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We extend the study of finite-entanglement scaling from one-dimensional gapless models to two-
dimensional systems with a Fermi surface. In particular, we show that the entanglement entropy of a
contractible spatial region with linear size L scales as S ∼ L log½ξfðL=ξÞ� in the optimal tensor network,
and hence area-law entangled, state approximation to a metallic state, where fðxÞ is a scaling function
which depends on the shape of the Fermi surface and ξ is a finite correlation length induced by the restricted
entanglement. Crucially, the scaling regime can be realized with numerically tractable bond dimensions.
We also discuss the implications of the Lieb-Schultz-Mattis theorem at fractional filling for tensor network
state approximations of metallic states.
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Introduction.—In the last two decades it has become in-
creasingly clear that ground states of local lattice Hamilto-
nians have an interesting and rich entanglement structure.
For example, generic ground states of gapped localHamilto-
nians are observed to satisfy the so-called “area law” for the
entanglement entropy of a subregion, meaning that the
leading term in the entanglement entropy scaleswith the area
of the boundary separating the subregion from the rest of the
system (in 1D, the area law has been proven; see Ref. [1]).
Furthermore, subleading corrections to the area law contain
universal information about the topological phase of the
system [2,3]. Related quantities, such as the entanglement
spectrum [4] andmultipartite entanglementmeasures [5–11],
have also been shown to reveal topological information.
In the case of gapless local Hamiltonians, the area law is

frequently violated. Two notable examples are gapless 1D
systems with long-wavelength properties that can be de-
scribed by conformal field theory (CFT), and systems in
higher dimensions with a Fermi surface. In the former case,
the entanglement of a subregion with linear size L scales
as S ∼ c=3 logL, with c the central charge of the CFT
[12–14], whereas S ∼ Ld−1 logL in a d-dimensional system
exhibiting a codimension 1 Fermi surface [15–18].
The entanglement structure of ground states has direct

practical consequences for classical simulations of quantum
systems. The existence of an area law is both a necessary
condition as well as a strong motivation to represent the
ground state as a tensor network state (TNS) [19–22]. TNSs
are compressed representations of quantum states in terms of
local tensors which can be stored and manipulated effi-
ciently by classical computers, and therefore present a useful
variational space for numerical studies. For systems violat-
ing the area law, the theory of “finite-entanglement scaling”
[23–28] describes how an area-law state (i.e., a TNS)
best approximates the non-area-law ground state in the

thermodynamic limit. A remarkable result from finite-
entanglement scaling is that for 1D critical ground states
described by a CFT, the restricted entanglement induced by
the finite TNS bond dimensionD (i.e., the dimension of the
contracted indices of the tensors) results in a finite corre-
lation length ξ ∝ Dκ, where κ is a universal number
determined by the central charge of the CFT [23,24]. As
a result, the entanglement entropy of a region of lengthL can
be expressed in terms of a scaling function which depends
only on the ratio L=Dκ [23,24,29].
In this Letter we extend the finite-entanglement scaling

analysis to two dimensions and show that a similar scaling
collapse is possible for the entanglement entropy of metals,
i.e., states with a Fermi surface, despite the fact that there is
no underlying CFT describing the long-wavelength
physics. Our results show that by exploiting the scaling
collapse, moderate (and numerically tractable) bond dimen-
sions already give rise to a sufficiently high numerical
accuracy to reliably access all information about the Fermi
surface that is contained in the Widom formula, and hence
apply the general approach of “entanglement spectroscopy”
to metallic systems. Some interesting previous works
have studied finite-correlation-length scaling for 2D TNS
[30–33], but these works did not consider area-law-violat-
ing ground states.
Gaussian fermionic TNS.—For concreteness we will per-

form our analysis on a square lattice. Since we are inte-
rested in 2D states with a Fermi surface we use fermionic
projected entangled-pair states (PEPS) [34–39]. In particu-
lar, we will be working with Gaussian fermionic tensors,
which produce either a Slater determinant or a Bardeen-
Cooper-Schrieffer (BCS) pairing (or pfaffian) state after
contraction of the virtual indices. To define the Gaussian
tensors, we assign fermion creation operators f†x;a (a∈
f1;…; Ng) to the physical index of the tensor at site x, and
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Grassmann variables θhx;α; θ̄hx;β; θ
v
x;λ; θ̄

v
x;σ (α; β; λ; σ ∈

f1;…;Mg) to the virtual indices, as in Fig. 1. The
Grassmann variables square to zero, are mutually anti-
commuting, and also anticommute with the creation oper-
ators f†x;a. The Gaussian tensor at site x is defined as

T̂x ¼ exp

�
1

2
χTxAχx

�
; ð1Þ

where the column vector χx ≡ ðf†x; θhx; θ̄hx; θvx; θ̄vxÞ collects
the N creation operators and 4M Grassmann variables
assigned to site x, and the antisymmetric matrix A∈
CðNþ4MÞ×ðNþ4MÞ contains the variational parameters. Note
that A is independent of x, which means that we are
restricting ourselves to translation-invariant (TI) states.
With the definition of the tensors in place, we can now
define the (unnormalized) contracted Gaussian fermionic
TNS (GfTNS) via the Berezin integral [40]

jψi ¼
Z

½Dθ�
Z

½Dθ̄�
Y
x

eθ̄
hT
x θhxþex eθ̄

vT
x θvxþey T̂xj0i; ð2Þ

where j0i is the physical Fock vacuum and ex=y are unit
vectors along the x=y direction. Every Grassmann variable
spans a two-dimensional super vector space, so the bond
dimension of the GfTNS is D ¼ 2M.
Because we are considering TI states, the Gaussian

Grassmann integral in Eq. (2) can be further simplified
by going to momentum space. Working with a large but
finite system of Ns ¼ NxNy sites and (anti-)periodic boun-
dary conditions while defining χk ¼ ð1= ffiffiffiffiffiffi

Ns
p ÞPx e

ik·xχx,
we can write

jψi ¼
Z

½Dθ�
Z

½Dθ̄� exp
�
1

2

X
k

χT−k½AþMðkÞ�χk
�
j0i:

Here, MðkÞ is defined as MðkÞ ¼ 0N ⊕ M̃ðkÞ, with 0N a
N × N zero matrix, and

M̃ðkÞ ¼
�

0M −eikx1M
e−ikx1M 0M

�
⊕

�
0M −eiky1M

e−iky1M 0M

�
:

ð3Þ

Writing A ¼ ðBC −CT

D Þ, with N × N submatrix B, 4M × N
submatrix C, and 4M × 4M submatrix D, we finally obtain

jψi ∝ e
1
2

P
k
f†−kfBþCT ½DþM̃ðkÞ�−1Cgf†k j0i: ð4Þ

Here, we have assumed that Dþ M̃ðkÞ is nondegenerate at
every k and refer to Ref. [41] for the degenerate case.
The construction of GfTNS as presented here was

introduced in Ref. [37], and has been used in previous
studies [38,42,62,63]. There also exists an alternative
formulation in terms of density matrices [34]. For our
results presented below we have used both formalisms,
each of which has different practical advantages. However,
the two formalisms are ultimately equivalent and can be
translated into each other [41].
The state in Eq. (4) takes the form of a general BCS

pairing state. Given that we set out to study states with a
Fermi surface, the reader might worry that we are using
TNS which contract to pairing states. The reason for this is
simply that a finite-D Gaussian fTNS with explicit charge
conservation symmetry always has an integer particle
number at every momentum which is constant throughout
the Brillouin zone, and therefore cannot represent or even
closely approximate a state with a Fermi surface. This is not
an embarrassing shortcoming of GfTNS, but a direct
consequence of the Lieb-Schultz-Mattis theorem, which
states that one cannot have a trivial insulator at noninteger
fillings [64–67]. In particular, in Ref. [68], it was shown
that if a general, explicitly TI and U(1)-symmetric fTNS is
forced to have a filling ν ¼ p=q, with p and q > 1 coprime
integers, then the tensors necessarily have a purely virtual
Z2q symmetry. The entanglement entropy (EE) in a generic
tensor network state with such virtual symmetry scales as
S ¼ αL − ln 2qþOðL−1Þ, which implies that the fTNS
has nontrivial topological order [43,69–71]. So the incom-
patibility of Gaussianity and explicit U(1) symmetry at
fractional filling ν ¼ p=q for fTNS is a manifestation of the
simple fact that Slater determinants cannot represent states
with nontrivial topological order. The only way for a TI
GfTNS to introduce finite entanglement in a metallic state
is therefore to open a small superconducting gap at the
Fermi surface.
Spinless fermions.—We first consider the case with

N ¼ 1, i.e., spinless fermions with a single orbital per
site. To obtain the GfTNS, we minimize the energy of the
following simple hopping Hamiltonian:

H ¼ −t
X
hiji

f†i fj − t0
X
⟪ij⟫

f†i fj þ H:c: − μ
X
i

f†i fi; ð5Þ

where the first (second) sum is over nearest (next-nearest)
neighbors. We choose the chemical potential μ such that
there is a single electron pocket centered at the Γ point.
With periodic boundary conditions, the total number of
electrons in the spinless Fermi sea is odd for every system

(a) (b)

FIG. 1. (a) A 2D tensor network on a 3 × 3 square lattice.
(b) The assignment of physical creation operators f†x to the
physical index, and virtual Grassmann variables θx; θ̄x to the
virtual indices, of a Gaussian fermionic tensor.
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size. If a state at momentum k is occupied, then so is the
state at −k. So the electrons appear in pairs, except at the
time-reversal invariant momenta (TRIM). Here, the only
TRIM which is occupied is the center of Brillouin zone
k ¼ 0; hence the overall fermion parity is odd. The tensors
defined in Eq. (1) have even fermion parity, and therefore
the GfTNS also necessarily has even parity (for every
system size). This is reflected in the fact that the wave
function in Eq. (4) with N ¼ 1 always leaves the states at
the TRIM empty. It is possible to fix this discrepancy by
inserting an additional Grassmann variable “on the virtual
level” in Eq. (2), which makes the fTNS have odd parity
[41] (this Grassmann variable is identical to the string
operators that have appeared in fTNS constructions [44] of
the px þ ipy superconductor [45]). Here, however, we will
use a simpler way to sidestep this issue and work with
antiperiodic boundary conditions such that the spinless
Fermi surface state always has even fermion parity.
We choose μ to fix the total particle number Ne at half

filling, i.e., ν ¼ Ne=Ns ¼ 1=2, and use t0=t ¼ 0.353 to
realize an almost circular Fermi surface. We have optimized
the GfTNS to minimize its energy hHi, at different bond
dimensions D (see Ref. [41] for details of the numerical
simulations). Figure 2(a) depicts the difference in energy of
the optimal GfTNS compared with the exact result, as well
as the standard deviation of the total particle number per
site, i.e., σq ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hN2

ei − hNei2
p

=Ns. The latter is a quanti-
fier for the charge conservation symmetry breaking in the
GfTNS. We see that both the energy error and σq decrease
as a function of D, indicating—similarly to Ref. [46]—that
the optimized GfTNS provides an approximation to the
exact metallic ground state which improves systematically
with bond dimension. Figure 2(b) shows the correlation
function GðrÞ ¼ hf†rþr0fr0 i of the D ¼ 16 GfTNS, which
agrees with the exact result for jrj≲ ξ ≈ 70. Note that
ξ ≪ Nx ¼ Ny, such that we can take our results to be
representative of the thermodynamic limit. In Figs. 2(c) and
2(d) we plot the pairing function hfkf−ki for D ¼ 32, both
along a radial cut, and throughout the entire Brillouin zone.
jhfkf−kij2 is peaked at the Fermi surface, and can be
approximated by the BCS expression Δ2=4ðΔ2 þ ε2kÞ,
where εk is the single-particle dispersion of H. Figure 2(d)
illustrates that the phase of hfkf−ki winds by 2π along the
Fermi surface, i.e., it is a px þ ipy gap. We explain how the
GfTNS deals with the chiral topology of the weak-pairing
px þ ipy superconductor [42,45,47] in the Supplemental
Material [41].
The leading term in the EE of a square L × L spatial

region R in a 2D state with a single spinless Fermi surface is
given by

S ¼ logðΛLÞ
24π

I
∂R

I
FS
jdSx · dSkj; ð6Þ

where Λ is a nonuniversal inverse length scale, and the
integrals are over the boundary of R and over the Fermi
surface, and dSx (dSk) is a surface element of ∂R (the Fermi
surface) [16]. For the special case of a circular Fermi
surface with radius kF, this general expression evaluates
to Scirc ¼ ð2kFL=3πÞ logΛL.
In Fig. 3(a), we plot the EE S as a function of L, directly

calculated from the correlation matrix of the optimized
GfTNS at different D. This plot shows our main result,
which is that the leading contribution to the EE at finite D
can be written as

SfTNS ¼ log ðΛξfðL=ξÞÞ × 1

24π

I
∂R

I
FS

jdSx · dSkj; ð7Þ

where ξ is the finite-bond-dimension-induced correl-
ation length, and fðxÞ is a scaling function which satisfies
fðx ≪ 1Þ ∼ x and fðx ≫ 1Þ ¼ constant . Figure 3(a) shows
how the optimized GfTNS at different D approximate the
L logL scaling of the EE, while Fig. 3(b) directly plots the
scaling function fðxÞ onto which the numerical data
obtained at different D can be collapsed. Note that to
obtain the scaling collapse we have only one tuning
parameter ξ if we require that the GfTNS results agree
with the exact result at small L. The length scale ξ obtained
from the EE of the D ¼ 16 GfTNS [41] is indicated as the

(a) (b)

(c) (d)

FIG. 2. Results for spinless fermions with t0=t ¼ 0.353 at half
filling of Ns ¼ 9992 sites. (a) Relative difference in energy per
site (denoted as Δe=eexact) between the exact ground state and
the optimized GfTNS as a function of bond dimension D; and the
standard deviation σq of the particle number per site of the
optimized GfTNS. (b) jhfrf0ij for D ¼ 16 GfTNS vs the exact
ground state. Near ξ, which is extracted from the EE, jGðrÞj for
GfTNS starts to decay much faster than the power law behavior
for that of the exact ground state. (c) jhfkf−kij2 at D ¼ 32 along
a radial direction in the Brillouin zone as a function of the single-
particle energy εk ofH [Eq. (5)]. (d) hfkf−ki atD ¼ 32 through-
out the Brillouin zone. The color map denotes the magnitude, the
arrows the complex phase.
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vertical dashed line in the plot of GðrÞ in Fig. 2(b). This
shows that ξ agrees with the physical correlation length,
i.e., the length scale at which the exponential decay of
correlations in the GfTNS sets in. Finally, Fig. 3(c)
confirms that ξ increases monotonically as a function of
D. For the moderate bond dimensions used in this Letter, ξ
seems to follow a power law as a function of D. However,
based on both analytical [48] and numerical [41] results in
1D, which show that Gaussian fermionic matrix product
states (GfMPS) cannot reproduce the power-law scaling
ξ ∝ Dκ of generic matrix product states, we anticipate that
for GfTNS, deviations from the power-law relation
between ξ and D could occur at higher D. For general
(i.e., non-Gaussian) fTNS, we nevertheless conjecture
that ξ ∝ Dκ.
Spinful fermions.—Next, we consider the same

Hamiltonian as in Eq. (5), but now for spinful fermions
(N ¼ 2) created by f†x;σ with σ ¼ ↑;↓. An important
difference between the spinless and spinful models lies
in the nature of the superconducting gap of the optimal
GfTNS approximation. In particular, as we explicitly
impose SU(2) spin symmetry on the GfTNS, the super-
conducting gap will be spin singlet and hence even under
inversion.
We now verify whether the finite-entanglement scaling

law (7) also holds for the spinful model. In doing so, we
have used the density-matrix-based method for GfTNS
[34,41], and a numerical optimization which relies on
minimizing the Frobenius norm of the difference between
the exact single-particle density matrix and the GfTNS
density matrix (see Ref. [41] for details). Note that the
virtual fermion degrees of freedom now carry spin-1=2,
which means that the bond dimension D is restricted to
occur in powers of 4.

As for the spinless model, we have computed the EE of a
L × L region R for the spinful Fermi surface model and its
GfTNS approximations. The spinful results displayed in
Fig. 4 show a similar behavior to the spinless results in
Fig. 3, with some minor differences. In particular, right
before the EE reaches the area-law regime (signaled by the
plateau in Fig. 4), we discern a small “bump” where SfTNS
rises slightly above the exact value for S (indicated by the
arrows in Fig. 4). We attribute this to the correlations
between the different spin flavors induced by the singlet
pairing. Another difference is the generally lower ξ values
for the same bond dimension. This is a consequence of the
increased local Hilbert space dimension. Also, the rate at
which ξ increases with D is lower than in the spinless case,
which is reminiscent of the 1D case, where an increase in
the central charge lowers the exponent κ in ξ ∝ Dκ. Besides
these minor differences, Fig. 4(b) confirms our main result,
which is that the EE at different D can be collapsed using
the scaling law in Eq. (7).
Properties of the scaling function.—Similarly to the

scaling functions of gapless systems with conformal
symmetry in the IR, fðxÞ is expected to be insensitive to
lattice-scale details. We also expect that fðxÞ will depend
on the shape of the Fermi surface, in analogy to the finite-
temperature entropy scaling functions for Fermi liquids
[49]. To verify the first expectation we have performed
numerical data collapses of the EE obtained at different
fillings, while keeping the Fermi surface (FS) approxi-
mately circular. These results [41] confirm that the EE at
different fillings can indeed be collapsed on the same curve.
By tuning away from t0=t ¼ 0.353 in either direction,
which changes the FS to being either more diamondlike
or more squarelike, we observe that the results collapse on
different scaling functions, thus confirming the dependence
of fðxÞ on the FS geometry [41].
Conclusions.—We have shown that the theory of finite-

entanglement scaling can be generalized from 1D gapless
systems to 2D states with a Fermi surface. Our main result is

(a) (b)

(c)

FIG. 3. (a) Scaling collapse of the entanglement entropy S of a
L × L square region in the optimised GfTNS for spinless fermions
at half filling with t0=t ¼ 0.353 and Ns ¼ 9992, obtained at
different bond dimensions D. (b) Collapse of the GfTNS entan-
glement entropies using the scaling law of Eq. (7). (c) Linear fit of
the correlation length ξ as a function ofD obtained from the scaling
collapse of S, with κ ¼ 1.074.

(a) (b)

FIG. 4. (a) Entanglement entropies for a L × L square sub-
system in the exact ground state and its GfTNS approximations
with the indicated bond dimensions. Up to a bulk correlation
length ξ the exact profile is reproduced. After the transition region
with a characteristic “bump” (marked by the arrows), the GfTNS
profiles saturate. (b) Collapse of the GfTNS entanglement
entropies using the scaling law of Eq. (7).
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that SfTNSðL;DÞ, the EE of aL × L spatial region in the opti-
mal bond-dimension-D fTNS approximation of a metallic
state, can be written as SfTNSðL;DÞ∼LlogðξDfðL=ξDÞÞ,
where ξD is a finite infrared length scale which results from
the area-law structure (and thus the finite bond dimensionD)
of the tensor network state, and fðxÞ is a scaling function
which depends on the shape of the Fermi surface, but not on
the length scale k−1F , with kF the Fermi momentum.
Fermionic tensor networks are being used in a variety of

different ways, e.g., for numerical studies of lattice gauge
theories [72–74], as numerically tractable Gutzwiller-
projected states [75–81], as a tool for large-scale mean-field
calculations [50,82], as trial states for topological phases
[42,43,47,51,83–85], and as a general class of variational
states for numerical simulations of strongly interacting
systems [36,86–90]. The results presented in this Letter
show how these applications of fTNS can be extended to
metallic states. In particular, being able to perform a scaling
collapse for the EE provides solid numerical evidence for
the existence of a Fermi surface, and hence can be used
to numerically determine whether the ground state of
Hubbard-type models (e.g., those obtained from the flat
bands of twisted transition-metal dichalcogenides) are
metallic or insulating. Similarly, a scaling collapse for
the EE can be used to determine whether a frustrated spin
model has a spin liquid ground state with a spinon Fermi
surface. Furthermore, the scaling collapse significantly
enhances the accuracy of the numerically obtained
Widom prefactor, and hence provides more reliable infor-
mation about the fermiology of the metallic ground states.
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