðriÞi scales as
L−Δq1þq2þ… in the infrared. In the L → ∞ limit, only
charge-neutral correlators with Δq1þq2þ… ¼ 0 can be
studied by field-theory methods [41].
When conformal invariance is present, it fixes two-point

functions: hOq1ðrÞOq2ð0Þi ¼ δΔq1
;Δq2

jrj−2Δq1 . This form is
consistent with the OPE (2) if Δq1þq2 ¼ 0 and Δq1 ¼ Δq2 .
Given the convexity of the MF spectrum, Δq ≠ Δ−q, and
the only consistent choice is q2 ¼ q� − q. Then we get the
symmetry relation [49]

Δq ¼ Δq�−q: ð3Þ

More generally, only MF corelators with
P

i qi ¼ q� are
consistent with conformal invariance [41]. The relation (3)
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is on more rigorous footing for ATs, where it follows from
the Weyl symmetry (5) of the critical theory and does not
rely on conformal invariance.
Multifractality at ATs.—ATs between metals and insula-

tors, as well as between topologically distinct localized
phases, are a major focal point in the study of disordered
systems [18]. Critical properties at ATs are notoriously
difficult to study because of the strongly coupled nature of
the critical points.
A remarkable property of ATs is the multifractality of

critical wave functions, or the local density of states νðrÞ
whose moments scale as νqðrÞ ∼ L−Δq . There are more
general combinations Pγ of critical wave functions [41–
43,52] labeled by vectors γ ¼ ðq1;…; qnÞ of complex
numbers qi, with scaling dimensions Δγ . MF properties
at ATs are under better control than in general multifractals,
since they can be rigorously established within the field
theories of ATs, the nonlinear sigma models on cosets G=K
of certain Lie supergroups [18,53–56]. In these models, Pγ

are represented by gradientless composite operators Oγ

[19–21,52]. A key fact is that Oγ can be constructed as
highest-weight vectors under the action of the Lie super-
algebra of G with weights γ [52]. Then, the G symmetry of
the target space (assumed not broken at the critical point)
implies Abelian fusion

Oγ1 ×Oγ2 ∼Oγ1þγ2 þ…; ð4Þ
where the ellipsis denotes now derivatives ofOγ1þγ2 and not
general subleading operators as in Eq. (2).
The G symmetry also leads to the Weyl symmetry of the

MF spectra Δγ ¼ Δwγ , w∈W [52]. The Weyl groupW acts
in the space of weights γ and is generated by

qi → −ci − qi; qi → qj þ ðcj − ciÞ=2: ð5Þ

The coefficients ci of the half-sum of the positive roots
ρb ¼

P
n
j¼1 cjej in a standard basis ej are known for all

families of symmetric superspaces [41–44,49,52,57]. The
Weyl symmetry implies the existence of the operator O−ρb
with vanishing scaling dimension Δ−ρb ¼ 0. The corre-
sponding neutrality condition for generalized MF correla-
tors hQi Oγii is

P
i γi ¼ −ρb. The simple MF operatorsOq

and the spectrum Δq corresponds to γ ¼ ðq; 0; 0;…; 0Þ. In
this case, c1 ¼ −q�, and the Weyl symmetry reduces
to Eq. (3).
The Weyl symmetry is fully supported by numerical and

analytical results for various symmetry classes and dimen-
sions d ≥ 2 [38,39,41–45,57–64].
Multifractality and CFT in d ¼ 2.—2D CFTs possess

the infinite-dimensional Virasoro symmetry. In this setting,
the ellipsis in Eq. (4) represents Virasoro descendants and
leads to a single Virasoro block in a four-point function of
MF operators, and a Vafa-Lewellen [65,66] constraint on
the MF spectra. The unique solution of this constraint

subject to the symmetries (5) is the parabolic spectrum
[37,41,67]

Δγ ¼ −b
X
i

qiðqi þ ciÞ; Δq ¼ bqðq� − qÞ; ð6Þ

where the parameter b cannot be determined from sym-
metry considerations alone. The second equation above is
the simplification of the first for the simple MF spectrum
Δq. In d ¼ 2, the MF operators appear as vertex operators
in a Coulomb gas theory (a Gaussian free field with a
background charge) [37].
The central result of this Letter is that, once we assume

conformal invariance and Abelian fusion, Eqs. (6) hold for
MF spectra at ATs in any dimension d ≥ 2.
The conformal bootstrap program [68] has brought the

study of higher-dimensional CFTs into the limelight with
extensive work on both analytical and numerical fronts. The
bootstrap philosophy attempts to solve the crossing sym-
metry conditions coming from associativity of the OPE, with
inputs from global symmetry and expected fusion rules for
the operators. Crossing symmetry relates possible ways (or
channels) of reducing a four-point function hQ4

i¼1OiðriÞi to
two-point functions by replacing pairs of operators with their
OPEs (see Fig. 1). The s-channel fusion (1 → 2, 3 → 4) and
the t-channel fusion (1 → 4, 2 → 3) result in two expansions
of the four-point function and give the crossing equationP

Os
λOs
12 λ

Os
34WOs

¼P
Ot
λOt
14λ

Ot
23WOt

. The factorsWO are fully
determined by conformal symmetry, while the CFT data
fΔi; λkijg consisting of scaling dimensions and OPE coef-
ficients are to be found. Solutions fΔi; λkijg fully define
consistent CFTs. The s and t channels are obtained from
each other by interchanges of indices of the operators (and
their points of insertion): s ↔ t≡ 1 ↔ 3. Accordingly,
starting with a function fðsÞ ≡ fðr1; r2; r3; r4Þ of four
ordered arguments, we obtain, by permuting 1 ↔ 3, another
function fðtÞ ≡ fðr3; r2; r1; r4Þ. Using this notation, we can
write the four-point function as a product of a conformally

covariant kinematic factor KðcÞ
4 and a G function

�Y4
i¼1

OiðriÞ
�

¼ KðsÞ
4 GðsÞ ¼ KðtÞ

4 GðtÞ: ð7Þ

The G functions depend on the cross ratios

u ¼ r212r
2
34

r213r
2
24

; v ¼ r214r
2
23

r213r
2
24

; where rij ¼ jri − rjj; ð8Þ

FIG. 1. A schematic representation of the s-t crossing equation.
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and operator labels. The cross ratios get transformed upon
crossing so that GðsÞ ¼ G12;34ðu; vÞ, GðtÞ ¼ G32;14ðv; uÞ. In
terms of the G functions, the s-t crossing equation is

GðsÞu−
Δ1þΔ2

2 ¼ GðtÞv−
Δ2þΔ3

2 : ð9Þ
Much of the bootstrap formalism is geared toward solving

Eq. (9) self-consistently for unitaryCFTs. Since any putative
CFT for MF correlators contains infinitely many relevant
operators and, thus, is nonunitary, we resort to novel,
unorthodox methods that focus on the G function and
various physical inputs (similar to the “inverse bootstrap”
method in [69]). We start by studying the Coulomb gas
theories in the language of modern conformal bootstrap and
use them as signposts to generalize the notion of Abelian
fusion to higher dimensions. Then we show that the
generalized Abelian fusion and crossing symmetry together
yield a constraint on the spectrum of scaling dimensions in
any d that is analogous to the Vafa-Lewellen constraints
[65,66] known in CFT in d ¼ 2. Finally, additional physical
assumptions specific toMFobservables allow us to solve the
constraint, leading to a quadratic dependence of the MF
spectrum Δγ on qi in any dimension d.
Coulomb gas theories with global conformal blocks.—In

d ¼ 2, the Coulomb gas theories arise out of breaking the
U(1) symmetry of the free boson ϕ by including a back-
ground chargeQ in the action [70,71]. A Coulomb gas CFT
can be defined [71,72] in any dimension d∈N by con-
sidering an action with a possibly nonlocal kinetic term
∝ ϕð−□Þðd=2Þϕ. Such CFTs also arise as limits of gener-
alized free fields, where the scaling dimension of the field ϕ
is tuned to Δϕ ¼ 0. In this limit, hϕϕi is logarithmic in any
dimension which allows us to study vertex operators
Vα ∼ edαϕ. Following the conventions in [71,72], the
scaling dimension of Vα is Δα ¼ dαðQ − αÞ, and the
multipoint functions satisfying the charge neutralityP

i αi ¼ Q are hQVαiðriÞi ¼
Q

i<j r
−2dαiαj
ij .

Next, we derive the OPE of vertex operators in terms of
primaries of the global conformal group by studying the
conformal block expansion. Consider a four-point function
of vertex operators which can be written in the form (7)
with the G function

GðsÞ
CG ¼ u

1
2
Δα1þα2v

1
2
ðΔα2þα3

−Δα2
−Δα3

Þ: ð10Þ
This function is explicitly crossing symmetric [satisfies
Eq. (9)] and has a convergent conformal block expansion
[68] in the s channel in any dimension d,

GðsÞ
CG ¼

X
O

λO12λ
O
34gΔO;lOðu; vÞ: ð11Þ

The conformal blocks gΔO;lO are often written as functions
of ðz; zÞ related to the cross ratios ðu; vÞ by

u ¼ zz̄; v ¼ ð1 − zÞð1 − z̄Þ: ð12Þ

In the s-channel limit, r12 ≈ r34 ≪ r13 ≈ r24 ≈ r23 ≈ r14,
and thus, u → 0, v → 1; see Eq. (8). Then, z; z̄ → 0, and the
G function (10) has the form

GðsÞ ¼ ðzz̄ÞΔðsÞ2 fðz; z̄Þ; ð13Þ

where fðz; z̄Þ is a Taylor series symmetric in ðz; z̄Þ, and
ΔðsÞ ¼ Δα1þα2 . In the Supplemental Material [73] and
Ref. [74], we use the leading behavior of the conformal
blocks in the s channel [75,76] to show that any G function
of the form (13) admits the conformal block expansion

GðsÞ ¼
X
n;l≥0

μðn;lÞgΔðsÞþ2nþl;lðz; z̄Þ ð14Þ

in arbitrary dimensions d ≥ 2. Conversely, any G function
that can be expanded as in Eq. (14) can also be written in
the form of Eq. (13).
Let us denote global primaries as ½τ; l� specifying their

twist τ≡ Δ − l and spin l. Then we say that the expansion
(14) contains just one twist family [69] consisting of
the leading primary ½ΔðsÞ; 0� and subleading operators
½ΔðsÞ þ 2n; l� which are constructed from its derivatives.
The superscript of the product of the OPE coefficients

μðn;lÞ ≡ λðn;lÞ12 λðn;lÞ34 identifies the operator ½ΔðsÞ þ 2n; l� in the
twist family.
Expanding the Coulomb gas G function (10) in global

conformal blocks gives the OPE of Vα1 × Vα2 as [73]

½Δα1 ; 0� × ½Δα2 ; 0� ∼
X
n;l≥0

λðn;lÞ12 ½Δα1þα2 þ 2n; l�; ð15Þ

where n, l are non-negative integers, and the ðn; lÞ ¼ ð0; 1Þ
term is absent in the OPE. For two identical operators
(α1 ¼ α2), their OPE is completely specified by the con-
formal block expansion since we can extract the squared
OPE coefficients (see Ref. [73] for explicit expressions in
the d ¼ 2 and d ¼ 4 cases).
Generalized Abelian fusion.—In the strict sense, Abelian

fusion (4) cannot hold in CFTs in d > 2, since an OPE
written with finitely many global conformal primaries
cannot satisfy crossing [77–80]. Thus, we need to genera-
lize the notion of Abelian fusion to d > 2. Global con-
formal block expansions of Coulomb gas correlators
exhibit certain features that we adopt as the definition of
Abelian fusion in d > 2: (1) All primary MF operators can
be grouped into twist families, and (2) the OPE of any two
leading MF primaries contains only one twist family:

½Δ1; 0� × ½Δ2; 0� ∼
X
n;l≥0

λðn;lÞ12 ½Δþ 2n; l�: ð16Þ

The generalized Abelian fusion (16) and the related
conformal block expansion (14) constrain a general scalar
four-point G function to have the form (13). Since zz̄ ¼ u
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and zþ z̄ ¼ uþ 1 − v form a basis in the ring of sym-
metric functions of z and z̄, Eq. (13) can also be written as

GðsÞ ¼ u
ΔðsÞ
2

X
n≥0

fðsÞn ðvÞun: ð17Þ

The functions fn are arbitrary so far, and quantities with the
superscript (s) depend on the external dimensions in a
channel-covariant manner. At this point, one can make a
further simplification by assuming that the functions frðvÞ
can be represented as (possibly infinite) sums of power
laws in v, i.e.,

GðsÞ ¼ u
ΔðsÞ
2

X
n;m≥0

Cnmvσ
ðsÞ
m un; ð18Þ

where σm are unrelated real numbers, and the coefficients
Cnm do not depend on the cross ratios ðu; vÞ or the external
dimensions. The Coulomb gas theories are of this form
with a single term; see Eq. (10). The generalized free field
correlators [79] with Δϕ ≥ 0 are similarly composed of
sums of power laws in u and v, although they do not satisfy
Abelian fusion (integer gaps in powers of u). The above
ansatz appeared for the case of a correlator of identical
operators in Ref. [69], which discussed the idea of building
crossing-symmetric G functions. Similarly, the authors of
Ref. [80] use a version where the coefficients Cnm are
functions of log u, log v (the logarithms come from
anomalous dimensions of the subleading operators in the
twist family). As our definition of Abelian fusion, Eq. (16),
exactly fixes the dimensions of all subleading operators, the
logarithms are unnecessary in our treatment.
Constraints on the G function from crossing.—

Substituting the Abelian G function (18) into Eq. (9),
we obtain an equation that enforces a structure on the G
function understandable in terms of crossing-symmetric
building blocks [69], such that any truncation up to ðN;MÞ
of the double sum in Eq. (18) is also crossing symmetric;
see the Supplemental Material [73] for details. The result is
the G function

GðsÞðu; vÞ ¼ u
ΔðsÞ
2 v

ΔðtÞ
2
−Δ2þΔ3

2

�X
k≥0

SkðuvÞk

þ
X

j≥1;k≥0
DjkðuvÞkðuj þ vjÞ

�
; ð19Þ

where we use Sk andDjk to represent the coefficients of the
crossing-symmetric terms and pairs, respectively. Thus, we
adopt Eq. (19) as the generic form of the Abelian G
function (18) that also satisfies s-t crossing.
Excluding the spin-1 operator.—Focusing on the last

part of the puzzle, we expand the G function (19) in
conformal blocks in arbitrary dimensions to first few orders
in z and z̄. By construction, the first block that appears in

the expansion is ½ΔðsÞ; 0�. The product of the OPE coef-
ficients of the leading block is read off as μð0;0Þ ≡ S0. The
coefficient μð0;1Þ of the spin-1 block ½ΔðsÞ; 1� can be
obtained by matching the coefficients of the series for
the order ∼ðzz̄ÞΔðsÞ=2ðzþ z̄Þ as

μð0;1Þ

S0
¼ Δ2 þ Δ3 − ΔðtÞ

2
ð1þ PÞ −Q

−
ðΔðsÞ − Δ1 þ Δ2ÞðΔðsÞ þ Δ3 − Δ4Þ

4ΔðsÞ ; ð20Þ

where the sums P ≡P
j≥1Dj0=S0, Q≡P

j≥1 jDj0=S0
must converge for the OPE coefficient to be well defined.
This spin-1 operator cannot appear in any OPE of two

identical scalar operators on general grounds. Indeed,
Oðx1ÞOðx2Þ is even with respect to the interchange
x1 ↔ x2, but a spin-1 operator must appear in the OPE
as ∼ðx1 − x2Þ × ∂OΔðsÞ(ðx1 þ x2Þ=2) which is odd.
Exploiting this fact, we set O2 ≡O1 in which case
μð0;1Þ ¼ 0, and Eq. (20) becomes a constraint on Δ’s:

ΔðsÞ þ Δ3 − Δ4 þ 4Q ¼ 2ðΔ1 þ Δ3 − ΔðtÞÞð1þ PÞ: ð21Þ

In the context of MF correlators at ATs, we identify
ΔðsÞ ≡ Δγ1þγ2 , ΔðtÞ ≡ Δγ3þγ2 . The neutrality conditionP

i γi ¼ −ρb fixes Δ4 ¼ Δ−ρb−γ1−γ2−γ3 ¼ Δγ1þγ2þγ3 . Now
the continuity of MF spectra allows us to choose
γ1 ¼ γ2 ¼ ϵei, where ei ¼ ð0;…; 1;…; 0Þ (unit in the ith
place), with ϵ ≪ 1, and γ3 ¼ γ in Eq. (21). Then we can
expand in orders of ϵ [73], which gives Q ¼ P ¼ 0, and
our main result:

The only MF spectrum Δγ , which satisfies gen-
eralized Abelian fusion and crossing symmetry,
has the form given in Eq. (6).

Going back to Eq. (21), we substitute P ¼ Q ¼ 0, and
the quadratic solution for Δγ to find that the constraint

2Δγ1 þ Δγ3 − 2Δγ1þγ3 − Δ2γ1 þ Δ2γ1þγ3 ¼ 0 ð22Þ

correctly picks out Abelian CFTs in d ≥ 2, and thus is the
appropriate generalization of the 2D Vafa-Lewellen con-
straint with a single exchanged Virasoro primary.
Summary and outlook.—Using conformal invariance, we

have shown that any Abelian CFT in d > 2 must be
intimately related to the Coulomb gas theory and have a
quadratic spectrum. Our main assumptions, fundamentally
related to each other, were the Abelian fusion (16) and the
form (18) for the G function. As in the case of weakly
perturbed CFTs [80], it remains to be seen if the generalized
Abelian CFT defined here could be perturbed so that the
derivative operators gain anomalous dimensions.

PHYSICAL REVIEW LETTERS 131, 266401 (2023)

266401-4



Let us discuss the implication of conformal invariance.
As we have summarized earlier, perturbative analytical
results in d ¼ 2þ ϵ and numerical simulations in d ¼ 3, 4,
5 have shown that the MF spectra for generic ATs are in
fact, not parabolic [38–48]. In light of our result, it follows
that conformal invariance is likely lost at ATs. The
alternative scenario advocated in Refs. [67,81] is that the
symmetries of the sigma models that were used to derive
Abelian fusion and Weyl symmetry are spontaneously
broken at the critical point. We believe this alternative to
be unlikely, since it contradicts the vast body of literature
on ATs, including the aforementioned numerical confirma-
tions of the Weyl symmetry [38,39,41–45,57–64]. Thus,
we propose ATs as examples of systems where scale
invariance does not imply conformal invariance.
Perturbative MF spectra at random critical points [16,17]

are also nonparabolic, suggesting lack of conformal invari-
ance. Moreover, the authors of Ref. [82] argued that
conformal invariance generically breaks down at strongly
random fixed points. On the other hand, most systems
where the MF spectrum is known to be parabolic are also
conformally invariant [83]. These include 2D Dirac fer-
mions in random gauge potentials [86–92], a recent
proposal for the critical-point theory of the integer quantum
Hall transition [37,67,93], Coulomb gas and Liouville
CFTs in arbitrary dimensions [71,72], and rigorous prob-
abilistic studies of 2D quantum gravity and Liouville CFT
[30–32]. All of these results support the picture where
parabolicity of MF spectra and conformal invariance go
hand in hand, and that both are absent at critical points in
random and disordered systems [94].
A natural extension of our Letter is to consider impli-

cations of conformal invariance for multifractality near
boundaries of finite systems [38,39,60,62,95–99] using
crossing symmetry and conformal bootstrap in a boun-
dary CFT.
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